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Calculus I C1Notes Fall, 2001–2002
by Professor C. E. Moore

C1M0

Introduction to Maple

Our discussion will focus on Maple 7, which was developed by Waterloo Maple Inc. in Waterloo,
Ontario, Canada. Quoting from the Maple 7 Learning Guide, “Maple is a Symbolic Computation System or
Computer Algebra System. Both phrases refer to Maple’s ability to manipulate information in a symbolic
or algebraic manner. Conventional mathematical programs require numerical values for all variables. By
contrast, Maple maintains and manipulates the underlying symbols and expressions, as well as evaluates
numerical expressions.” From the second description you see why Maple is designated as a ‘CAS’.
Assignment Format

We are going to begin by establishing a format for each Maple assignment that is to be handed in. Open
Maple and obtain a blank worksheet. Do not type the “<” or “>” which are shown to identify your entries.
And <Enter> means the “Enter” key. As you begin, the worksheet is in “math mode”, so ‘click’ on the T
to switch into “text mode”.

For the assignment C1M1, type <C1M1> <Enter> and then highlight C1M1 and click on the middle
of the three boxes to the right of B I u so as to center C1M1. The left of these three buttons left-justifies
text and the right one right-justifies it. Now,
<down arrow> , then type your name and section as shown.
<Midn Your Name> <Enter>
<Section> <Your section> <Enter>
Having completed this, highlight the three lines and then click on B to boldface everything. This is the
format you should use for all Maple assignments to be handed in. For example, you should see something
like

C1M1
Midn John Doe
Section 1234
Beginning Maple Syntax

Since we are building the foundation for the use of Maple, we will designate this spadework by ♠ when
we wish to highlight an important fact. Since getting on-line help is extremely important, we will begin with
that. Suppose that you have a question about the command ‘plot’. Then in a worksheet enter <?plot>
<Enter> and you will see the information available and links for other related topics.
♠ To obtain on-line help on ‘command’, enter <?command> <Enter> .

You may eliminate the brackets on the left by pressing the function key <F9> . To return to math
mode, click on the [> . If we wanted to type a math formula while in text mode we would click on Σ .
Later in this section we will discuss palettes which allow you to select commands from a menu and avoid
using Maple syntax. It is the contention of the author of these notes that learning some Maple syntax is
beneficial to the student, so even though you may accomplish the same things by clicking on a symbol, we
will show you the syntax that would otherwise be hidden.

In math mode, lines in Maple end with a semicolon or colon.
♠ If a line ends with a semicolon, then the output will be displayed.
♠ If a line ends with a colon, then the display of the output is suppressed.
♠ To activate a line, press <Enter> with the cursor at any position on that line. (This does not break the
line as it would in a word processor.)
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Please type the command lines below in a new worksheet exactly as you see them, remembering to press
<Enter> , and note the output. This work is for your benefit and is not intended to be handed in.
> a:=4;
> sqrt(a);
> b=4;
> sqrt(b);

We did not display the output here because it is important that the reader discover the results for
themself. However, the concept is very important. The first line shows the format for assigning a value
to the variable ‘a ’. Think of this as placing the value 4 in a memory location, named ‘a ’, which can be
retrieved when needed. The third line is an equation. While it is trivial to solve for b , the value of b is not
accessible in this format.
♠ Use a:=b to assign the value ‘b ’ to ‘a ’. Note that ‘b ’ may be a number or an expression.

Expression versus Function
Please enter the following lines in a worksheet, remembering to press <Enter> to activate each line:

> A:=xˆ2+sin(4*x);
> f:=x->sqrt(xˆ2+9);
> subs(x=4,A);
> f(x); f(4);
> subs(x=4,f(x));
> simplify(%);

The first line names the expression x2 + sin(4x) as ‘A ’. Note how ‘∗ ’ must be used when two factors
are to be multiplied. Omitting the ∗ is a common error for beginning Maple users. The second line shows
how to define a function f . The third line shows how to substitute 4 for x in the expression A . Note: You
may not use 4 = x and expect the same result. This part of the substitution must be of the form ‘old’ =
‘new’, because the ‘old’ will be replaced by the ‘new’. Try reversing the order of the substitution by entering
<subs(4=x,A);> . What difference do you see?

The fourth line above is more important than it appears to be. You see that f(x) is an expression
and then the fifth line reinforces that. However, were you surprised at the output of the fifth line? There
are many levels of operations and simplifications in Maple and substitution does not simplify as far as is
possible. The use of % as the simplify argument refers to the previous output, which was

√
25.

♠ You must be aware of when the syntax calls for an expression or for a function.
♠ When two factors are to be multiplied, a ‘∗ ’ must separate them, i.e. a*b.
♠ You may use % to refer to the previous output in a Maple command. Warning! See comments about
order of execution later in this section.

In that same worksheet enter these command lines and observe the output.

> value(Piˆ2/6 + sin(Pi/6));
1
6
π2 +

1
2

> evalf(Piˆ2/6 + sin(Pi/6));
2.144934068

> evalf(Piˆ2/6 + sin(Pi/6),75);
2.14493406684822643647241516664602518921894990120679843773555822937000747041

The ‘ value’ command returns an exact value for an expression, while the evalf command converts an
exact numerical expression to a floating point number. You also have the option of specifying the number
of digits displayed, as shown on the third line. The default is to display ten digits. You may also set the
number of digits to be displayed in the remainder of a worksheet by using a command, for example:
> Digits:=20;

Digits := 20
> evalf(Pi);

3.1415926535897932385
> evalf(pi);

π
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♠ In Maple, Pi = π is a number, and pi = π is a small Greek letter with no numerical value.
It will be very useful later to be able to make a function out of an expression. The syntax for this is

puzzling. Entering these commands should produce these results:
> P:=xˆ2+cos(x);

P := x2 + cos(x)
> G:=unapply(P,x);

G := x → x2 + cos(x)
> G(Pi);

π2 − 1
We see that G is a function and that G(x) = P .
Maple Graphics

Maple graphics are versatile and easy to use. Let’s define F (x) = 4− 2x− x2 in our worksheet and see
how we can get a quick plot of F on [−2, 3]. To save space we have included two plots side-by-side. The
output of the first is on the left.
> F:=x->4-2*x-xˆ2;

F := x → 4− 2x− x2

> plot(F(x),x=-2..3,color=blue);
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Plot of F(x) Plot of P
Note how we used F (x) which is an expression, not just F , in the first plot. Now click on the displayed
graph. A box will appear around the graph with small black boxes placed strategically. Move the cursor over
the lower righthand box and position it so that a diagonal arrow appears. Click when the arrow is displayed
and drag the arrow towards the center of the box, thereby resizing the box. You can change the aspect of
the graph by making the box tall or short. You should always make the plots on your homework smaller so
as to save paper.
♠ You can resize a Maple plot by clicking on the plot and then dragging the corner of the displayed box.

To plot the function G from above we could use P or G(x) and obtain identical results. The output
is on the right above.
> plot(P,x=0..Pi,color=magenta);

When you wish to plot two functions with the same domain it can be done very easily. However, it is
also very easy to confuse this syntax with that of parametric plotting. We will do an example of each so that
you will know where to be careful. The placement of the righthand square bracket determines which format
you have. In two-dimensional plotting, when you list two expressions and a range inside the square brackets
the first function controls the value on the x-axis and the second function controls the value on the y -axis.
This is parametric plotting. To save space the output follows on the left.
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> plot([exp(x),xˆ2,x=-1..1]);

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0.5 1

x

Parametric Plotting Two Functions
When you do not include the domain inside the square brackets you get two different plots on the same
coordinate system as you can see above on the right. This was produced by:
> plot([exp(x),xˆ2],x=-1..1);

♠ To plot the graphs of two functions with the same domain on the same axes, include both functions in
square brackets, but exclude the range. If the range is included in the brackets, then the result will be a
parametric plot.
♠ The exponential function, ex , is accessed by exp(x) in Maple, which does not recognize e as any
particular number. See the following:
> evalf(e);

e
> evalf(exp(1),90);
2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217

Maple Packages
Just as specialized mechanics require special tools, and they do not carry every trade’s tools with them

at all times, Maple has packaged different commands into different libraries so that not all commands need
to be put into active memory at all times. Instead, the user may select one or more packages as needed and
thereby save computer memory space. For a list of all the packages, see section 3.8 on page 104 of the Maple
7 Learning Guide. Or, in a worksheet type <?packages> to see the listing in the Help section of Maple.

There are several packages that the beginning calculus student will need. The first is student, which
contains many calculus operations, and the second is plots. As you would expect, plots is a graphics
package. To invoke, or ‘call up’ a package you would insert a line in the worksheet before the package is
needed such as:
> with(plots):
If you had ended the line above with a semi-colon, then a list of all the commands in plots would have
been displayed. You should probably try this once just to see what is there. Also, try putting a semi-colon
after with(student).

More Graphics
How should you plot two functions which have different domains on the same coordinate axes? The

answer is to give each plot a name using a colon at the end to suppress the output and then display
them together. The command display is in the graphics package plots.
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> with(plots):
> A:=plot(exp(x),x=-3..3): ← colon!
> B:=plot(ln(x),x=.01..4): ← colon!
> display(A,B); ← semicolon!
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Order of Execution of Commands

Sometimes previous experience with computers causes us to assume that the order of execution of the
commands in Maple is the same as the order shown on the screen. Also, we assume that whatever we see in
front of us has been executed. Both assumptions are false in Maple. Suppose that you have a worksheet that
you had saved previously and that you have just reopened it. You move the cursor down to some line in the
worksheet and hit <Enter> . As far as Maple is concerned, this is the first line executed and if it depends
on lines above it, then it cannot execute correctly. Computationally, Maple remembers the information in
the order in which the lines were executed.

Also, sometimes we want Maple to forget that it has done something and to start over. For this reason
the first command line should have restart: as the first word. Then, call up the packages that you
anticipate using. For example:
> restart: with(student): with(plots):

is a typical first command line in Calculus I. Since restart: clears the memory, what would happen if
it occurred last on the line? That’s right, the packages would be loaded and then erased from accessible
memory.

It is quite reasonable and normal to move around in a worksheet, changing things as needed. In fact,
one frequently realizes that a new command line needs to be inserted earlier in a worksheet. To do this, place
the cursor on the line above where you want a new line. Then, click on the [> button and a new blank
command line will appear. But, when you execute this line by hitting <Enter> , what will be the order of
execution of the Maple commands? How do you ensure that the order of execution of the commands is the
same as what you see? One approach would be to put the cursor on the first line and hit <Enter> until
you reach the last line. That is effective, but it is not necessary. Move the cursor up to ‘Edit’ on the left
at the top of the screen, ‘click’, and then slide the cursor down to ‘Execute’. A side panel will open, slide
the cursor over and down to ‘Worksheet’, and click’. At this point, Maple will execute the worksheet in the
order of the commands shown on the screen.
♠ To insert a new command line in a worksheet, put the cursor on the line above and click on [> .
♠ Always execute a worksheet upon reopening it and before additional commands are added.
♠ Always execute a worksheet before saving it and printing it out to be handed in.
Example: Suppose that we are given two points in the plane, P1(2, 5) and P2(−1, 1), and we wish to find
the distance between them and an equation for the line that contains them.
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> restart:
> x1:=2; y1:=5; x2:=-1; y2:=1;

x1 := 2
y1 := 5
x2 := −1
y2 := 1

> distance:=sqrt((x2-x1)ˆ2+(y2-y1)ˆ2);
distance := 5

> slope:=(y2-y1)/(x2-x1);

slope :=
4
3

> line1:=y-y1=slope*(x-x1);

line1 := y − 5 = 4
3
x− 8

3
> y=solve(line1,y);

y =
7
3
+
4
3
x

The process is straightforward until we reach the line that begins with line1. We assigned the name
‘line1’ to the equation for the line using the format y − y0 = m(x− x0), where m is the slope of the line
and P (x0, y0) is a known point on the line. We chose to use P1 , but the choice of P2 would have worked
equally well. Then, we established a new equation with y being set equal to the solution of the equation
line1 for the variable y . This yields the format y = mx+ b , which some prefer.

There are two operations that are very basic in calculus, namely differentiation and integration, or anti-
differentiation. An expression in x and t , say tan(x/t), can be differentiated with respect to either variable,
so we must remember to specify the variable with respect to which the operation is being performed. Using
the expression P = x2 + cos(x) from above we have
> Pprime:=diff(P,x);

Pprime := 2x− sin(x)
And if we integrate P
> Pint:=int(P,x);

Pint :=
x3

3
+ sin(x)

Now let’s do some of the same steps by using a palette. On your command line type <A:=> to get

> A:=

There are three palettes and to access them you begin by clicking on “View”, then “Palettes”. If you need
symbols, select that palette, but for now we choose “expressions”. You should see

Click on the box with the integral symbol
∫
a . Then click on the box with ab . On your command line

the cursor appears where you want x inserted, so you type < x > , and then move to the next entry
position by using the ‘Tab’ key. Enter < 2 > , <Tab> , and then the variable of integration, < x >
and <Enter> . At the end of the command line put a semicolon and hit <Enter> . This should produce
> A:=int(xˆ2,x);

x3

3
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It is not the purpose of this section to teach you about differentiation or integration. That will come later.
But, you see how that palettes can be used to accomplish these tasks.

C1M0 Exercises: Use Maple to find the plots and answers.

1. Display the graph of y = 3 sin(2x+ π/6) + 2 on the interval
[−π, 3π

2

]
.

2. Define f(x) = x2 − 4x + 4 and g(x) = ln(x + 2) as functions and in the same plot display their graphs
for the interval [−1, 4].

3. Find the value of e−2x for x = .7 and display 25 places.

C1M1

New Functions from Old Functions

We will approach this topic by providing examples and plots of functions. First, we will demonstrate
some definitions and related Maple syntax by establishing some equations in a worksheet. The reader might
benefit by typing in each line or copying and pasting the commands from C1Notes as found on the syllabus
webpage that the instructor provided.

> restart:
> f:=x->xˆ2-x+1; g:=x->sin(2*x);

f := x → x2 − x+ 1
g := x → sin(2x)

Addition
> (f+g)(x)=f(x)+g(x);

x2 − x+ 1 + sin(2x) = x2 − x+ 1 + sin(2x)
> plot([f(x),g(x),(f+g)(x)],x=-1..2,color=[red,green,blue]);
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x

Subtraction
> (f-g)(x)=f(x)-g(x);

x2 − x+ 1− sin(2x) = x2 − x+ 1− sin(2x)
Multiplication
> (f*g)(x)=f(x)*g(x);

(x2 − x+ 1) sin(2x) = (x2 − x+ 1) sin(2x)
> plot((f*g)(x),x=-1..2);
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Division
> (g/f)(x)=g(x)/f(x);

sin(2x)
x2 − x+ 1

=
sin(2x)

x2 − x+ 1
> plot((g/f)(x),x=-1..2);
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Composition
> (f@g)(x)=f(g(x));

sin(2x)2 − sin(2x) + 1 = sin(2x)2 − sin(2x) + 1
> plot((f@g)(x),x=-1..2);
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Composition
> (g@f)(x)=g(f(x));

sin(2x2 − 2x+ 2) = sin(2x2 − 2x+ 2)
> plot((g@f)(x),x=-1..2);

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1 1.5 2
x

Maple Example For the function f(x) = x + sin(x), find all values of x for which f(x + π/6) =
f(x− π/6) + 1.

