C3M15
Notes on Line Integrals - Green’s Theorem

GREEN’S THEOREM: Let R be a simple region in the xy-plane with a piecewise smooth boundary
C that is oriented counterclockwise. Let F' be a vector field with all relevant components and their partial
derivatives continuous on an open region containing R. Then

‘%F dr—foydx—f—Nmydy—// aN 8M dA

Example 1 Evaluate fc F - d7 for F(:r, y) = (1222 siny + 3zy?, 423 cosy + 62%y) around the polygonal
path (0,0) — (3,0) — (2,1) — (1,1) — (0,0).
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We form the integrand for the double integral in Green’s Theorem.

N M N M
a— =12z%cosy + 12zy and 8— =12z%cosy + 62y — 8— - a— = bzy
ox dy y

It follows from Green’s Theorem that
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Example 2 (Example 2 of C3M14 revisited) The vector-valued function was F(z,y) = (—y, ). Please
refer back for a diagram of the region. With M(z,y) = —y and N(z,y) =z,



So we have

ﬁﬁ-dfz//RQdA: (2)area(R) = (2) (g+z) —r+4

The computation of the area was easy - one half of a disk of radius 1 and one half of a square of side 2.

Example 3 The region R is that portion of the first quadrant between the circles of radius 1 and 2 centered
at the origin. The vector-valued function is

F(a,y) = (4+ V7 sin(y) + 327)

and the objective is to evaluate 550 F.dF if C is the boundary of R traversed in a counterclockwise manner.
It is not easy to evaluate the line integral around this path, so our approach is to use Green’s theorem. We
also observe that polar coordinates provides the simplest double integral. First, we will display the region.
> with(student) : with(plots):

> Q1l:=polarplot([1,t,t=0..Pi/2]): Q2:=polarplot([2,t,t=0..Pi/2]):

> T:=textplot([1,1,‘R‘]))

> display(Q1,Q2,T);

[y

> F:=(x,y)->[4+exp(sqrt(x)),sin(y)+3*x"2];
F:=(z,y) >[4+ eﬁ, sin(y) + 3x2]
> Nx:=diff (F(x,y) [2],%);

Nz :=6x
> My:=diff (F(x,y)[1],y);
My:=0
> grand:=Nx-My;
grand = 6x

> grand:=subs(x=r*cos(t),grand) ;
grand := 61 cos(t)
> Ans:=Doubleint (grand*r,r=1..2,t=0..Pi/2);

/2 p2
Ans = / / 612 cos(t) dr dt
0 1

Greenans := 14
oN oM _1
Ox dy 2

//R 1dA = area(R)

gives us a way of using line integrals to determine the area of a region. If the objective is to find the
area of a region whose boundary is reasonable to parameterize, then choose the vector-valued function

—

F(z,y) = (—y/2,x/2) and apply Green’s Theorem by evaluating the resulting line integral.

> Greenans:=value(Ans);

— (—1) =1 and

Example 4 If F(z,y) = (—y/2,2/2), then 5
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Suppose we find the area enclosed by the ellipse — + 22—2 = 1. We parametrize C' in the counterclockwise
a

direction by @(t) = (acost,bsint) for 0 < ¢ < 2r. With F(z,y) = (—y/2,2/2) we have
F(a(t) = <—gsint7 gcost>
a'(t) = (—asint, beost)
(

. b b b
F(a))-a'(t) = %sith—i— %COSQt = %
27

- b
fF dF:/ O
c o 2
= mwab

Thus, the area of the ellipse is mab. What happens if a = 7

Example 5 Verify Green’s Theorem for F (,y) = (y*, 2% + 3zy?) and the region R which lies between

y=2x and y = 2.

> with(student) : with(plots): with(linalg):
> plot([x73,x]x=0..1);
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> M:=(x,y)->y"3; N:=(x,y)->x"3+3*x*y~2;
M= (z,y) =y’
N = (z,y) — 2> + 3xy?
> F:=(x,y)—>M&x,y),N(x,y)];
= (z,y) = [M(z,y), N(z,y)]
Let’s begin by evaluating the line integral along the cubic path.
> alpha:=[t,t"3];
o= [t, 17
> Falpha:=F (op(alpha));
Falpha := [t°, ¢ + 3t7]
> alphaprime:=diff (alpha,t);
alphaprime = [1, 3t%]
> grandl:=innerprod(Falpha,alphaprime) ;
grandl = t7 + 3(t> + 3t")t?
> Lint1l:=Int(grandl,t=0..1);

1
Lintl := / 2+ 3(t* + 3t dt
0

> Vi:=value(Lint1); 3
V1:i=—
2

For our second path, we must start at (1,1) and end at (0,0) along y = x. Note how we reverse the
usual parameterization.
> beta:=[1-t,1-t];
G:=[1—-t1-1]
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> Fbeta:=F(op(beta));
Fbeta = [(1 —t)3,4(1 — t)*]
> betaprime:=diff (beta,t);
betaprime := [—1, —1]
> grand2:=innerprod(Fbeta,betaprime) ;
grand2 = 5(—1+t)3
> Lint2:=Int(grand2,t=0..1);

1
Lint2 ::/ 5(—=1+t)*dt
0
> V2:=value(Lint2);

-5
V2 = T
> Lintanswer:=V1+V2;
Lintanswer := 1
From this we may conclude that §, F.di = 1. Now we will evaluate ([, (%—JX - %) dA and compare

the answers.
> Nx:=diff (N(x,y),x); My:=diffM(x,y),y);
Nz = 322 4 332
My = 3y>
> grandGT:=Nx-My;
grandGT := 32>
> ansGT:=Doubleint (grandGT,y=x"3..x,x=0..

1)
1 T
ansGT ::/ / 322 dy dx
0 Ja3

1
GTanswer := 1

> GTanswer:=value(ansGT) ;

And as we expected, the two answers agree.

C3M15 Problems

1. Evaluate the line integrals directly, using pencil and paper.
L [o(2? = y*)de+ (2® +y?)dy, C: (1,0) = (0,1) on 2% +y* = 1.
2. [ (z* —y?)dy, C:(0,0) = (1,2) on y = 227,
3. [o(z+2y)de+ydy, C counterclockwise on the ellipse 22 +4y? =1
4. f((lo)’ol)) y(e®¥ + 1) dx + z(e*¥ + 1) dy

II. Use Green’s Theorem to evaluate the line integrals, using pencil and paper.

5. fc(x2y+y3 —Inz)dx + (v cosy + xy?) dy, where C is the polygonal path (1,1) = (2,1) — (2,2) —
(1,2) = (1,1)

6. [ (siny —z?y)dx+ (zcosy + xy?) dy, C is the circle 2% 4+ y* = 1 counterclockwise.
7. fc (e”‘ siny — xy2) dx + (e”” cosy + acgy) dy, C is the ellipse 922 + 4y? = 36 counterclockwise.



