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I1I. Example 2: R-L AC Circuit

Physical characteristics of the circuit: EMF E(t) = 100sin(4¢) connected in series with a
2 henry inductor and a 6 ohm resistor; current flows when the open switch is closed.

L=2

R=6

()
NN

EMF=100 sin(4t)

Questions:

[a] Describe in words how the current changes over time.

[b] What is the current 1 second after the switch is closed?
[c] At what time does the current equal 8 amps?
[

d] What is the largest current achieved and when is it achieved?

Solution of IVP.

By Kirchhoff’s laws we have: Ep 4+ Er = EMF which translates, with E; = L-I'(t) and
Er = R-I(t), into the following Initial Value Problem (for ¢t > 0):

21'(t) + 6 I(t) = 100sin(4t), It)=0 at t=0
After looking closely at this ODE, we realize that we cannot use the method of separation

of variables because the variables I and t cannot be isolated on separate sides of the
equality sign.

A common technique to solve ODEs like this one is to introduce an integrating factor.
Outline of solution by integrating factor
After dividing both sides of the ODE in
21'(t) + 6 I(t) = 100sin(4t), It)=0 at t=0
by 2, we get the ODE in standard form

I' +3I =50 sin(4t) (%)
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Since 3 is the coefficient of I in (%), then the integrating factor
L=e [3ar _ Bt
Multiply both side of (%) by p and integrate to get
3T = 3 [—8 cos(4t) + 6 sin(4t)] + C

Divide through by 3! and use the initial condition I(0) = 0 in order to get the circuit
current

I(t) = —8 cos(4t) + 6 sin(4t) + 8¢
More for all these steps may be found below, after the Answers.
Answers:

[a] Describe in words how the current changes over time.

The graph below left is that of the EMF E(t) = 100sin(4t) which oscillates with amplitude
100 and completes one cycle in period 27w /4 = w/2 ~ 1.57 seconds. The graph of I shown
below right (dark curve) suggests that the current soon after ¢ = 0 also appears oscillatory
with amplitude 10 and period 7/2.

R-L Circuit: EMF=100*sin(4*t) R-L Circuit: current I(t)
100 EMF=100*sin(4*) R=6 L=2
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To establish this last observation, we first see that after a couple of seconds, the “transient
term” 8e 3! of the current is very nearly 0, at which time

I =~ —8cos(4t) + 6sin(4t)
We can use trigonometry identities to write this as
I =~ 10sin(4t + ¢)

where

¢ = 2arctan p = 2arctan (—0.5) radians ~ —53°

+ VT (67
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is called the phase angle. The initial portion of the graph of 10sin(4t + ¢) is shown as
a lighter colored curve in the last graph. So indeed, after the transient term dies off,
the current behaves like the EMF: oscillating with amplitude 10, period 7/2, and with a
horizontal time shift.

[b] What is the current 1 second after the switch is closed?

I(1) = —8cos(4) + 6sin(4) + 8¢~ 3 ~ 1.0866 amps
[c] At what time does the current equal 8 amps?

From the oscillatory behavior of I(t) we see that it equals 8 amps infinitely many times.
Using a graphing calculator we get an approximation (by tracing the curve or zooming)
for the first time I(t) = 8 at t ~ 0.374 seconds. The following plot suggests this answer
is correct. Also, we should numerically check that 1(0.374) ~ 7.99.

R-L Circuit: current I(t)
EMF=100*sin(4*t) R=6 L=2

0 01 02 03 0{4 05 06 07 08

[d] What is the largest current achieved and when is it achieved?

Using a graphing calculator, we get the maximum current to be about 11.27 amps at
about 0.6 seconds after the switch is closed. See the preceding graph of I(t).
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Details of solution by integrating factor

After dividing both sides of the ODE in
21'(t) + 6 I(t) = 100sin(4t), It)=0 at t=0
by 2, we get the ODE in standard form
I' + 3I = 505sin(4t) (%)
and the left hand side of this ODE reminds us of the product rule for derivatives
[Fg®]" = f()g(t) + F(t)g” (1)
In fact, if we let f(¢) = I(t) and g(t) = 3 then we have
[1e¥] ! = [1]7e3 + 1 [¥] ! =13 + 3¢

So if we multiply both sides of equation (%) by the integrating factor u = ef Bdt e3t | we
get:

I'e3t 4 31e3 = 50e sin(4t)
[1¢*"] " = 50e™ sin(4t)

Ie® =50 / 3t sin(4t) dt

when we integrate. The right hand side of the last equation is calculated (see, for example,
chapter 5 of Stewart: Calculus—Concepts and Contexts, 2nd ed, and in particular
Example 4 on p. 399) by the method of integration by parts, which gives us

Ie3t = 50e™ [ cos(4t) + _3 sin(4t)] +C

32+42

3t

—4
32 + 42
Multiplying both sides of this last equation by e~
left with

and simplifying the fractions, we are

I(t) = —8cos(4t) + 6sin(4t) + Ce™ 3
Using the initial condition 7(0) =0 we get
0 = I(0) = —8cos(0) + 6sin(0) + Ce°
= 0=-840+C-1
—0=-8+C
— (C =38
So for any time ¢ we have the current

I(t) = —8cos(4t) + 6sin(4t) + 8>
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