> f:=x->x+sin(x);
f := x −→ x+ sin(x)

> eq1:=f(x-Pi/6)+1=f(x+Pi/6);

eq1 := x− π

6
− cos

(
x+

π

3

)
+ 1 = x+

π

6
+ sin

(
x+

π

6

)
> evalf(solve(eq1,x));

−1.618011419, 1.618011418
> plot([f(x-Pi/6)+1,f(x+Pi/6)],x=-Pi..Pi);
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We see from the graph that the curves cross at two points, so we found all of the solutions using Maple.
This is not always the case, especially when there are an infinite number of solutions. There is another Maple
command, fsolve, that returns a floating point number and will permit one to limit the range where a
solution is being sought. This next example illustrates this.

Maple Example: Suppose that h(x) = −x
2 + 2 and j(x) = sin(x), find all solutions of h(x) = 2 j(x).

> h:=x->-x/2+2; j:=x->sin(x);

h :=→ −x
2
+ 2

j := sin
> solve(h(x)=2*j(x),x);

RootOf( Z − 4 + 4 sin( Z))
> evalf(%);

.8904870807
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0

1

2

2 4 6 8
x

By using evalf we get a numerical answer for our solution. But, we suspect that other solutions might
exist so we plot the graphs of each side of our equation. We see that there are two more solutions, one
between 2 and 4, the other between 4 and 6.2. The number 6.2 is slightly larger than 2π , where sin(x) has
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a zero and the intersection is obviously before that. We turn to fsolve and select a range for the value,
which fsolve permits. However, fsolve seeks a numerical solution and returns a single floating point
number, not more.

> plot([h(x),2*j(x)],x=0..3*Pi);

> fsolve({h(x)=2*j(x)},{x},2..4);
{x = 2.849968934}

> fsolve({h(x)=2*j(x)},{x},4..(6.2));
{x = 5.812826090}

Note that when we use set notation in evalf, Maple returns the output in similar notation.

C1M1 Problems: Use Maple to plot the graphs to see where they intersect, and to find the solutions.

1. For f(x) = x
2 + 2 and g(x) = 2x , find all solutions of f(x) = g(f(x− 2)).

2. For p(x) = sin(x/6) and q(x) =
√
x2 + 4, find all solutions of p(q(x))− x2 = x for −2 ≤ x ≤ 2.

3. For r(x) = cos(x), find all solutions of (r ◦ r)(x) = x .

C1M2

Parametric Curves

Have you ever played with a toy called ”Etch-a-Sketch”? One hand controls the x-axis while the other
controls the y -axis. It is as if you are graphing (x(t), y(t)) , a ≤ t ≤ b , which is exactly what happens when
a function in the plane is defined parametrically. Be very careful where you place the right bracket, ] , when
using Maple to plot parametric curves.

Relationships between trigonometric functions, and in particular the Pythagorean identities, are used
quite often when eliminating the parameter and thereby identifying the curve that has been described
parametrically. For your convenience, we provide the Pythagorean identities:

sin2(θ) + cos2(θ) = 1 tan2(θ) + 1 = sec2(θ) 1 + cot2(θ) = csc2(θ)

Maple Example: Plot x(t) = 2 csc(t) , y(t) = 3 cot(t) for 0 < t < π and eliminate the parameter. We
solve for the trigonometric functions first and then apply the third identity.

csc(t) =
x

2
, cot(t) =

y

3
⇒ 1 +

y2

9
=

x2

4
⇒ x2

4
− y2

9
= 1

We see that our curve is a hyperbola and we check out the domain and find that not only must x always be
positive, it must always be greater than 2. Because we must avoid the endpoints of the domain, note how
this is done in our plot. Is it easy to see from the plot that the hyperbola is asymptotic to the straight lines

y = ±3
2
x?

> plot([2*csc(t),3*cot(t),t=.05..Pi-.05],color=magenta);
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Maple Example: Plot x(t) = sin(13t) , y(t) = cos(7t) for 0 ≤ t ≤ 6π which produces a lissajou. The
plot follows on the left. As you can see, the scaling is a little off because the “square” is two units on each
side. For a little fun, increase the coefficients to say 43 and 37 and see what happens.
> plot([sin(13*t),cos(7*t),t=0..6*Pi],color=navy);
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C1M3

Exponential Functions

Every thirty days a biology student counted the number of bugs that lived in a colony and recorded the
numbers, which we list for you.

124, 248, 496, 992, 1984
The student observed that the population was actually doubling each time, so the same data could be

recorded as:
124, 124 · 2, 124 · 22, 124 · 23, 124 · 24

And since the data was collected every 30 days, the following formula was proposed as a model that
represented the population each day, where t is the number of days.

P = 124 · 2t/30

Using this, the number of bugs after 47 days was estimated to be 124 · 247/30 ≈ 367.3. And, after 12 thirty
day periods there would be 124 · 2360/30 = 507, 904 bugs.

The idea of doubling something and recording the result is not a new one. Imagine putting a penny on
the corner square of a chessboard and having someone put double the previous amount on a square for the
next 63 days. How much would be accumulated? The amount placed each day, where you put the penny
down on the ‘tth ’ day would be

Q(t) = (.01)2t

This means that $1, 342, 177.28 − over a million dollars, would be placed on the 27th day and the total
after all 64 squares are accounted for would be approximately 1.844674407 × 1017 dollars. This is roughly
equivalent to 184,467 trillion dollars.

Suppose that we consider a function f(x) = ax for some a > 0. It is interesting to note that for any
two values of x that are a fixed distance apart, like x and x+ h , you get the same ratio

f(x+ h)
f(x)

=
ax+h

ax
= ah = constant

for their functional values. When the first example involving the bugs was constructed it was decided that
it was easiest to double the number of bugs every 30 days. But, suppose that the bugs increased by a factor
of 1.375 every 30 days. Then we would have gotten P = 124 · (1.375)t/30 as our population function.
Maple Example: Suppose that a disease hits a flock of critters. Every week a count is taken to see how
many remain. It is suspected that the relationship is exponential. If it is, find an expression which provides
the number present at any time t in weeks. The table shows the data.

Week Critters

0 1165
1 728
2 455
3 284
4 177
5 111
6 69

We begin by establishing a list of our data. Then, we check out the ratios of successive terms by using
the seq command, which yields a list for each integer that is specified. The [i] refers to the ith member
of the list dataset. For example, dataset[3]=455.

> dataset:=[1165,728,455,284,177,111,69];
dataset := [1165, 728, 455, 284, 177, 111, 69]

> seq(dataset[i]/dataset[i-1],i=2..7);
728
1165

,
5
8
,
284
455

,
177
284

,
37
59
,
23
37

In Maple, you may use % to refer to the result(s) of the last command executed. It is extremely useful,
but BEWARE! if you skip around in a worksheet because the order of execution of commands can produce
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some erroneous results. That is why it is important to ‘execute the worksheet’ before you hand it in. Then,
it is important to look back over it to see if errors have occurred. After examining the results, we select
a = .625 as a potential base.
> evalf(%);

.6248927039, .6250000000, .6241758242, .6232394366, .6271186441, .6216216216
> A0:=1165; a:=.625;

A0 := 1165
a := .625

> Q:=t->A0*(a)ˆt;
Q :=→ A0 at

> seq(Q(i),i=0..6);
1165., 728.125, 455.078125, 284.4238281, 177.7648925, 111.1030579, 69.43941117

The function Q that is defined seems to reflect the number of critters very well.

It might be interesting to look at functions of the form y = ax for different positive values of a .
> plot([sqrt(3)ˆx,2ˆx,sqrt(5)ˆx,3ˆx],x=-1..2,color=[navy,red,green,blue]);
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We recall that
√
3 < 2 <

√
5 < 3, so that when 0 < x the graphs maintain the related inequalities,

(
√
3 )x < 2x < (

√
5 )x < 3x . But wait!, It gets better. In a worksheet, enter the following three lines and

execute them:
> with(plots):
> G:=aˆx;
> animate(G,x=-1..2,a=1/2..4);

And what will appear? You will obtain the expression G and a plot which shows y =
(
1
2

)x

. Move the

cursor to the plot and ‘click’ on it. The toolbar at the top of the screen, which is below the menu bar, will
be replaced by what looks like the buttons on a tape player. Click on the triangular ‘play’ button. What
happens? You should see G plotted for values of the parameter a as a varies from 1/2 to 4.

From this animation we see that there should be some value of a for which the slope of ax at x = 0
should equal 1. We will use brute force and admittedly prior knowledge to try to find that special value of a
to get a slope closer and closer to 1. We begin by defining a function F that produces the slope of the line
that joins the two points P (−x, a−x) and Q(x, ax) spaced equally from x = 0. As x gets smaller, these two
points get closer together and the slope determined should be closer to that of a line tangent to the graph
of y = ax for x = 0.
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The seq command produces a sequence of values of F with x =
1
2i
for i = 3 to i = 10.

It is easier to obtain the lines below than it looks. Once you have entered the command line where
a:=0, simply copy and paste to lines below, change the value of a , and hit <Enter> .
> F:=x->(aˆx-aˆ(-x))/(2*x);

F := x −→ 1
2
ax − a−x

x
> a:=2; seq(evalf(F(1/2ˆi)),i=3..10);

a := 2
.694014760, .693364012, .69320139, .69316073, .69315056, .6931480, .6931474, .6931474

> a:=3; seq(evalf(F(1/2ˆi)),i=3..10);
a := 3

1.102068589, 1.099475751, 1.09882812, 1.09866622, 1.09862576, 1.0986156, 1.0986131, 1.0986123
> a:=2.7; seq(evalf(F(1/2ˆi)),i=3..10);

a := 2.7
.9958055410, .9938898465, .9934112640, .9932916545, .9932617665, .9932542335, .9932524545, .9932519425

> a:=2.7183; seq(evalf(F(1/2ˆi)),i=3..10);
a := 2.7183

1.002612939, 1.000657870, 1.000169456, 1.000047386, 1.000016870, 1.000009280, 1.000007398, 1.000006810
> a:=2.718281828; seq(evalf(F(1/2ˆi)),i=3..10);

a := 2.718281828
1.002606202, 1.000651170, 1.000162760, 1.000040704, 1.000010157, 1.000002496, 1.000000742, .9999998975

> a:=exp(1); seq(evalf(F(1/2ˆi)),i=3..10);
a := e

1.002606202, 1.000651170, 1.00016276, 1.00004071, 1.00001016, 1.0000025, 1.0000007, .9999999

In the C1M0−Introduction to Maple, we showed e or exp(1) to 90 places. There are several ways to
define e, but for now it suffices to regard it as that number a for which y = ax has a slope of 1 at x = 0.
The function y = ex occurs frequently in growth and decay problems and its importance to Calculus and
the Sciences cannot be overstated. Frequently students underestimate how rapidly ex grows as x increases.
For this reason and the fact that e3 = 20.08553692 . . . we provide this ‘Rule of Thumb’:

e3 ≈ 20
Think about it! This means that e6 = (e3)2 must be over 400 and e9 must be over 8000. After we

provide the following reminder, we will plot ex .
♠ The exponential function, ex , is accessed by exp(x) in Maple, which does not recognize e as any

15



particular number.

> plot(exp(x),x=-2..3);
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x

Maple Example: It is known that radioactive materials satisfy an equation of the form A = A0e
kt

where A0 is the initial amount and k is a negative constant. Suppose we have 2.837 grams of an unstable
compound whose half-life is 137 days. How much will be present after 97 days and when will we have exactly
1 gram remaining?

First, we must find the value of k , using the half-life of the compound.
> A0:=2.837;

A0 := 2.837
> A:=A0*exp(k*t);

A := 2.837e(kt)

When t = 137, the amount present is one-half the original amount. We set this up as an equation, which
we can solve for k .
> eq:=A0/2=subs(t=137,A);

eq := 1.418500000 = 2.837e(137k)

> k:=solve(eq,k);
k := −.005059468471

> A;
2.837e(−.005059468471t)

We see that Maple is using the value of k . Substituting t = 97 we find the amount at that time.
> A97:=subs(t=97,A);

A97 := 2.837e(−.4907684417)

> A97:=evalf(A97);
A97 := 1.736686025

That gives the amount at 97 days. Now to find when there is one gram we must set the amount equal to 1,
and solve for t .
> eq1:=1=A;

eq1 := 1 = 2.837e(−.005059468471t)

> solve(eq1,t);
206.0981626

C1M3 Problems: Use Maple to solve the following problems.

1. Plot the graph of the expression A in the last example for 0 ≤ t ≤ 250.
2. Plot ex and 1 + x+ x2/2 + x3/6 on the same coordinate axes for −3 ≤ x ≤ 3.
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3. The command evalf(solve(2+x=exp(x))); finds all solutions of the equation 2 + x = ex . Use a
similar command to find all solutions of 2x2 = ex .
4. Plot 2x2 and ex on the same coordinate axes for −1 ≤ x ≤ 3.
5. The data shown may be related by an exponential function. Determine a function that fits this data.

