SM 212 Syllabus


Text: Differential Equations with Boundary-Value Problems (8th ed.) by Zill and Wright.

Notes:

1. All students are expected to have a calculator like the TI NSpire with capabilities to graph and do symbolic calculations. There will be assignments and questions on the common final exam requiring use of a such a calculator.

2. If you would like help in the course, you should first contact your instructor for extra instruction. If you instructor is not available, try the Math Lab (located in Chauvenet 130), which is staffed six periods every class day by Mathematics Department instructors.

lessonsection & topicproblems
11.1 Definitions and terminology p. 10: 1,3,5,7,9,11,15,19,23,27,33
21.2 Initial-value problems p. 17: 1,3,5,9,11,15,17,21,25,33
32.1.1 Direction fields/2.6 Euler's method p. 43: 1,3,7/p. 79: 1,3,7
42.2 Separable DE's p. 51: 1,3,5,7,15,17,25
52.3.1 1st order linear DE's p. 61: 3,5,7,9,25,27
63.1 Applications: Growth, decay, cooling p. 90: 3,5,13,15,19
73.1 Applications: Elec. circuits, air resistance p. 92: 29,31,35
83.1 Applications: Mixing p. 91: 21,23,25,26
94.1.1 Basic theory of linear DE's p. 127: 1,4,5,9,13
104.1.1 Basic theory of linear DE's cont'd p. 128: 17,21,23,27,36,40
114.3 Homog. linear DE w/ const. coeff.; aux. eqn. w/ real roots p. 137: 3,7,15,17,21,31,37
124.3 Homog. linear DE w/ const. coeff.; aux. eqn. w/ complex roots p. 137: 9,11,19,29,33,43,45,47
135.1.1 Applications: Mass-spring (free undamped) p. 205: 1,3,5,8
145.1.1 Applications: Mass-spring (free damped) p. 206: 21,23,25,27
15Review
16Hour Test 1
174.4 Inhomog. linear DE w/ const. coeff.; undetermined coeff. p. 147: 1,5,11,15,21
184.4 Undetermined coeff. cont'd p. 147: 27,29,33,37
195.1.1 Applications: Driven mass-spring p. 207: 29,30,31
205.1.2 Applications: Electric circuits p. 209: 45,47,49
215.1.2 Applications: Resonance p. 207: 33,37
227.1 Laplace transforms p. 280: 3,9,11,23,25,31,37,39
237.2.1 Inverse Laplace transforms p. 288: 1,3,5,7,9,11,15
247.2.1 Inverse transforms & partial fractions p. 289: 19,23,25,29
257.2.2 Transforms of derivatives p. 289: 31,33,37,39
267.3.1 First shift rule, completing square p. 297: 3,5,7,11,13,15,19
277.3.1 First shift rule cont'd p. 298: 21,23,25,27,33
28Review
29Hour Test 2
307.3.2 Second shift rule, unit step function p. 298: 37,39,41,43,45,47
317.3.2 Unit step function p. 298: 49,53,55,57,61,63,67
327.4.1 Derivatives of transforms/7.4.2 Convolution p. 309: 1,3,11,19,21,31,33
337.5 Dirac delta function p. 315: 1,3,5,7,9
34(handout) Transfer & Green's functions (handout) H1
35A II Matrix arithmetic App-18: 1,6,14
36A II Matrix inverse App-18: 15,16,24,29
37A II Gaussian elimination App-19: 32,36,39,41
387.6 Systems by transforms p. 319: 1,5,7,11
397.6 Applications: Coupled springs p. 319: 13,14
407.6 Applications: Electrical networks p. 319: 15,17
41Review
42Hour Test 3
43A II Eigenvalues & eigenvectors (2x2 matrices) App-19: 47,48,49
448.1 Systems of DE's in matrix form p. 332: 1,5,7,9,11,21
458.2.1 Distinct real eigenvalues p. 332: 1,3,13
469.4 Euler's method for systems p. 379: 1,6
47Review
4811.2 Fourier series p. 430: 1,3,5,13
4911.2 Convergence, per. exten./11.3 Odd & even functions p. 431: 17,18/p. 437: 1,3,5,7
5011.3 Fourier sine/cosine series p. 437: 13,15,18,25,29
5112.1 PDE's, sep. of variables (1st order) p. 459: 1,3,5
5212.1 PDE's, sep. of variables (2nd order) p. 459: 7,9,12
5312.3 Heat eqn. (zero ends) handout
5412.3 Heat eqn. (zero ends cont'd) p. 468: 1,2
5512.3 Heat eqn. (insulated ends) p. 468: 3,4
56Review
57Hour Test 4
58Review for final
59Review for final

course coordinator: Prof. Michael Hoffman
meh@usna.edu