
C3M5a

Tangent Planes

We will learn soon that if f is a real-valued function with domain D ⊆ IR2 , i.e. D
f−→ IR then the

gradient of f at X = (x, y) denoted by ∇f(X), grad f(X), or grad f
∣∣
X

is defined by

∇f(X) =
〈

∂f

∂x

∣∣∣∣
X

,
∂f

∂y

∣∣∣∣
X

〉
=

〈
fx(x, y), fy(x, y)

〉
= fx(x, y)~i + fy(x, y)~j

The gradient is a very important concept that is useful when discussing rates of change of functions of
several variables. It is usually introduced in a course after partial derivatives have been defined, the chain
rule has been discussed, and when the applications are being surveyed. Once the concept of the derivative of
a real-valued multivariable function is introduced, the student can understand that this derivative somehow
coincides with the gradient. The actual derivative at a point is a linear mapping which is evaluated by
multiplication by a matrix. And that matrix is none other than the gradient (with the commas deleted).

In the single variable case where y = f(x) and x0 is
a point in the domain, if m = f ′(x0), then 〈m〉 is the
gradient. The slope of the tangent line at x0 is m and
if one moves one unit to the right of x0 , then the change
in value for the tangent line is exactly m . So this simple
diagram is valid.
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Returning to the case where z = f(x, y), the same geometric approach is valid. When (x0, y0) is in the
domain of f and the graph of f is viewed in IR3 , consider the vertical planes containing (x0, y0, 0) that are
parallel to the xz -plane and the yz -plane. Let’s put this on a more concrete footing. Suppose that

∂f

∂x

∣∣∣∣
(x0,y0)

= fx(x0, y0) = m1 and
∂f

∂y

∣∣∣∣
(x0,y0)

= fy(x0, y0) = m2

While it is true that ∇f(x0, y0) = 〈m1, m2〉 , our focus here is not on the gradient. Rather, for now it
is sufficient that one understand that we have evaluated the partial derivatives at (x0, y0) and obtained
two numbers that serve as slopes in the x and y directions respectively. Then, we construct the vectors
~v1 = 〈1, 0, m1〉 and ~v2 = 〈0, 1, m2〉 and note that each is a tangent vector to the surface Σ defined by
z = f(x, y) when they are viewed as emanating from ~X0 = (x0, y0, f(x0, y0)). It is very important to have
a geometric understanding of where ~v1 and ~v2 fit in the picture. We see that ~v1 is the tangent vector in
the vertical plane parallel to the xz -plane and ~v2 is the tangent vector in the vertical plane parallel to the
yz -plane. Each is aimed downward here. Observe the diagrams that follow.
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For purposes of finding the basic equation for a plane tangent to the surface Σ, it is best to use
− ~N = ~N1 =

〈
m1, m2,−1

〉
. If ~X = 〈x, y, z〉

~N1 ·
(

~X − ~X0

)
= 0

=⇒ m1(x − x0) + m2(y − y0) − (z − z0) = 0
=⇒ z − z0 = m1(x − x0) + m2(y − y0)

yields three forms of our equation for the tangent plane. It is important to remember that m1 and m2 are
numbers and are NOT expressions including variables.

Maple Example: For f(x, y) = (9 − 2x2 − y2)/3 and (x0, y0) = (1, 1), find:
(a) a vector normal to the surface defined by z = f(x, y) at (1, 1), and an equation for the tangent

plane at X0 =
(
x0, y0, f(x0, y0)

)
.

(b) Plot the surface, normal vector, tangent plane, and a line from (x0, y0, 0) to X0 .

> restart: with(plots): with(linalg):
> f:=(x,y)->(9-2*xˆ2-yˆ2)/3;

f := (x, y) → 3 − 2
3
x2 − 1

3
y2

> x0:=1; y0:=1; z0:=f(x0,y0);
x0 : = 1
y0 : = 1
z0 : = 2

> X:=[x,y,z]; X0:=[x0,y0,z0];
X : = [x, y, z]

X0 : = [1, 1, 2]
> fx:=diff(f(x,y),x); fy:=diff(f(x,y),y);

fx : = −4
3
x

fy : = −2
3
y

> m1:=subs(x=x0,y=y0,fx); m2:=subs(x=x0,y=y0,fy);

m1 : =
−4
3

m2 : =
−2
3

Our tangent vectors in the x and y directions are determined.
> vx:=[1,0,m1]; vy:=[0,1,m2];
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vx : =
[
1, 0,

−4
3

]

vy : =
[
0, 1,

−2
3

]

We find the normal vector, which is orthogonal to our two tangent vectors.
> N:=crossprod(vx,vy);

N :=
[
4
3
,
2
3
, 1

]

> xaxis:=spacecurve([t,0,0],t=0..3,color=black):
> yaxis:=spacecurve([0,t,0],t=0..3,color=black):
> zaxis:=spacecurve([0,0,t],t=0..4,color=black):
> surff:=plot3d(f(x,y),x=0..2,y=0..2,color=cyan):

The line which represents the normal vector to the surface is plotted using a vector expression. We use
‘evalm’ to evaluate the expression to obtain the vector format we need for ‘spacecurve’.
> Nline:=spacecurve(evalm(X0+t*N),t=0..1,color=magenta):
> X1:=vector([x0,y0,0]);

X1 := [x0, y0, 0]
Important: The easiest way to parameterize a line segment between two points (or vectors) P and Q is
as (1 − t)P + tQ for 0 ≤ t ≤ 1. We apply this in our next plot.
> Vline:=spacecurve(evalm((1-t)*X1+t*X0),t=0..1,color=blue):

Use the basic equation ~N · ~X = ~N · ~X0 for a tangent plane to get an expression for z .
> eq1:=dotprod(N,X)=dotprod(N,X0);

eq1 :=
4
3
x +

2
3
y + z = 4

> zee:=solve(eq1,z);

zee := −4
3
x − 2

3
y + 4

> tplane:=plot3d(zee,x=.3..(1.7),y=.3..(1.7),color=sienna):
> display(xaxis,yaxis,zaxis,surff,Nline,Vline,tplane);
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C3M5a Problem: Given f(x, y) = 2 cos(x) + 2 sin(x) cos(y) and (x0, y0) = (π/3, −π/3). Use Maple to:

(a) Find an equation of the tangent plane to the surface z = f(x, y) at
(
x0, y0, f(x0, y0)

)
.

(b) Plot the surface for 0 ≤ x ≤ 1.8 and −1.5 ≤ y ≤ .5, a line representing the normal vector at(
x0, y0, f(x0, y0)

)
, a line from (x0, y0, 0) to

(
x0, y0, f(x0, y0)

)
. Include the coordinate axes. Hint: let the
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y -axis range from -2 to 2.
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