Time Reading

1.2 6.292161022
1.35 6.783009413
1.5 7.312148644
1.65 7.882565768
1.8 8.497480852
1.95 9.160365159

C1M4

Inverse Functions and Logarithms

Each summer a new group of incoming students is inducted into the U.S. Naval Academy, they become
Fouth Class Midshipmen or plebes, and identification numbers called alpha numbers are assigned. Since this
year is 2000, and it is hoped that these students will graduate in 2004, each number assigned begins with
04. So a typical alpha might be 047854, except that 7854 is a larger number than would be needed. Unless
an error has been made, there is a one− to− one relationship between a set called Plebes and a set called
Alphas. If numbers are assigned to names then there is a function F so that

F : Plebes −→ Alphas
and, for example

F (John Doe) = 041721
And, unless two plebes are mistakenly assigned the same number, there is a unique association that

allows one to identify the plebe if you have their alpha number. This means that there is an inverse function
F−1 : Alphas −→ Plebes

and
F−1(041721) = John Doe

The discussion above is a very simplistic example of how functions and inverse functions relate. More
precisely, with ⇐⇒ meaning “if and only if”,

f−1(x) = y ⇐⇒ f(y) = x

You have studied exponential functions recently and probably noted that when a > 1, then ax is an
increasing function. We sometimes use ≡ to denote a definition or an equivalent statement.

f is increasing ≡ u < v ⇒ f(u) < f(v)
It is easy to see that when a function is increasing then it has an inverse. And, inverses of exponential
functions are called logarithms. This leads to the very important relationship

loga(x) = y ⇐⇒ ay = x

In calculus, the most important base is e and we call that logarithm the natural logarithm and identify it
by ln.

loge(x) ≡ ln(x)

From which it follows that

♠ eln(x) = x e− ln(x) =
1
x

ab = eb ln(a) ln(ex) = x ln(e) = 1 ln(e2) = 2 ln(e3) = 3

The graph of an inverse function is related to the graph of the function by reflection about the line y = x .
In this next example we will plot several logarithmic functions and the related exponentials.
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Maple Example Plot log2(x), ln(x), log10(x), their inverses 2x, ex, 10x , and the line y = x .

> with(plots):
> A:=plot([log[2](x),ln(x),log[10](x)],x=(.3)..4,color=[red,green,blue]):
> B1:=plot(2ˆx,x=log[2](.3)..log[2](4),color=red):
> B2:=plot(exp(x),x=ln(.3)..ln(4),color=green):
> B3:=plot(10ˆx,x=log[10](.3)..log[10](4),color=blue):
> B4:=plot(x,x=log[2](.3)..4,color=khaki,scaling=constrained):
> display(A,B1,B2,B3,B4);
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Maple Example: Plot y = 3x and its tangent line at x = 0 on the same coordinate axes.
Do you remember how we approximated the slope of ax at x = 0 in C1M3? We defined a function

F := x −→ 1
2
ax − a−x

x

that calculated the slope of the line segment that joins the two points P (−x, a−x) and Q(x, ax) spaced
equally from x = 0. Then we selected different values of a and looked at values of this slope function as
x got closer to 0. We are going to repeat this process and then compare our approximations with certain
values.
> F:=x->(aˆx-aˆ(-x))/(2*x);

F := x −→ 1
2
ax − a−x

x
> a:=2; seq(evalf(F(1/2ˆi),14),i=9..15);

a := 2
.69314739230, .69314723351, .6931471938, .6931471839, .6931471815, .6931471806, .693147181

> evalf(ln(2),14);
.69314718055995

> a:=3; seq(evalf(F(1/2ˆi),14),i=9..15);
a := 3

1.09861313170, 1.09861249940, 1.0986123413, 1.0986123019, 1.0986122923, 1.0986122897, 1.098612289
> evalf(ln(3),14);

1.0986122886681
> a:=10; seq(evalf(F(1/2ˆi),14),i=9..15);

a := 10
2.30259285469, 2.30258703341, 2.3025855781, 2.3025852143, 2.3025851234, 2.3025851002, 2.302585095

> evalf(ln(10),14);
2.3025850929940

Although we have not proved it (yet), we are strongly suspicious that at x = 0 the slope of the line
tangent to y = ax is ln(a). We will use this value for m in the equation for the line, y − y0 = m(x− x0).
> eq1:=y-1=ln(3)*(x-0);

eq1 := y − 1 = ln(3)x
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> plot([3ˆx,ln(3)*x+1],x=-2..2,color=[red,blue]);
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C1M4 Problems: Use Maple to display the following graphs:
1. y = 5x and y = log5(x)

2. y = log10(x) + .01 and y =
ln(x)
ln(10)

, .2 ≤ x ≤ 5 loga(x) =
ln(x)
ln(a)

3. y = ln(2x) + .02 and y = ln(x) + ln(2), .2 ≤ x ≤ 5 ln(ab) = ln(a) + ln(b)

4. y = ln(x2) + .03 and y = 2 ln(x), .2 ≤ x ≤ 5π ln(xr) = r ln(x)

5. y = 5x and the line tangent at x = 0.

C1M5

Tangents and Velocity

Suppose that we operate an emergency vehicle on a busy highway and that the hospital that serves
this community is on the highway 10 miles to the east of our base. An efficiency expert is hired to record
our location electronically every minute for a week and it is determined that the hospital is located at +10
miles. The clock is started at midnight and at 12:03 AM a call from an accident two miles to the west comes
in. We race to the scene, arriving at 12:06, put an injured patient in the vehicle, and head for the hospital
4 minutes later with a police escort, slowing somewhat for an intersection at the +5 mile mark. We reach
the hospital at 12:19 AM.

Later, we are asked what our average speed was going to the hospital. Our efficiency expert looks at

the data and points out that we went 12 miles in 9 minutes, so our average speed was
12
9/60

= 80 mph.

Then we are asked if we ever exceeded 80 mph, which is our maximum emergency speed allowed by local
statutes. Knowing that there is “ramp” time when we accelerate and decelerate, and that we had slowed to
50− 60 mph at that intersection, I concluded that we must have exceeded 80 mph at some time in the rush
to the hospital. In fact, having glanced at the speedometer a couple of times, I knew that we had almost hit
90 mph once. After I admitted that we had exceeded 80 mph, the efficiency expert smiled knowingly and
said,“At 12:12 you were at mile 1.6, and at 12:13 you were at mile 3.05, so your speed for that minute was
3.05− 1.6
1/60

= (1.45) · 60 = 87 mph.”
I asked the expert if I could have the data and it was provided, so I decided to use Maple to analyze the

situation. I began by listing the mile information and then I associated a time in minutes with each location,
starting with 0. This generated a sequence, but by enclosing it in square brackets, it became a list. Then I
plotted the data as a line graph and as a point graph, putting the plots on the same coordinate axes.
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> restart: with(plots):
> datapoints:=[0,0,0,0,-.3,-1.2,-2,-2,-2,-2,-1,.2,1.6,3.05,4.4,5.5,6.8,8.1,9.2,10];

datapoints := [0, 0, 0, 0,−.3,−1.2,−2,−2,−2,−2,−1, .2, 1.6, 3.05, 4.4, 5.5, 6.8, 8.1, 9.2, 10]
> nops(datapoints);

20
The command nops returns the number of parts of its argument. This told me that I had entered 20

values.
> seq1:=[seq([i,datapoints[i+1]],i=0..19)];
seq1 := [[0, 0], [1, 0], [2, 0], [3, 0], [4,−.3], [5,−1.2], [6,−2], [7,−2], [8,−2], [9,−2], [10,−1], [11, .2], [12, 1.6],

[13, 3.05], [14, 4.4], [15, 5.5], [16, 6.8], [17, 8.1], [18, 9.2], [19, 10]]
> A:=pointplot(seq1,style=line,color=red,scaling=constrained):
> B:=pointplot(seq1,style=point,color=blue):
> display(A,B);
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On the vertical axis we have the mile mark, and on the horizontal axis we have the time scale in minutes.
Then I decided to compute the average velocity for each minute. By subtracting the old mile mark from the
new one, I got the change in distance. Then I divided that by the change in time, which is 1/60th of an
hour, to get miles per hour.
> seq2:=seq((datapoints[i+1]-datapoints[i])/(1/60),i=1..19);

seq2 := 0, 0, 0,−18.0,−54.0,−48.0, 0, 0, 0, 60, 72.0, 84.0, 87.00, 81.00, 66.0, 78.0, 78.0, 66.0, 48.0
As I compared the speeds listed, I looked at the graph and noted that these numbers were just the

slopes of the lines that joined the data points on the graph. Sure enough, our top speed listed was 87 mph
and the slope of the line between 12 and 13 was the steepest of any of the slopes. I also realized that because
we initially went west, the speeds then are shown as negative numbers. And, when we were stationary our
speed was 0.

If the expert had been able to give data that was recorded every second, then it would have been
overwhelming, but the speeds calculated would have been very accurate and the graph would have been
almost smooth.

In this discussion the terms velocity and speed have been used as if they are interchangeable. This is
misleading because they are related, but different. Think of speed as the absolute value of velocity. In our
computations we determined the average velocity over a one minute time span. Speedometers record speed,
not velocity, and they allow only for non-negative values. In addition to how fast the vehicle was moving,
there was also a direction involved. Motion to the east produced a positive velocity, while motion towards
the west yielded negative values. We chose east as our positive direction and recorded signed values, i.e.
+,− from the base, not just distance from that point. We did not really answer the question of how fast the
vehicle was moving at some instant in time, rather we computed a sequence of average velocities over one
minute intervals. As you should expect, in order to approximate the instantaneous velocity we would need
to compute the average velocity over shorter and shorter time intervals. If this ‘seems like déjà vu all over
again’, then you are right. Computing an instantaneous velocity and computing the slope of a tangent line
are the same processes. Suppose that the dependent (y value) variable is distance. When the independent
(x value) is distance we get a slope. When the independent variable is regarded as time (x value, but think
of it as t), then our computation is a velocity.

What was our average velocity over the 19 minutes? The change in distance was 10 miles, while the
change in time was 19/60 hours. This yields 10/(19/60)) = 600

19 ≈ 31.6 mph. There were probabably two
instants in time when our instantaneous velocity was 600

19 , once as we accelerated away from the accident
and again as we decelerated as we approached the hospital. So this average value over a long time interval
doesn’t indicate our instantaneous velocity over this time period very well. To get a good approximation for
an instantaneous velocity, we must use smaller and smaller time intervals. We are clearly dancing around
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a concept called a limit. In mathematics, whenever a limit is discussed there are always two ingredients
involved, accuracy and control. In the section on limits we will be more precise, but in order to get a good
approximation for our instantaneous velocity we ‘invoke more control’, i.e. we use smaller and smaller time
intervals.

Slope
When calculating an approximation for the slope of the tangent line for y = ax at x = 0 we used a

symmetric form of slope by taking a point on each side of 0. It might be helpful if you see that our approach
is consistent with your prior experience. At x
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Honesty requires that I show you an easy way to plot a function and its tangent line at a specified point
using Maple. In the package student there is a command showtangent that does the job cleanly and
without fuss. For example,
> restart: with(student):
> showtangent(x*sin(Pi*x),x=.6,x=0..2,color=blue);
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C1M5 Problems: Use Maple to solve the problems and plot the graphs.

1. Our efficiency expert from the text moved on to a different ambulance location and set up the same
program. The data below was collected at one minute intervals and the first value is for 2 AM. The last
value is at the hospital. Provide as much information about the ambulance run as possible, including the
average velocities.

data = [0, 0, .3, 1.4, 2.7, 4, 4.8, 5.1, 5.1, 5.1, 5.1, 6, 7.3, 8.7, 10, 11, 11.7, 12.2, 12.6]

2. For y = x ln(x) and x0 = 3, find an equation for the line tangent to the curve at x0 and plot the graphs
of the function and the line on the same coordinate axes.

3. For y = x 2−x and x0 = −3
2 , find an equation for the line tangent to the curve at x0 and plot the graphs

of the function and the line on the same coordinate axes.
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4. For y = sinh(x) and x0 = 2, find an equation for the line tangent to the curve at x0 and plot the graphs
of the function and the line on the same coordinate axes.

Warning! It is perfectly reasonable to do Problem 2 and then, when doing 3 and 4, copy, paste it below,
and change the values and execute. If you do, some values will carry over that you do not wish for Maple to
remember. It is suggested that you insert a command line between the problems:
> restart: with(plots):

C1M6

Limits

Graduating from high school in 1956 and driving cars with wide front seats and no seatbelts, one
developed a sense of how things were going on a date by where she chose to sit. If she sat by the door and
gripped the armrest with white knuckles, then things weren’t going well. On the other hand, if she sat close,
then one had to guard against grinning stupidly and spoiling the moment. “Close to” had real meaning.
This is also true in mathematics whenever limits are being discussed. There are always two ingredients in
the discussion and they behave as accuracy and control, and accuracy always precedes control. Let’s consider
the following sequence of numbers:

x1 = 1

x2 = 1.4

x3 = 1.41

x4 = 1.414

x5 = 1.4142

x6 = 1.41421

x7 = 1.414213

x8 = 1.4142135

x9 = 1.41421356

x10 = 1.414213562

.

.

x2
1 = 1

x2
2 = 1.96

x2
3 = 1.9881

x2
4 = 1.999396

x2
5 = 1.99996164

x2
6 = 1.9999899241

x2
7 = 1.999998409369

x2
8 = 1.99999982358225

x2
9 = 1.9999999932878736

x2
10 = 1.999999998944727844
.

.

The right column lists the squares of the left column, and we can see that the numbers in the right column are
getting ‘closer’ to 2. Of course, this means that the numbers in the left column are getting ‘closer’ to

√
2. It

is certainly fair to say that we are approximating
√
2 by increasing our accuracy one place each time we select

a new number in the left column. Suppose that we wanted to approximate
√
2 to within .000001, which we

may regard as an accuracy. Certainly if we go down our list to x9 and look at x2
9 = 1.9999999932878736

and at |(x9)2−2| = .0000000067121264, we see that we have achieved our accuracy. But, where does control
fit in here? Note first that the numbers that we would list below x9 would be even closer to

√
2 than x9

is, we control the situation by selecting a point on our list where our accuracy is achieved for all the rest of
the list. But, our focus will be on limits of functions rather than on sequences.

Let’s assume that we have a laser attached to a rifle and that it is adjusted so that when the rifle is
fired at a target, the bullet will strike exactly where the laser points at that instant. But, the person firing
the weapon is not perfectly rigid and the aim can vary. Suppose further that the “bull’s-eye” is ten inches
across and we wish to hit the bull’s-eye. In effect, we have selected an accuracy of 5 inches. To make things
simpler, assume that the butt of the rifle is set on a fixed point and that we can measure the deviation of the
barrel tip from ‘perfect’. The question becomes, “What is a permissible deviation from perfect that ensures
that the bullet will strike the bull’s-eye?” This is our control. Suppose that when the deviation is less than
.0357 inches from perfect, we are assured that the bull’s-eye will be struck. For an accuracy of 5 inches we
found a control of .0357 inches that would guarantee that the accuracy would be achieved. It would seem
that for each accuracy selected, we could find a permissible deviation (control) that would guarantee that
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the bullet would strike the target within the chosen accuracy of the center of the bull’s-eye. And this is how
limits work.
Definition: (Limit of a function) We write

lim
x→a

f(x) = L

if for each ε > 0 (accuracy) there is a number δ > 0 (control), so that whenever x �= a and |x − a| < δ ,
then it follows that |f(x)− L| < ε .

This is just a precise way of saying that the values of f(x) are as close to L as we like whenever x is
close enough to a , but is not equal to a . We call L ‘the limit of f(x) as x approaches a ’.
Reminder: |x− a| < δ ⇐⇒ a− δ < x < a+ δ

It is important now to comment on how when we are discussing a limit at x = a , we actually ignore
the value, if any, of the function at a . In fact, we frequently look at only what is happening when x < a
(left-hand limit) or at when x > a (right-hand limit). Then we compare our answers.

Suppose that f(x) =
x2 − 3x+ 2

x− 1 . We see immediately that f is not defined at x = 1. This does not

mean that lim
x→1

f(x) does not exist however. The graph is displayed on the left below.
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The Maple code shown below produced the plot on the right above, in addition to the output that is
displayed.
> restart:
> f:=x->(xˆ2-3*x+2)/(x-1);

f := x→ x2 − 3x+ 2
x− 1

> plot(f(x),x=0..3,scaling=constrained); Output above on right
> Limit(f(x),x=1)=limit(f(x),x=1);

lim
x→ 1

x2 − 3x+ 2
x− 1 = −1

What should we learn from this? Maple may not show a ‘hole’ in a graph, so we must not depend on
Maple to show us problem points. When taking a limit in Maple and a capital ‘L’ is used, the expression is
inert. That is, the operation is not executed. On the other hand, the lower case ‘l’ allows Maple to complete
taking the limit.
Graphical discussion: The objective here is to show a picture of how a limit works by examining a
graph of two functions, g and h , demonstrating the process. First, there is an “x” value a at which the
limit is to be discussed. Then by some mysterious process we select the limit L and any accuracy e > 0.
Now we draw two symmetric horizontal lines, y = L− e and y = L+ e which determine our bounds. Then
we consider two symmetric vertical lines about x = a and all the points between, except a itself. The
question is, “Can we move the lines together by making the number d smaller, but still positive, and have
the functional values project up to the graph and over to the y -axis in such a way that the projected values
remain between the two horizontal lines?” In the first diagram below the answer is “yes”, and in the second
the answer is “no”. In fact, there is not even a candidate for L in the second one because of the manner in
which the values of h(x) are split.
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In the case of g(x) above, no matter how small we make e , we can always find a d small enough so that
the diagram above on the left is valid. This means that lim

x→a
g(x) = L . The function h(x), as drawn, has no

limit at x = a .
We have mentioned one-sided limits, and now it is time to be specific about them. The function h

above will serve as our mental picture. What happens when we restrict x so that a− d < x < a (left-hand
limit), or so that a < x < a + d (right-hand limit)? As x approaches a from the left-hand side we sense
that h(x) is getting close to a number which we will call L1 . Also, as x approaches a from the right-hand
side h(x) is getting close to a number L2 . It is obvious that L1 and L2 are not the same numbers in this
case. For completeness, we will provide precise definitions of one-sided limits.
Definition: (Left-hand limit of a function) We write

lim
x→a−

f(x) = L1

if for each ε > 0 (accuracy) there is a number δ > 0 (control), so that whenever a − δ < x < a , then it
follows that |f(x)− L1| < ε .
Definition: (Right-hand limit of a function) We write

lim
x→a+

f(x) = L2

if for each ε > 0 (accuracy) there is a number δ > 0 (control), so that whenever a < x < a + δ , then it
follows that |f(x)− L2| < ε .

Here is the graphical picture of what is happening. If we select a smaller accuracy (e > 0), then we may
select a smaller control (d > 0), so that the functional values of those x ’s lie within the requested range close
to the limit. Note that we only provided one half of the graph of h(x) in each case. This is to emphasize
that only what happens on the left and right sides respectively of x = a matters when determining the
one-sided limits.
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lim
x→a−

h(x) = L1 lim
x→a+

h(x) = L2

It should be obvious that there is a relationship between limits and one-sided limits. We usually tie
this up nicely with a theorem that shows the equivalence of two statements. But, it is a little easier for the
student to understand if it is stated as two related theorems and a corollary, and that is what we will do
here.
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Theorem A:
lim
x→a

f(x) = L =⇒ lim
x→a−

f(x) = L and lim
x→a+

f(x) = L

Theorem B:

lim
x→a−

f(x) = L1 and lim
x→a+

f(x) = L2 and L1 = L2 =⇒ lim
x→a

f(x) = L1 (= L2)

Corollary:

lim
x→a−

f(x) = L1 and lim
x→a+

f(x) = L2 and L1 �= L2 =⇒ lim
x→a

f(x) does NOT exist

Maple Example: A function f may be defined by

f(x) =



−x, if −1 ≤ x ≤ 0;
2x+ 1, if 0 < x < 1;
2, if x = 1;
4− x2, if 1 < x ≤ 2.

Here is a look at the graph of f between −1 and 2.
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Suppose we want to find if f has a limit at x = 0 and x = 1. We look at the graph for inspiration
and realize that if we stay to the left of x = 0, then the function is tending to 0 as x gets closer to the value
0. Also, if we stay to the right of x = 0 and allow x to decrease towards 0, then the values of f are getting
close to 1. It would seem that the left-hand limit is 0 and the right-hand limit is 1. Then, if we take the
same approach at x = 1, but we must ignore x = 1, and allow x to get closer and closer to 1, then f(x)
will get closer to 3, no matter which side of 1 x happens to lie on. All this suggests intuitively that

lim
x→0−

f(x) = 0, lim
x→0+

f(x) = 1 =⇒ lim
x→0

f(x) does not exist

lim
x→1

f(x) = 3

Now we turn to Maple.
> restart:
> f:=x->piecewise(x>=-1 and x<=0,-x,x<1,2*x+1,x=1,2,x>1 and x<=2,4-xˆ2);

f := x→ piecewise(−1 ≤ x and x ≤ 0,−x, x < 1, 2x+ 1, x = 1, 2, 1 < x and x ≤ 2, 4− x2);
> limit(f(x),x=0,left);
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0
> limit(f(x),x=0,right);

1
> limit(f(x),x=0);

undefined
> limit(f(x),x=1);

3
> f(-1/2); f(1/2); f(1);

1
2
2
2

You see above an example of how to define a function piecewise. You list the conditions on x first, and
then the function’s values for those x ’s. When there are two conditions on x , you must separate them with
‘and’. You see how easy it is to obtain regular and one-sided limits.

C1M6 Problems: Use Maple to plot the graphs and to find the limits at the indicated points, if they
exist.

1. f(x) =
sin(2x)
3x

, −π
2 ≤ x ≤ π

2 , at x = 0.

2. g(x) = sin
(
1
x

)
, −π ≤ x ≤ π , at x = 0.

3. h(x) = x sin
(
2
x

)
, −π ≤ x ≤ π , at x = 0.

4. F (x) =
sin(x)− x)

x3 , −π ≤ x ≤ π , at x = 0.

5. G(x) =

{
x+ 1, if −1 ≤ x ≤ 0;
x2, if 0 < x ≤ 2;
6− x, if 2 ≤ x ≤ 4.

, at x = 0 and x = 2.

C1M7

Continuity

To paraphrase a judge who said something like “Pornography might be hard to define, but I know it
when I see it.”, a similar statement about continuity might be, “Continuity might be hard to define, but I
know it when I see it.” In the two diagrams which follow, when you look at them you will have an immediate
sense that one function is continuous and the other is discontinuous at two different points. You might think
of the graph of the function as a wire and one graph would allow an electric current to flow through it while
the other would not.
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As it turns out, we may define continuity of a function at a number a fairly easily, but the application
and understanding of the concept might take some effort.
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Definition: (Continuity of a function at a number a) A function f is continuous at a number a if

lim
x→a

f(x) = f(a)

This says two things: (1) the limit of f at x = a exists; and (2) the limit has the value f(a).
We repeat the definition of limit from a previous module and follow it with a definition of continuity

that is equivalent to the one above.
Definition: (Limit of a function) We write

lim
x→a

f(x) = L

if for each ε > 0 (accuracy) there is a number δ > 0 (control), so that whenever x �= a and |x − a| < δ ,
then it follows that |f(x)− L| < ε .
Definition: (Continuity of a function at a number a) We say that a function f is continuous at a number
a if for each ε > 0 (accuracy) there is a number δ > 0 (control), so that whenever |x − a| < δ , then it
follows that |f(x)− f(a)| < ε .

This is just a precise way of saying that the values of f(x) are as close to f(a) as we like, whenever x
is close enough to a . Here we do not exclude x = a as we would when discussing the limit at a .

“What would this look like on a graph?”, you may well ask. It will look just like a limit illustration,
except that one need not exclude x = a from the discussion.

As you might expect, we may discuss continuity from one side or the other. If the limit taken from the
left at a differs from the limit taken from the right, then the limit does not exist at a so continuity there is
not possible. But, if the left-hand limit is f(a), then f is continuous from the left at a . A similar statement
about the right-hand limit is valid. This leads to a simple statement which we will list as a theorem:
Theorem: A function f is continuous at x = a if and only if f is continuous from the left at a and f is
continuous from the right at a .

It is not fashionable in many calculus courses to actually prove that a function is continuous. And, this
author agrees that this should not be over-stressed. But, it is instructive to see how this is done in some
simple case at least once, because it reinforces how accuracy and control are involved. So that we may not
be accused of focusing on theory we take a
TIME OUT!

Let’s show that the function f(x) = mx + b is continuous at some value a for the case where m �= 0.
The main problem here is that at this point we wouldn’t know when we have accomplished our task. So,
let’s begin with what we would like to end up with. We would see something like

|x− a| < δ =⇒ |(mx+ b)− (ma+ b)| < ε

where we were given ε > 0 and found a δ > 0 that made this statement valid. So, we go to a piece of scrap
paper for some figuring.
SCRAP PAPER:

Now we can try and work this backwards.

|(mx+ b)− (ma+ b)| < ε

|(mx−ma)| < ε

|x− a| < ε

|m| permitted since m �= 0

Aha! This last inequality looks remarkably like |x−a| < δ . Now we are ready to work forward because each
of our inequalities on our scrap paper were reversible.
Back to the good paper!

Suppose that we are given ε > 0, which is our requested accuracy. We choose δ =
ε

|m| , which is our
control. Then, for each x so that |x− a| < δ we may write

|x− a| < δ =
ε

|m|
|m| |x− a| < ε

|mx−ma| < ε

|(mx+ b)− (ma+ b)| < ε
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This means that whenever |x − a| < δ , it follows that |(mx + b) − (ma + b)| < ε , W 5 *. We have proved
that straight line functions are continuous at every point. Maybe the Proof Cops won’t catch us.
TIME IN!

In your text you should find a theorem or statement about building continuous functions from other
continuous functions. Suppose that c is a constant and f and g are continuous functions whose domains
and ranges align so that the following functions make sense. Then

c f + g f − g fg cf f
g f ◦ g

are all continuous. It is easy to see why constant functions are continuous. They only take on one value, c ,
so |f(x) − c| = 0 < ε for every ε > 0 and all x . We know that functions of the form f(x) = mx + b are
continuous, so by applying all this we may conclude that:
Theorem: (Polynomials) If f(x) = anx

n + an−1x
n−1 + . . . a2x

2 + a1x+ a0 for constants a0, a1, . . . , an ,
then f is a continuous function at every point.

Although we won’t state it as a theorem, all trigonometric, exponential and logarithmic functions are
continuous at every point of their domain. Once we accept all this, we know that a function like

g(x) = 3 e2x sin2(3x2 + 5) + ln(x2 + 1)

is continuous everywhere. We have used generously the concept from above that verbalizes as, “A continuous
function of a continuous function is itself continuous.” Let’s state this as a theorem.
Theorem: (Composition of Continuous Functions) If g is continuous at a and f is continuous at g(a),
then f ◦ g is continuous at a , where (f ◦ g)(x) = f (g(x)).

The concept of continuity is a powerful one. In mathematics, whenever the conclusion of a theorem
includes a phrase like “there exists a . . . ’ you have a potentially strong and useful theorem. The reason
for this is because it essentially says “there is a solution to . . .” and knowing that a problem has a solution
means that your efforts to find a solution are not doomed from the start. The theorem which follows is one
of two such theorems involving continuity on a closed interval that we will state here. Recall that when
we say that f is continuous on [a, b] , at x = a we mean continuous from the right and at x = b we mean
continuous from the left. To keep this straight, remember that you work from the inside of the interval
towards the endpoint.
Intermediate Value Theorem: Suppose that f is a continuous function on the closed interval [a, b] and
that C is a value strictly between f(a) and f(b) (either f(a) < C < f(b) or f(b) < C < f(a)). Then
there exists a number c so that f(c) = C .

This says that if you have two distinct values on the y -axis and f(a) is one of them and f(b) is the
other, and if you draw a horizontal line between them, then the line must meet the graph at some point
between a and b . There may be many such points, but you are guaranteed at least one. The obvious diagram
follows.
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Maple Example: Suppose that f(x) = ex cos(x) + (.2). For C = 1, illustrate the Intermediate Value
Theorem.

> restart:
> f:=x->exp(x)*cos(x)+.2;

f := x→ ex cos(x) + .2
> f(0); f(Pi/2); pi/2=evalf(Pi/2);

1.2
.2

1
2
π = 1.570796327

> C:=1
C := 1

> c:=fsolve (f(x)=C,x,0..Pi/2);
c := 1.365054488

The diagram above is actually this example. If you try to use solve you do not get a solution between
0 and π/2. However, fsolve provides a floating point answer and it allows you to specify a range from
which to seek a solution. Note the omission of x= before the range, which is different from most other cases.

Application of the Intermediate Value Theorem: (optional) Choose any great circle of Earth, C ,
such as the Equator. Suppose that at some instant in time we are able to record the temperature at every
point on the circle. Let R be the radius of Earth. Because P (t) = [R cos(t), R sin(t)] traces out a circle of
radius R for 0 ≤ t ≤ 2π , we could (with a little effort) define a function F so that F (t) would produce
the temperature of the point P (t) on the circle C for 0 ≤ t ≤ 2π . Because there will be no jumps in
temperature as we make small changes in our position on C , we see that F will be a continuous function
of t on the closed interval [0, 2π] . Note that P (0) = P (2π) because 0 and 2π represent the same point
on Earth. As a result, F (0) = F (2π). We will show why there must be two points on the circle which are
antipodal and have the same temperature. Points are antipodal if they lie at opposite ends of a diameter.
Here this will mean that F (t0) = F (t0 + π) for some value t0 of t between 0 and π . Let’s show why this
is true.

Begin by defining a function G as G(t) = F (t) − F (t + π). As the composition of two continuous
functions, F (t + π) must be continuous. This means that G is the difference of two continuous functions,
so it is also continuous. We seek a solution to the equation G(t) = 0. Let’s see what happens at 0. Since
G(0) = F (0) − F (π) there are two possibilities. First, if G(0) = 0 we see that F (0) = F (π) and we have
found our solution. If G(0) �= 0 then G(0) and G(π) = F (π)− F (2π) = F (π)− F (0) are opposite in sign.
One is positive and the other is negative. By the Intermediate Value Theorem there must be a point t0
between 0 and π for which G(t0) = 0 or F (t0) = F (t0 + π). W 5

Let’s show an example using Maple.

> restart: with(plots): with(plottools):
> F:=t->t*(2*Pi-t)*(sin(sqrt(2)*t))ˆ2/5+.5;

F := t→ 1
5
t(2π − t) sin(

√
2t)2 + .5

> F(0); F(2*Pi);
.5
.5

> a:=fsolve(F(t)=F(t+Pi),t,0..Pi);
a := 1.786163402

> evalf(F(a)); evalf(F(a+Pi));
1.035640467
1.035640466

> P:=plot3d([cos(t),sin(t),z],t=0..2*Pi,z=0..F(t),grid=[80,30],
> orientation=[124,66],style=PATCHNOGRID):
> L:=line([cos(a),sin(a),F(a)],[cos(a+Pi),sin(a+Pi),F(a+Pi)],color=red,thickness=2):
> L1:=line([cos(a),sin(a),0],[cos(a),sin(a),F(a)],color=red,thickness=2):
> L2:=line([cos(a+Pi),sin(a+Pi),0],[cos(a+Pi),sin(a+Pi),F(a+Pi)],color=red,thickness=2):
> display(P,L,L1,L2);
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DON ’T PAN IC!Three-dimensional plotting is usually found in Calculus I I I, or at least in the last part of
Calculus I I. Since this example is optional, I thought I would toss in the picture just for fun. I tried to color
the graph so that it was red when the temp erature was high and blue when it was cold, but that seemed to
require more trouble than it was worth. Hop efully,you will note that the line across the figure is horizontal,
illustrating that these antip o dal p oints have the same temp erature. No effort was made to scale the function
so that the values were plausible temp eratures.

Continuing with this same example, let’s lo ok at what is happ ening two-dimensionally. BecauseF(0) =
F(2π), there must b e a p oint

aso thatF(a(a+π), as we said earlier. What this means is, if we take
a line,L, that is of lengthπand hold it horizontally and slide the left end along the curve, then there is a

valueawheretherightendwilllieonthecurve. HereisthepictureandtheMaplethatpro duceditaswe
continue in the worksheet.

> P2:=plot(F(t),t=0..2*Pi,scaling=constrained):

> M1:=line([a,F(a)],[a+Pi,F(a+Pi)],color=blue,thickness=2):

> M2:=line([0,0],[a,F(a)],color=cyan,thickness=2):

> M3:=line([Pi,0],[a+Pi,F(a+Pi)],color=cyan,thickness=2):

> M4:=line([a,0],[a,F(a)],color=nav y):

> V1:=textplot([a-.13,.19,"a"]):

> V2:=textplot([Pi,.19,"p"],font=[SYMBOL,12]):

> V3:=textplot([3.3,f(a)+.2,"L"],font=[HELVETICA,OBLIQUE,14],color=blue)

> display(P2,M1,M2,M3,M4,V1,V2,V3); Lπ a0
0.5
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The other big theorem for continuous functions on closed intervals involves maximization and minimiza-
tion. Before we discuss this problem, let’s look at a quick example of a situation where there is no solution
to our question.

Example: Suppose that f(x) =x on the open interval (0 ,1). Then, there is no point x0in this interval
such that f(x0) ≤ f(x) for all x in the interval. Similarly, there is no pointx1in (0, 1) for which

f(x)≤ f(x

1

) for all x in this interval. Suppose we think that x

0

satisfies the condition for being a
minimum. Then x̂ =

x
0 2

< x 0violates this condition becausef(x̂) =

x
02

< x0= f(x0). Since (0, 1) is
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not a closed interval, there are no points which serve as a maximum or a minimum for f . Certainly, f is
continuous on the open interval.

Extreme Value Theorem: If f is a continuous function of a closed interval [a, b] , then there are numbers
c and d in [a, b] so that f(c) ≤ f(x) ≤ f(d) for all x in [a, b] .

We say that c is a minimum point and d is a maximum point for f on [a, b] , while f(c) and f(d) are
the (global) minimum and (global) maximum of f respectively.

Later you will deal with these concepts in more depth and how to locate c and d . For now, it suffices
to say that the power of continuity and dealing with a closed interval guarantees a solution to finding a
maximum or a minimum point.

Maple Example: Find the maximum value attained, the minimum value attained, and points where these
values are achieved for g(x) = esin(x) on [0, 2π] .

Exponential functions are continuous at all points, as are sin(x) and cos(x). Other trigonometric
functions are continuous at all points of their domains. So, our function, g , is continuous as the composition
of two continuous functions. Our interval is closed, so the Extreme Value Theorem guarantees that the
extrema are attained on the closed interval [0, 2π] . We will find the answers and then plot the graph and
show you all the gory details of that plot.

> restart: with(plots): with(plottools):
> g:=x->exp(sin(x));

g := x→ esin(x)

> C:=minimize(g(x),x=0..2*Pi,location);

C := e(−1), {
[
x =

3
2
π, e(−1)

]
}

Because we added location to the last command, our answer is in two parts. So, when we want to refer
to the minimum value we must use C[1] instead of C because that value is the first thing listed in the
output. Similarly with maximize. In Maple, D has special meaning, so it cannot be used as a name for a
variable. We use D1 instead.

> c:=fsolve(g(x)=C[1],x,0..2*Pi);
c := 4.712388980

> evalf(3*Pi/2);
4.712388981

> D1:=maximize(g(x),x=0..2*Pi,location);

D1 := e, {
[
x =

1
2
π, e
]
}

> d:=fsolve(g(x)=D1[1],x,0..2*Pi);
d := 1.570796327

> evalf(Pi/2);
1.570796327

> H:=plot(g(x),x=0..2*Pi,color=red,thickness=2):
> L5:=line([c,0],[c,g(c)],thickness=2,color=blue):
> L6:=line([d,0],[d,g(d)],thickness=2,color=green):
> L7:=line([0,g(d)],[2*Pi,g(d)],thickness=2,color=green):
> L8:=line([0,g(c)],[2*Pi,g(c)],thickness=2,color=blue):
> C1:=textplot([Pi,2.9,"y=g(d) Maximum"],font=[HELVETICA,12],color=green):
> C2:=textplot([2.85,.25,"y=g(c) Minimum"],font=[HELVETICA,12],color=blue):
> C3:=textplot([c,-.2,"c"],font=[HELVETICA,12],color=blue):
> C4:=textplot([d,-.2,"d"],font=[HELVETICA,12],color=green):
> C5:=textplot([3.5,1.5,"y=g(x)"],font=[HELVETICA,12],color=red):
> display(H,L5,L6,L7,L8,C1,C2,C3,C4,C5);
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We activated the package plottools because it contains the line command which we needed to
connect the points. We could have plotted the horizontal lines as functions, but cutting and pasting seemed
a little easier. The minimize and the maximize commands require an expression and accept an optional
range. Another convenient option is to include location and actually identify where the extrema occur.

We have provided a lot more Maple detail than is really necessary. On the other hand, if you never see
“how” to do something, then you may never improve your skills.

C1M7 Problems: Use Maple to plot the graphs and to find the requested values.

1. If f(x) =
{
sin(1/x), if x �= 0
0, if x = 0

, use the limit definition to see if f is continuous at:

(a) x = 0;
(b) x = 6

π .

2. If g(x) =
{
x sin(1/x), if x �= 0
0, if x = 0

, use the limit definition to see if g is continuous at:

(a) x = 0;
(b) x = 6

π .

3. For K(t) = et sin(3t) on [0, π] :
(a) determine if there must be a zero for K between 1.5 and 2.5, and find it if there must be;
(b) determine if there must be a solution to K(t) = K(t+ π/2) on [0, π/2], and find it if there must be;
(c) find the maximum and minimum values of K and where they are located.

4. For G(t) = t(2− t) sin(
√
5t) + 1

2 on [0, 2]:
(a) determine if there must be a point between 0 and 1 for which G(t) = 1 , and find it if there must be;
(b) determine if there must be a solution to G(t) = G(t+ 1) on [0, 1], and find it if there must be.
(c) find the maximum and minimum values of G and where they are located.

C1M8

Limits Involving Infinity

One way of categorizing the involvement of infinity in this discussion is to refer to unbounded domains
and to unbounded functions. Let’s deal with unbounded domains first. The basic question here is to see if
the values of a function, f(x), are getting close to a single value as we let x get larger and larger without
bound. It will be a lot simpler if we recall that accuracy and control play a role here and then sort out how
that happens. The role of accuracy is just like earlier cases, so the conclusion will look like

|f(x)− L| < ε

whenever we invoke the control. We want this to hold for all “large” x . Our control here occurs as a number,
M > 0, that we intuitively think of as large. We invoke our control by saying that x must satisfy

x > M or x ≥M

Definition: (Limit of a function at ∞) We write

lim
x→∞ f(x) = L
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if for each ε > 0 (accuracy) there is a number M > 0 (control), so that whenever x > M , then it follows
that |f(x)− L| < ε .

This is saying geometrically that whenever we draw two horizontal lines, y = L+ ε and y = L− ε , then
from some point (x =M ) on, the graph will lie between the lines.

y=f(x)

M

L
εy=L-

εy=L+

0.5

1

1.5

2

1 2 3 4
x

One of the first things that we must do is discuss 1/x as x gets large.
Example: Let’s establish this basic fact:

lim
x→∞

1
x
= 0

If we are given an accuracy ε > 0, then we choose M = 1
ε as our control. It isn’t too difficult to see that

M < x =⇒ 1
x < 1

M = ε .

y=1/x

εy=εM=1/

0
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2
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Maple Example: Evaluate
√
x2 + 6x+ 4− x .

> restart:
> limit(sqrt(xˆ2+6*x+4)-x,x=infinity);

3
Whoa! You might say that this result is not intuitively obvious. Let’s see if we can understand what
happened. Follow the development algebraically and then we will take the limit at the end.

√
x2 + 6x+ 4− x =

(√
x2 + 6x+ 4− x

)
·
(√

x2 + 6x+ 4 + x√
x2 + 6x+ 4 + x

)

=
x2 + 6x+ 4− x2
√
x2 + 6x+ 4 + x

=
6x+ 4√

x2 + 6x+ 4 + x

=
6 + 4

x√
x2+6x+4+x

x

=
6 + 4

x√
x2+6x+4

x2 + 1

=
6 + 4

x√
1 + 6

x +
1
x2 + 1

−→ 6
2
= 3

The limit is taken as x goes to infinity, causing several terms to go to 0. Let’s consider the graphs of√
x2 + 6x+ 4 and x . You will see that the difference does tend to 3.

> H1:=plot(sqrt(xˆ2+6*x+4),x=0..10):
> H2:=plot(x,x=0..12,color=blue):
> display(H1,H2);
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Now let’s turn our attention to functions which are unbounded as x approaches a given value. Here our
accuracy is given as a ‘large’ number M and we use the usual control, δ > 0 for x .
Definition: (Limit of an unbounded function) We write

lim
x→a

f(x) =∞

if for each M > 0 (accuracy) there is a number δ > 0 (control), so that whenever x �= a and |x − a| < δ ,
then it follows that M < f(x).

δa+δa-

y=M

0

2

4

6

8

10

y

1 2 3 4 5
x

We must be very careful here. Although we write lim
x→a

f(x) =∞ , in fact, THIS LIMIT DOES NOT
EXIST. But, saying that the limit is infinity does provide us with useful information. It tells us that as x
gets close to a , the values of f(x) are getting larger and larger without any bound on these values.

In the diagram above, as x approaches a we see that f(x) gets large, no matter which side we approach
from. In the next example we change that so that we must consider −∞ as a ‘limit’.
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Example: Discuss lim
x→2

1
x− 2 .

This discussion is going to be intuitive rather than precise. Let’s look at the graph of y = 1
x−2 first.

> f:=x->1/(x-2);

f := x→ 1
x− 2

> plot(f(x),x=0..4,y=-40..40);
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40

y
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x

Note that we inserted a range for y here so that we have control over the scale. There is a vertical asymptote
at x = 2 and you see that Maple deals with the jump from large negative to large positive values by drawing
the vertical line that is not really part of the graph. It is clear that as x approaches 2 from the left the
values are getting larger and larger negatively. From the right, values are getting large without bound. Let’s
allow Maple to sum things up.
> limit(f(x),x=2,left);

−∞
> limit(f(x),x=2,right);

∞
> limit(f(x),x=2);

undefined

C1M8 Problems: Use Maple to plot the graphs and to discuss the limits at the specified points. Where
necessary, insert a vertical range into the plot. For situations like the last example, use one-sided limits.
WARNING! Spelling is important. Maple recognizes infinity, but it ignores creative variations.

1. For f(x) = tan(x/2), discuss lim
x→π

f(x).

2. Discuss: (a) limx→0+ ln(x) and (b)limx→0+ x ln(x).

3. Just evaluate: (a) lim
x→∞(1 + 1/x)

x ; (b) lim
x→∞(1 + sin(π/(2x))

x

4. Given: f(x) =
x50

ex
Find the exact and floating point values:

(a) f(3); (b) f(20); (c) f(50); (d) f(300); (e) lim
x→∞ f(x)

C1M9

The Derivative of a Function

Suppose that we have a function f whose domain includes an open interval containing the value a .
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Then we define the derivative of f at a , f ′(a), by

f ′(a) ≡ lim
h→0

f(a+ h)− f(a)
h

= lim
x→a

f(x)− f(a)
x− a

Noting the relationship x = a+ h or x− a = h , we see that the two limits above are the same. We will use
either format without remark.

It is implicit from our definition that we obtain a new function from f , namely f ′ , when we differentiate
(take the derivative of) f . We might have a function whose value is sin(ax). Well, what is the variable
here? a? x? For that reason, when we use Maple to evaluate derivatives we must identify the variable with
respect to which we are differentiating.

> restart:
> f:=x->x*sin(x);

f := x→ x sin(x)
> A:=diff(f(x),x);

A := sin(x) + x cos(x)
> fprime:=unapply(A,x);

fprime := x→ sin(x) + x cos(x)

You see how to differentiate a function (actually, f(x) is an expression) with respect to x and may note
how the output is an expression. We convert the output to a function by using unapply, again identifying
the variable to be used. Let’s see how Maple handles the process if we use the two formats in our definition.

> limit((f(a+h)-f(a))/h,h=0);
sin(a) + a cos(a)

> limit((f(x)-f(a))/(x-a),x=a);
sin(a) + cos(a) a

The answers are written differently, but they are obviously the same.
It will be useful to know the derivatives of some of the basic functions that we use. Without comment:

> diff(xˆ8,x);
8x7

> diff(6,x);
0

> diff(sin(x),x);
cos(x)

> diff(cos(x),x);
− sin(x)

> diff(exp(x),x);
ex

> diff(ln(x),x);
1
x

This exercise tells us that the derivative of the sine function is the cosine function. Let’s plot both
functions on the same coordinate axes. Since we know that sin(0) = 0, we know that the sine graph is below
the cosine graph as we start at 0. If we are looking at a color version of these notes, then the sine is the red
curve. We put a lot of effort into taking limits that we can now call derivatives. The values that we were
seeking were slopes. As we look at the plot which follows, assume that we are on a sled that is going to ride
the sine curve. Suppose we had an instrument that would read the numerical values of the cosine (green)
curve. Suppose that we had another instrument right next to the first one that would read the slope of the
sled at any instant. As we are pulled by a snow-mobile we watch the two instruments and are surprised to
see that their readings are the same. If the x and y scales are the same, then our slope at x = 0 is 1, at
x = π/6 it will be

√
3/2, at x = π/3 it will be 1/2 and at x = π/2 we should have a slope of 0 because we

will be at the crest of our hill. Obviously, we will get negative readings as we head downhill.

> plot([sin(x),cos(x)],x=0..2*Pi,color=[red,green],scaling=constrained);
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Maple Examples: We will use the value of the derivative to determine the slope of our tangent line. We
will do two problems, putting the output between them, and side-by-side. Problem 1: f(x) = ln(x) and
x0 =

√
2.

> restart: with(plots): with(plottools):
> f:=x->ln(x):

f := ln
> x0:=sqrt(2); y0:=f(x0);

x0 :=
√
2

y0 :=
1
2
ln(2)

> fprime:=unapply(diff(f(x),x),x);

fprime := x→ 1
x

> m:=fprime(x0);

m :=
1
2

√
2

> eq1:=y-y0=m*(x-x0);

eq1 := y − 1
2
ln(2) =

1
2

√
2(x−

√
2)

> y:=solve(eq1,y);

y :=
1
2
ln(2) +

1
2

√
2x− 1

> P1:=plot(f(x),x=1/2..4,color=red):
> P2:=plot(y,x=1/2..4,color=blue):
> P3:=line([x0,0],[x0,f(x0)],color=green):
> display(P1,P2,P3);
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Problem 1 Problem 2

Problem 2:
> restart: with(plots): with(plottools):
> g:=x->x*sin(3*x);
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g := c→ x sin(3x)
> x1:=7*Pi/9; y1:=g(x1);

x1 :=
7
9
π

y1 :=
7
18
π
√
3

> gprime:=unapply(diff(g(x),x),x);
gprime := x→ sin(3x) + 3x cos(3x)

> m1:=gprime(x1);

m1 :=
1
2

√
3 +

7
6
π

> eq2:=y-y1=m1*(x-x1);

eq2 := y − 7
18
π
√
3 = (

1
2

√
3 +

7
6
π)(x− 7

9
π)

> y:=solve(eq2,y);

y :=
1
2

√
3x+

7
6
π x− 49

54
π2

> Q1:=plot(y,x=1..Pi,color=blue):
> Q2:=plot(g(x),x=0..Pi,color=red):
> Q3:=plot(x,x=0..Pi,color=cyan):
> Q4:=plot(-x,x=0..Pi,color=cyan):
> Q5:=line([x1,0],[x1,g(x1)],color=green):
> display(Q1,Q2,Q3,Q4,Q5);

The output is above the problem. You will note that we included y = x and y = −x , which was done
because these functions serve as bounding functions for sin(3x).

As we scan the derivatives again, we see that the derivative of ex is ex . What could that possibly mean?
If we took a sled ride on the curve y = ex , then the instrument that reads our slope is actually reading our
height! Let’s try “gussying up” our function by adding a scalar multiple a to x . Now we differentiate that.
> diff(exp(a*x),x);

a e(ax)

In C1M3, Exponential Functions, we had an example involving radioactive decay of a material. We
developed an expression that told us the amount present at any time t . Looking back, we see that A was

A(t) = 2.837 e(−.005059468471t)

Using Maple, let’s differentiate A(t):
> A:=t->(2.837)*exp(-.005059468471*t);

A := t→ 2.837 e(−.005059468471t)

> diff(A(t),t);
−.01435371205 e(−.005059468471t)

> -.01435371205/2.837;
−.005059468470

After we take the derivative of A(t), we try something. We divide two coefficients and we get the third.
This means that we can write A′(t) as

A′(t) = −.01435371205 e(−.005059468471t)

= (−.005059468470) · (2.837) e(−.005059468471t)

= (−.005059468470) ·A(t)

In other words, the rate of change of A(t) is proportional to the amount present! The more that you have,
the more rapidly it is disappearing.

C1M9 Problems: 1. Use Maple and the definition of the derivative (either form) to find F ′(a) for
F (x) = sin(x) + cos(2x).

In problems 2 - 4, use Maple to find the derivatives and to plot the functions with their tangent lines
for the given points.
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2. f(x) = sin(x) ln(x) on [1/4, 4], x0 = π/3.

3. g(x) = x2 − 3x+ 2 + 4
x on[1/2, 4], x1 = 2.

4. h(x) = ex sin
(

π ex

3

)
, on [0, 3], x2 = 3 ln(2).

C1M10

Using the Derivative to Sketch the Function

The behavior of the derivative reveals a lot about the shape of a curve. Everything we know on this topic
depends on one theorem which will be discussed later. Because of the importance of this theorem I would
like to touch on it now and at least make you aware of what it says geometrically. Some mathematicians
refer to it as The Fundamental Theorem of Differential Calculus because so much of what we do in beginning
calculus depends on it. This theorem is usually known as The Mean Value Theorem. We will use a different
format than usual by identifying two hypotheses, H1 and H2, and the conclusion C.
The Mean Value Theorem (MVT):
H1: f is a continuous function on the closed interval [a, b] .
H2: f is differentiable on the open interval (a, b).
C: There is a point c in (a, b) that satisfies

f ′(c) =
f(b)− f(a)

b− a

Do you remember how we commented earlier that theorems that assert the existence of some mathematical

entity are often very strong theorems? First, let’s recognize that the number
f(b)− f(a)

b− a
is the slope of the

line that joins (a, f(a)) and (b, f(b)). So, the MVT asserts that there is a tangent line to the curve at some
interior point that is parallel to this line. Our picture looks like this:

(c,f(c))

(b,f(b))

(a,f(a))
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x

There are a couple of comments that might help here. There may be several points, c1, c2, . . . cn , that
satisfy the condition. The point c MUST NOT be an endpoint.

Maple Example: Use Maple to plot the graph of f(x) = x sin(3x) +
1
2
on the interval [1, 3] and to draw

the line tangent to this curve at the point (c, f(c)) where c satisfies the conclusion for the MVT.
Actually, the graph is shown in the diagram above. We will provide the Maple for all but the labeling.

> restart: with(plots): with(plottools):
> f:=x->x*sin(3*x)+1/2;

f := x→ x sin(3x) +
1
2
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> a:=1; b:=3;
a := 1
b := 3

> C:=(f(b)-f(a))/(b-a);

C :=
3
2
sin(9)− 1

2
sin(3)

> fprime:=unapply(diff(f(x),x),x);
fprime := x→ sin(3x) + 3x cos(3x)

> c:=fsolve(fprime(x)=C,x,1..3);
c := 1.672139733

> m:=fprime(c); y0:=f(c);
m := .5476177153
y0 := −1.095451597

> eq1:=y-y0=m*(x-c);
eq1 := y + 1.095451597 = .5476177153x− .9156933402

> y:=solve(eq1,y);
y := −2.011144937 + .5476177153x

> P1:=plot(f(x),x=a..b,color=red,scaling=constrained):
> P2:=plot(y,x=a-1..b+1,color=blue):
> P3:=line([a,f(a)],[b,f(b)],color=magenta):
> P4:=line([c,0],[c,f(c)],color=green):
> P5:=plot(f(x),x=-.3..(-.1),color=white):
> P6:=line([a,0],[a,f(a)],color=cyan):
> P7:=line([b,0],[b,f(b)],color=cyan):
> display(P1,P2,P3,P4,P5,P6,P7);

Suppose that f ′(x) > 0 on (a, b). Then f(b)−f(a)
b−a > 0 and f(b)− f(a) > 0, or f(a) < f(b). But, using

the same argument for a ≤ x1 < x2 ≤ b and applying the MVT on [x1, x2] we see that f(x1) < f(x2), or in
other words, f is strictly increasing on [a, b] . Similarly, if f ′(x) < 0 on [a, b] , then f is strictly decreasing
on [a, b] . When the derivative is positive, the function is moving uphill as you move from left to right.

Place your hand so that your fingers are pointing down at about a 45◦ angle in front of you. Assume
that there is an imaginary bar a few inches in front of the tip of your fingers. Now move your hand so that
it moves under that bar and upwards in a smooth motion. Imagine the slope of your hand to be −1 as you
begin, then the slope increases to 0 as you level out, and then it increases to +1 as you stop. It is fair to say
that the derivative function is increasing. If we now let the derivative, f ′ , play the role of f in the MVT,
then the derivative of the derivative of f must be strictly positive. Let’s take a very simple example as our
model. Suppose that f(x) = x2 . Then f ′(x) = 2x and f ′′(x) = 2. The derivative is negative when x < 0,
0 at x = 0 and positive when x > 0. Note that f ′′(x) > 0 for all x . A function that behaves like x2 is
called concave upwards.

Now for the opposite situation. If our model is like g(x) = −x2 , begin with your hand in front of you
pointing upwards at 45◦ and then move your hand smoothly over a bar and downward. The slope was
initially about +1, it became 0 at the top, and ended at −1. Here the derivative was a decreasing function,
so the derivative of the derivative must be negative. We say that a function that behaves like −x2 is concave
downwards.

We will learn later that it is important to discover where a function stops being concave one way and
starts being concave the other. Such points occur where the second derivative is zero, or, does not exist and
are called inflection points. Suppose that p(x) = ax2 + bx + c , so that p′(x) = 2ax + b and p′′(x) = 2a .
Then there is no way this quadratic can have an inflection point - the second derivative is a constant, so
that p is always concave up (a > 0) or is always concave down (a < 0). In order for a polynomial to have
an inflection point the degree must be at least three, so only cubics, quartics, quintics,.., and so forth will
have points where the concavity changes. In the figure which follows you see a graph of y = 3

√
x = x1/3 .

The derivative does not exist at x = 0 (the tangent line would be vertical, which is a ”no, no”), but the
concavity changes from up to down as we move from left to right.
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You probably assume that the graph above was produced by
> plot(xˆ(1/3),x=-3.5..3.5);

WRONG!! Maple doesn’t like taking fractional powers of negative numbers, and rightly so. In order to
get this graph we used rotate, which is in plottools. First we plotted y = −x3 , and then we rotated it
90◦ .
> R:=plot(-xˆ3,x=-1.5..(1.5),scaling=constrained):
> display(rotate(R,Pi/2));

Now let’s look at x2 and 2− x2 , and their first and second derivatives.
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Concave Upwards Concave Downwards
Now we will do another Maple example where we illustrate what happens when the second derivative is

positive, zero, and negative. We have drawn vertical dotted lines at the points where the second derivative is
zero. Please note how the concavity of F changes at these points. Although we did not make special mention
of the behavior of F ′ , its slope is zero at these points, as it should be. And the zeroes of F ′ correspond to
where our function F crests or bottoms out.
Maple Example: For F (x) = x4 − 6x2 + 3 on [−3, 3], plot F , its derivative, and its second derivative
on the same coordinate system and note the relationships.
> restart: with(plots): with(plottools):
> F:=x->xˆ4-6*xˆ2+3;

F := x→ x4 − 6x2 + 3
> Fprime:=unapply(diff(F(x),x),x);

Fprime := x→ 4x3 − 12x
> solve(Fprime(x)=0,x);

0,
√
3,−
√
3

> F2prime:=unapply(diff(Fprime(x),x),x);
F2prime := x→ 12x2 − 12

> solve(F2prime(x)=0,x);
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1,−1
> S1:=plot(F(x),x=-3..3,color=red):
> S2:=plot(Fprime(x),x=-3..3,color=blue):
> S3:=plot(F2prime(x),x=-3..3,color=green):
> S4:=textplot([-2.5,20.2,"F"]):
> S5:=textplot([-2.5,-48,"F’"]):
> S6:=textplot([-2.2,80,"F’’>0"]):
> S61:=textplot([.45,-40,"F’’<0"]):
> S62:=textplot([2.2,80,"F’’>0"]):
> S7:=line([-1,-70],[-1,90],color=khaki,linestyle=3):
> S8:=line([1,-70],[1,90],color=khaki,linestyle=3):
> display(S1,S2,S3,S4,S5,S6,S61,S62,S7,S8);
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C1M10 Problems:

1. Given f(x) = x3 − x + 2 on [−1, 2]. Using the first Maple Example as a prototype, plot the graph of
f(x) and the tangent line at the point which satisfies the conclusion of the Mean Value Theorem.

2. Given g(x) = 3x4 − 4x3 on [−5/4, 2]. Use Maple to plot g(x), g′(x), and g′′(x).

3. Given h(x) = cos(x) + sin(2x) on [−2, 2]. Use Maple to plot h(x), h′(x), and h′′(x). Use fsolve to
find those values where h′′(x) is 0 and put vertical lines there. Remember, you can specify the range for
the solution in fsolve, as we did in one of the examples.

C1M11

Differentiation: Rules and Review

This begins with a modification of part of the review we do for those students who begin with Calculus
II their first semester. We remind you of the definition and then list the rules. The notation we use for the
derivative of f(x) with respect to x is Dx

(
f(x)

)
= f ′(x) .

Definition of derivative. Suppose f is defined on an open interval containing x . The derivative of f at x
is defined by

Dx (f(x)) = f ′(x) ≡ lim
h→0

f(x+ h)− f(x)
h
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Tangent line. If f(x0) = y0 and f ′(x0) = m , then an equation for the line tangent to the curve y = f(x)
is given by

y − y0 = m(x− x0)

Rules of Differentiation Assume that a and b are real numbers and that f(x) and g(x) are differentiable
on an open interval containing x .
Rule 1. The derivative is linear. That is, Dx

(
af(x) + bg(x)

)
= aDx(f(x)) + bDx(g(x)) = af ′(x) + bg′(x).

Rule 2. Product Rule. Dx

(
f(x)g(x)

)
= Dx(f(x))g(x) + f(x)Dx(g(x)) = f ′(x)g(x) + f(x)g′(x).

Rule 3. Quotient Rule. On an interval where g(x) �= 0,

Dx

(
f(x)
g(x)

)
=

g(x)Dx

(
f(x)

)− f(x)Dx

(
g(x)

)
(
g(x)

)2 =
g(x)f ′(x)− f(x)g′(x)(

g(x)
)2

Rule 4. Power function derivative. If r is a real number, then

Dx(xr) = rxr−1

Examples: Dx

(
x4/3

)
=
4
3
x1/3, Dx

(
1

x4/3

)
= −4

3
1

x7/3 , Dx

(√
x
)
=
1
2
x− 1

2 =
1
2
√
x

Rule 5. Chain Rule. On an open interval for which (f ◦ g)(x) ≡ f
(
g(x)

)
is defined

Dx

(
(f ◦ g)(x)) = Dx

(
f
(
g(x)

))
= f ′(g(x)) · g′(x)

Example: Dx

((
4 + x3)5) = (5)(4 + x3)4(3x2)

Rule 6. Reciprocal Rule. On an interval where f(x) �= 0 we have

Dx

(
1

f(x)

)
=
−f ′(x)(
f(x)

)2
Derivatives of trigonometric functions.

Using Maple earlier we showed that Dx

(
sin(x)

)
= cos(x) and Dx

(
cos(x)

)
= − sin(x). Let’s use

these facts and the rules to find the other trig derivatives.
1. Using the Reciprocal Rule,

Dx

(
sec(x)

)
= Dx

(
1

cos(x)

)
=
−Dx

(
cos(x)

)
(cos(x))2

=
−(− sin(x))
cos2(x)

=
(

1
cos(x)

)(
sin(x)
cos(x)

)
= sec(x) tan(x)

2. Using the Quotient Rule,

Dx

(
tan(x)

)
= Dx

(
sin(x)
cos(x)

)
=
cos(x) ·Dx

(
sin(x)

) − sin(x) ·Dx

(
cos(x)

)
(
cos(x)

)2
=
cos(x) cos(x) − sin(x)(− sin(x))

cos2(x)
=

1
cos2(x)

= sec2(x)

In a similar manner we obtain

Dx

(
csc(x)

)
= − csc(x) cot(x) Dx

(
cot(x)

)
= − csc2(x)

Let’s develop a means of remembering this information in a systematic manner. We are going to form
a four-column table by listing the basic functions in the first column, their derivatives in the second column,
and their cofunctions in the third column. The fourth column will eventually contain the derivatives of the
cofunctions, but for now we leave it blank.
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Function Derivative Cofunction Derivative

sin(x) cos(x) cos(x)
tan(x) sec2(x) cot(x)
sec(x) sec(x) tan(x) csc(x)

Then, put a minus sign in each of the remaining boxes. Remember, the derivative of a CO-function always
gets a minus sign!

Function Derivative Cofunction Derivative

sin(x) cos(x) cos(x) −
tan(x) sec2(x) cot(x) −
sec(x) sec(x) tan(x) csc(x) −

Complete the table by putting the cofunctions of the entries in the second column into the fourth column.

Function Derivative Cofunction Derivative

sin(x) cos(x) cosx − sin(x)
tan(x) sec2(x) cot(x) − csc2(x)
sec(x) sec(x) tan(x) csc(x) − csc(x) cot(x)

This is an excellent memory device. However, you must know the derivatives of the basic trig functions
sin(x), tan(x), and sec(x), in order to complete the table.

As a very simple consequence of the Chain Rule, it is useful to list:
Dx

(
sin(ax)

)
= a cos(ax) Dx

(
cos(ax)

)
= −a sin(ax)

♠ It is important to remember when applying the Chain Rule to trigonometric, and other functions:
THE ARGUMENT NEVER CHANGES!
♠ When differentiating a composite function with respect to x , the last step in the Chain Rule is to
differentiate some element with respect to x .
Example: Using the Chain Rule,

Dx

(
tan3(

√
x )
)
= 3 tan2(

√
x ) ·Dx

(
tan(
√
x )

= 3 tan2(
√
x ) · sec2(√x ) ·Dx(

√
x )

= 3 tan2(
√
x ) · sec2(√x ) ·

(
1
2
√
x

)

Basically, this is u3 with u = tan(
√
x ), resulting in 3u2 · Dx(u). The argument of the tangent function

is
√
x , so when the tangent is differentiated, the result is the secant squared of the same argument. This

produced a factor of sec2(
√
x ). Finally, we differentiate

√
x with respect to x .

Derivative of exponential and logarithmic functions. You may recall that earlier we used Maple to see what
the derivatives of these functions would be. We found

Dx

(
ex
)
= ex Dx(lnx) =

1
x
, x > 0 Dx

(
ax
)
= (ln a)ax, a > 0

If x < 0, then we will use the Chain Rule to look at

Dx

(
ln(−x)) = ( 1

−x
)
Dx(−x) =

(
1
−x
)
(−1) = 1

x

This allows us to include the derivative of ln |x| .

Dx(ln |x|) = 1
x
, x �= 0

There is an identity that I have found to be extremely useful when dealing with exponential functions.
Namely,

ab = eb ln(a)
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Using this, start with ax . Then, ax = eln(a) x , and taking the derivative (we know Dx(ecx) = c ecx by the
Chain Rule) we get

Dx

(
ax
)
= Dx

(
eln(a) x

)
= ln(a) eln(a) x = ln(a) ax

Because a0 = 1 for all positive a , every function of the form y = ax passes through (0, 1) and the slope of
the tangent line there is always ln(a). If we draw a line from (a− 1, 0) to (a, ln(a)), then this line must be
parallel to the tangent line we just discussed. The figure which follows illustrates this concept for a = 3.

1

ln(a)

aa–1

parallel

xy=3

y=ln(x)

y=ln(3)x+1

–1

0

1

2

3

4

–2 –1 1 2 3 4
x

We will limit our discussion on inverse trigonometric functions to

sin−1 x ≡ arcsinx and tan−1 x ≡ arctanx

We remind the reader that the exponents refer to inverse functions and not to reciprocals. The derivatives
are listed below:

Dx(arcsinx) =
1√
1− x2

Dx(arctanx) =
1

1 + x2

Examples: (a) Find Dx

(
arcsin(3x)−

√
1− 9x2

)
.

This is a straightforward application of linearity and the Chain Rule.

Dx

(
arcsin(3x)

)
=

1√
1− (3x)2 ·Dx(3x) =

1√
1− 9x2

· 3

Dx

(√
1− 9x2

)
=
(1
2

)
· (1− 9x2)−1/2 ·Dx(1− 9x2) =

(1
2

)
· −18x√
1− 9x2

=
−9x√
1− 9x2

Combining both parts, we have

Dx

(
arcsin(3x)−

√
1− 9x2

)
=

3√
1− 9x2

− −9x√
1− 9x2

=
3 + 9x√
1− 9x2

(b) Find Dx

(
3 arctan

(x
3

)
+ 4 ln(x2 + 9)

)
Taking the derivative we get

3 · 1

1 +
(

x
3

)2 · (13
)
+ 4 ·

(
1

x2 + 9

)
· (2x) = 9

9 + 9 · x2

9

+
4 · 2x
x2 + 9

=
9

9 + x2 +
8x

x2 + 9
=
8x+ 9
x2 + 9

C1M11 Problems:

1. Find the derivative with respect to x of the following and check your answers using Maple:

a.
1

ln(x)
b. ln

(
cos(x)

)
c.

1√
1− x2

arcsin(x)

2. Find the derivative with respect to x of the following and check your answers using Maple:

a. ecos(2x) b. sin
(
e3x
)

c.
sin(2x)
cos(3x)

3. Use Maple to plot y = arcsin(x) and to evaluate lim
x→−1+

arcsin(x) and lim
x→1−

arcsin(x)
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4. Use Maple to plot y = arctan(x) and to evaluate lim
x→∞ arctan(x) and lim

x→−∞ arctan(x)

C1M12

Extrema

A while back in C1M10 we discussed the Mean Value Theorem, but only lightly. We used it to
determine that a continuous function must be increasing on an interval where the derivative is positive,.
Similarly, a negative derivative signals a decreasing function. Let’s recall the two hypotheses of the MVT
and then add a third.
H1: f is a continuous function on the closed interval [a, b] .
H2: f is differentiable on the open interval (a, b).
H3: There is a point c in (a, b) for which f(x) ≤ f(c) for all x in some open interval containing c .

The conclusion will be stated below. We are going to approach c from each side and compare the
results.

Assume x < c . Then
f(x)− f(c)

x− c
≥ 0, so lim

x→c−

f(x)− f(c)
x− c

= f ′(c) ≥ 0.

Assume x > c . Then
f(x)− f(c)

x− c
≤ 0, so lim

x→c+

f(x)− f(c)
x− c

= f ′(c) ≤ 0.
Taken together, f ′(c) ≥ 0 and f ′(c) ≤ 0 imply f ′(c) = 0. The one-sided limits existed because f ′(c)

existed. When there is an open interval containing a point and that point satisfies f(x) ≤ f(c) for all x in
the interval, we say that f has a local maximum or relative maximum at c .

In a similar manner, suppose that we replace H3 with
H4: There is a point c in (a, b) for which f(x) ≥ f(c) for all x in some open interval containing c .

In this case f has a local minimum or relative minimum at c . By an obvious parallel argument we have
the same conclusion. So, with either H3 or H4 our conclusion is :
C: f ′(c) = 0.

This tells us that when our function is differentiable the only way we can have a local extreme (local
maximum or local minimum) that is not an endpoint, is for the derivative to be zero at the point. For this
reason we define a point c to be a critical point if either the derivative does not exist at c or f ′(c) = 0. The
Extreme Value Theorem was mentioned in the module on continuity. From it we learned that a continuous
function on a closed interval assumes a maximum value and a minimum value.

local maximum

maximum

minimum

local min

f

g

–3

–2

–1

0

1

2

1 2 3 4
x
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Here we have the graphs of two continuous functions on [0, 4], f and g . We have labeled the extrema
of f , except for the endpoints which are a local minimum (x = 0) and a local maximum (x = 4). It is clear
that at x = 1 the function g has a maximum, but the derivative does not exist there. The endpoints serve
as a local minimum (x = 0) and a minimum (absolute) (x = 4) for g .
Maple Example: The function f in the diagram above is actually defined by f(x) = x sin(πx). Let’s
use Maple to locate all extrema of f . We will show all steps, including the plotting of text. After finding our
first relative maxima, at c1 , we will test the values of f on both sides of c1 . We will also test the derivative
of f on both sides.
> restart: with(plots): with(plottools):
> f:=x->x*sin(Pi*x); a:=0; b:=4;

f := x→ x sin(πx)
a := 0
b := 4

> fprime:=unapply(diff(f(x),x),x);
fprime := x→ sin(πx) + x cos(πx)π

This command takes the derivative of f(x) with respect to x and sets it up as a function.
> f2prime:=unapply(diff(f(x),x,x),x);

f2prime := x→ 2 cos(πx)π − x sin(πx)π2

Note how this command takes the second derivative of f(x) and sets it up as a function.
> c1:=fsolve(fprime(x)=0,x=0..1);

c1 := .6457736765
> m1:=evalf(f(c1));

m1 := .5792303274
> evalf(f(c1-.02)); evalf(f(c1+.02));

.5775557266

.5775085314
> evalf(fprime(c1-.02)); evalf(fprime(c1+.02));

.1662069815
−.1732844003

From the last few lines we see that the derivative of f is positive on the left of c1 and negative on the right
of c1 . This means that as we move from left to right we are going uphill, level, and then downhill − a sure
sign that c1 yields a relative maximum. Later we will state all this as a theorem.
> evalf(f2prime(c1));

−8.494699804
This is overkill, but we may also use the second derivative to see if the first derivative is a decreasing function,
and the negative value of f2prime at c1 says that it is, thus signalling that f is concave down at c1 and
there is a relative maximum there.
> c2:=fsolve(fprime(x)=0,x=1..2);

c2 := 1.563913906
> m2:=evalf(f(c2));

m2 := −1.532493362
> evalf(f2prime(c2));

16.37825282 Concave up, relative minimum
> c3:=fsolve(fprime(x)=0,x=2..3);

c3 := 2.539688175
> m3:=evalf(f(c3));

m3 := 2.519972588
> evalf(f2prime(c3));

−25.65251748 Concave down, relative maximum
> c4:=fsolve(fprime(x)=0,x=3..4);

c4 := 3.528636468
> m4:=evalf(f(c4));

m4 := −3.514366510
> evalf(f2prime(c4));

35.24990626 Concave up, relative minimum
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> A:=f(a); B:=f(b);
A := 0
B := 0

> M:=max(m1,m2,m3,m4,A,B);
M := 2.519972588

> m:=min(m1,m2,m3,m4,A,B);
m := −3.514366510

> B1:=plot(f(x),x=0..4,color=blue,scaling=constrained):
> B2:=line([c1,0],[c1,f(c1)],color=red):
> B3:=line([c2,0],[c2,f(c2)],color=red):
> B4:=line([c3,0],[c3,f(c3)],color=red):
> B5:=line([c4,0],[c4,f(c4)],color=red):
> B21:=textplot([c1,-.3,"c1"]):
> B31:=textplot([c2,.3,"c2"]):
> B41:=textplot([c3,-.3,"c3"]):
> B51:=textplot([c4,.3,"c4"]):
> B6:=plot(m,x=0..4,color=green):
> B61:=textplot([2,m+.3,"y=m"]):
> B7:=plot(M,x=0..4,color=magenta):
> B71:=textplot([1.6,M-.24,"y=M"]):
> B8:=textplot([3.35,1.5,"y=f(x)"]):
> display(B1,B2,B3,B4,B5,B21,B31,B41,B51,B6,B61,B7,B71,B8);



> restart: with(plots): with(plottools):
> f:=x->x*sin(Pi*x);

f := x→ x sin(πx)
> Q:=[3/2,1];

Q :=
[
3
2
, 1
]

Set up our distance formula.
> R:=x->sqrt((x-Q[1])ˆ2+(f(x)-Q[2])ˆ2);

R := x→
√
(x−Q1)2 + (f(x)−Q2)2

Set up the first derivative as a function.
> S:=unapply(diff(R(x),x),x);

S := x→ 1
2
(2x− 3 + 2(x sin(πx)− 1)(sin(πx) + x cos(πx)π))√

(x− 3/2)2 + (x sin(πx)− 1)2)
Let’s take a look at that denominator. If it has a zero in the interval, then we have a problem. We will
“eyeball” it rather than solving the equation.
> De:=denom(S(x));

2(
√
(x− 3/2)2 + (x sin(πx)− 1)2)

> D1:=plot(De,x=0..3.2,color=red):
> D2:=plot(S(x),x=0..3.2,color=blue):
> D3:=textplot([1.55,6,"denominator of derivative"]):
> D4:=textplot([1.5,-3.5,"derivative"]):
> display(D1,D2,D3,D4);

Q

R(x)=distance
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p2

–2

–1

0

1

2

3

4

0.5 1 1.5 2 2.5 3
x

Set up the second derivative of the function as a function.
> T:=unapply(diff(R(x),x,x),x):
> P0:=plot(f(x),x=0..3.2,color=blue):
> p1:=fsolve(S(x)=0,x,1/2..5/2);

p1 := 1.565491407
> evalf(T(p1));

−16.00806205
T (p1) = R′′(p1) < 0 ⇒ relative maximum
> P1:=pointplot([p1,f(p1)],symbol=circle):
> p2:=fsolve(S(x)=0,x,1.6..5/2);

p2 := 2.138585926
> evalf(T(p2));
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67.70258030

T (p2) = R′′(p2) > 0 ⇒ relative minimum

> P2:=pointplot([p2,f(p2)],symbol=circle):
> p3:=fsolve(S(x)=0,x,.5..1.4);

p3 := .7918557211
> evalf(T(p3));

9.019878695

T (p3) = R′′(p3) > 0 ⇒ relative minimum

> P3:=pointplot([p3,f(p3)],symbol=circle):
> A:={evalf(R(p1)),evalf(R(p2)),evalf(R(p3))};

A := {2.533319655, .6460679294, .8775682312}
> mindistance:=min(op(A));

mindistance := .6460679294

We used op(A) in order to access the components of the set A . We have our answer and the point at which
it occurs, (p2, f(p2)). Now we will display a graph that illustrates the items which we found.

> P4:=pointplot(Q,symbol=diamond,symbolsize=15):
> P5:=line(Q,[p1,f(p1)],color=green):
> P6:=line(Q,[p2,f(p2)],color=green):
> P7:=line([p2,f(p2)],[p2,0],color=magenta):
> P8:=line(Q,[p3,f(p3)],color=green):
> P9:=plot(R(x),x=0..3.3,color=red):
> T1:=textplot([2.8,-1.7,"y=f(x)"]):
> T2:=textplot([2.8,3.7,"R(x)=distance"]):
> T3:=textplot([1.5,1.4,"Q"]):
> T4:=textplot([p2,-.35,"p2"]):
> display(P0,P1,P2,P3,P4,P5,P6,P7,P8,P9,T1,T2,T3,T4);
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Procedure to Locate Extrema: It is time to summarize our approach to extrema. Suppose that we
have a continuous function f on a closed interval. We locate all points at which the first derivative of f
is zero or for which the derivative does not exist, calling such points critical points. We evaluate f at the
critical points and the endpoints and know that our global maximum and global minimum will be found
among these values. To determine whether a critical point for which f is differentiable yields a relative
maxima or minima, we apply the First Derivative Test.

First Derivative Test: Assume that f is differentiable on an open interval containing c and that
f ′(c) = 0.
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(a) If the derivative f ′(x) changes sign from positive to negative as x moves through c from left to right,
then f has a relative maximum at c .

(a) If the derivative f ′(x) changes sign from negative to positive as x moves through c from left to right,
then f has a relative minimum at c .

Noting that in case (a) the derivative is decreasing and that in case (b) the derivative is increasing, we
state the Second Derivative Test for determining the status of critical points where the derivative is zero.

Second Derivative Test: Assume that f is differentiable on an open interval containing c and that
f ′(c) = 0. Assume that the second derivative, f ′′ , also exists on the open interval.

(a) If f ′′(c) < 0, then f has a relative maximum at c .

(b) If f ′′(c) > 0, then f has a relative minimum at c .

There is another concept to consider that we have not yet mentioned. What happens when f ′′(c) = 0?
The answer is inconclusive without additional information. A point of inflection occurs when a function
stops being concave one way and starts being concave the other way. This happens when the derivative
stops increasing and starts decreasing, or vice versa.

Point of Inflection: Suppose that f ′′(x) exists on an open interval containing c and that f ′′(c) = 0.
Then c is a point of inflection of f if f ′′(x) changes sign as x passes through c .

Examples: (a) If f(x) = x4 , then f ′(x) = 4x3 and f ′′(x) = 12x2 . If c = 0 then f ′′(c) = 0, but c is not
a point of inflection for f because f ′′ does not change sign as x passes through 0.

(b) Suppose that f ′′(x) = (x− 1)2(x− 2). Then f ′′ is zero at 1 and 2. But f ′′ changes sign only at 2, so
2 produces the only inflection point for f .

Maple Example: Find all points of inflection of f(x) = 3x5 − 10x4 + 10x3 − 60x2 + 5x+ 2 and plot the
graph of f .

> restart: with(plots): with(plottools):
> f:=x->3*xˆ5-10*xˆ4+10*xˆ3-60*xˆ2+5*x+2;

f := x→ 3x5 − 10x4 + 10x3 − 60x2 + 5x+ 2
> f2prime:=unapply(diff(f(x),x,x),x);

f2prime := x→ 60x3 − 120x2 + 60x− 120
> factor(f2prime(x));

60 (x− 2) (x2 + 1)
> f2prime(1.98); f2prime(2.02);

−5.904480
6.096480

At 2, f stops being concave down and starts being concave up.

> U1:=plot(f(x),x=-1..4):
> U2:=line([2,0],[2,f(2)],color=blue):
> display(U1,U2);
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C1M12 Problems:

1. Use Maple to find the critical points, points of inflection, and to display the graphs of the given functions,
their derivatives and second derivatives.

a. f(x) = x4 + 6x3 − 24x2 + 24 b. g(x) = 3x5 − 5x3

2. Given: f(x) = x cos(πx) on [1, 5].

a. Use Maple to find the relative maxima and minima and the global maximum and minimum as was done
in the Maple Example. Display vertical lines at the extrema as in the example.

b. Use Maple to locate the point P (x, y) on the graph of f(x) that is closest to the point Q(3, 5). Display
lines connecting the possible solutions to Q as was done in the Maple Example.

C1M13

Antiderivatives

Fortunately, the topic of antiderivatives has nothing to do with social unrest and rebellion within the
ranks of mathematicians. It refers to reversing the process of differentiation and determining a new function
whose derivative is the function at hand. The social part comes in because when you find one antiderivative
you actually get an entire family of functions that serve as antiderivatives of the function. Think about it.
If F ′(x) = f(x), then F (x) is an antiderivative of f(x), and for any constant C , F (x) +C has f(x) as its
derivative with respect to x also. Let’s formalize this a little.

Definition: A function F is called an antiderivative of a function f on an interval I if F ′(x) = f(x) for
all x in I .

In the plot below you will find a parabola labeled f(x) and a family of cubics with one labeled F (x)+C1.
Each cubic has f(x) as its derivative, so they are all antiderivatives of f(x). We have shown the tangent at
x = 2 for each and note that the parallel lines all have a slope of −1.
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There is a theorem that is usually mentioned in a section on differentiation. Basically, it states that
if two functions are defined on an open interval and have the same derivative at all points of that interval,
then the two functions differ by a constant. Let’s set this up as hypotheses and conclusion.
Theorem:
H1: Functions f and g are defined on an open interval I .
H2: f ′(x) = g′(x) for all x in I .
C: There is a constant C for which f(x) = g(x) + C for all x in I .
What does this mean to us here? It means that if we have a collection of functions, all of which

are antiderivatives of the same function on an open interval, then each member differs from another by a
constant. They are all “shaped the same” and you can get one from the other by translating it up or down.
This is true because f ′(x) = g′(x)⇒ (f ′ − g′)(x) = f ′(x)− g′(x) = 0 and only constant functions have zero
for their derivative. This last statement is yet another consequence of the MVT.
Maple Example: Use Maple to find an antiderivative F (x) of f(x) = e2x that satisfies F (1.2) = 4. The
condition F (1.2) = 4 is called a boundary value for F .

The terms antiderivative and integral are commonly used interchangeably even though that usage is
imprecise. Maple uses int as a command to find either for a function. The use of a lowercase “i” makes
the command active, while an uppercase “I” is inactive and some form of evaluation is necessary to activate
it.
> restart: with(plots): with(plottools):
> f:=x->exp(2*x);

f := x→ e(2x)

Now we will find an antiderivative for f(x).
> A:=int(f(x),x);

A :=
1
2
e(2x)

> F:=unapply(A+C,x);

F := x→ 1
2
e(2x) + C

This is how we add a constant to our expression and then make a function out of the result. Next we force
F (1.2) = 4 and solve for the constant C that satisfies this condition.
> C:=solve(F(1.2)=4,C);

C := −1.511588190
> F(x);

1
2
e(2x) − 1.511588190

> evalf(F(1.2));
4.000000000
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> diff(F(x),x);
e(2x)

The last two lines are simply to check that we got the results that we wanted. You should be able to produce
the plot which follows.
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Maple Example: A stone is thrown upwards from a cliff with a velocity of 48 feet per second and it lands
1120 feet below. Using the point where it lands as the reference point, determine when the stone lands and
how fast it is going. Gravitational acceleration is 32 feet per second per second, downwards. This means
that we are given two boundary values. If a(t) denotes acceleration and v(t) denotes velocity, then

a(0) = −32 v(0) = 48

> restart:
> a:=-32;

a := −32
> v:=unapply(int(a,t)+C1,t);

v := t→ −32 t+ C1
Antidifferentiate a(t), add a constant, make v into a function of t .
> C1:=solve(v(0)=48,C1);

C1 := 48
> v(t);

−32 t+ 48
> p:=unapply(int(v(t),t)+C2,t);

p := t→ −16 t2 + 48 t+ C2
Antidifferentiate v(t), add a constant, make p into a function of t .
> C2:=solve(p(0)=1120,C2);

C2 := 1120
> p(t);

−16 t2 + 48 t+ 1120
> t1:=solve(p(t)=0,t);

t1 := −7, 10
> t1:=t1[2];

t1 := 10
> v(t1);

−272
We see that the first solution to p(t) = 0 is negative, which is impossible, so we select the second solution,
which is positive. The stone hits the ground 10 seconds after it is tossed upwards, striking the ground at
272 feet per second downwards.
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C1M13 Problems: Use Maple to solve the problems and plot the graphs.

1. A stone is thrown downwards from a cliff with a velocity of 48 feet per second and it lands 1120 feet
below. Using the point where it lands as the reference point, determine when the stone lands and how fast
it is going.

2. Find an antiderivative F of f(x) = arctan(x) that satisfies F (1) = π .

3. Suppose that g(x) = sin(x) + e2x , G is an antiderivative of g , and H is an antiderivative of G . If
G(0) = 3 and H(0) = 5, find H(x) and H(π).

C1M14

Integrals as Area Accumulators

Most textbooks do a good job of developing the integral and this is not the place to provide that
development. We will show how Maple presents Riemann Sums and the accompanying diagrams and then
focus on integrals from a to x . We hear about “moving the goalpost” when standards of performance
are raised, but here that is exactly what is happening because x is a variable. We will be focusing on
functions that are bounded on their domain, which will be an interval [a, b] , and are continuous at all except
possibly a finite number of points. For this reason, when we break [a, b] up into n subintervals we may

assume that the subintervals all have the same length,
b− a

n
= ∆x . In more general situations, we allow the

subintervals to be of random length and then force the largest interval to get small as a means of controlling
the approximation in the limit which we will call a definite integral. Let’s break all this down into small
parts and then assemble them in a useful way.
1. Suppose that f is a bounded function on [a, b] , f is continuous at all but at most a finite number of
points, and n is a positive integer.

2. Let ∆x =
b− a

n
. Then there are n+ 1 points

{
xi

}n

0 determined by

x0 = a = a+ 0 ·∆x, x1 = a+ 1 ·∆x, x2 = a+ 2 ·∆x, . . . , xi = a+ i ·∆x, . . . , xn = a+ n ·∆x = b

3. In each subinterval [xi−1, xi] , a value ti is selected. Obviously xi−1 ≤ ti ≤ xi .
4. Intuitively, we think of f(ti) · ∆x as the area of a rectangle of height f(ti) and base with width ∆x
placed above the interval [xi−1, xi] .

5. The value
∞∑

n=1

f(ti) ·∆x is called a Riemann Sum and its value provides an approximation to the signed

area between y = f(x) and the x-axis.

6. We write lim
n→∞

∞∑
n=1

f(ti) ·∆x =
∫ b

a

f(x) dx

7. On subintervals where f(x) < 0, there will be a negative contribution, so we must be careful how
we use the phrase “the integral of f is the area beneath the curve”. It makes sense for positive f only.
Maple Examples: Maple has three plotting commands leftbox, middlebox, rightbox that illustrate
Riemann sums. It also has three numerical commands that compute Riemann sums, leftsum, middlesum,
rightsum. We will illustrate their use for x2 on the interval [1, 3] using 13 subintervals. These commands
are all in the package student.
> restart: with(plots): with(student):
> leftsum(xˆ2,x=1..3,13);

2
13

(
12∑

i=0

(
1 +

2
13
i
)2
)

> value(leftsum(xˆ2,x=1..3,13));
1362
169

> evalf(leftsum(xˆ2,x=1..3,13));
8.059171595

> rightsum(xˆ2,x=1..3,13);
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2
13

(
13∑

i=1

(
1 +

2
13
i
)2
)

> value(rightsum(xˆ2,x=1..3,13));
1570
169

> evalf(rightsum(xˆ2,x=1..3,13));
9.289940825

Leftbox is on the left and rightbox is on the right.
> leftbox(xˆ2,x=1..3,13);
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Maple Animation Example: We will use the function f(x) = x sin(πx) on [0, 3] and set up an animation

of the approximation of
∫ 3

0
x sin(πx) dx using middlebox. The reader is urged to type in the commands

below or to copy and paste, and to watch the animation. The value of each Riemann sum using the midpoint
of the subinterval is shown near the top of the display.

> restart: with(plots):
> f:=x->x*sin(Pi*x);

f := x→ x sin(πx)
> nstart:=5; frameno:=50;

nstart := 5
frameno := 50

> framenumbers:=[seq(nstart+i,i=0..(frameno-1))]:
> A:=display(seq(middlebox(f(x),x=0..3,i),i=framenumbers),insequence=true):
> B:=animate(f(x),x=0..3,y=-2..3,color=red, frames=frameno):
> C:=display(seq(textplot([1.3,2.2,evalf(middlesum(f(x),x=0..3,i))]),i=5..(frameno+4)),

insequence=true):
> display(A,B,C);
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Let’s look at the last approximation and the actual answer in floating point. By using uppercase “I” in
Int on the left we obtain an inert integral, while the lowercase “i” yields an active command “integrate it”
on the right in int.
> evalf(middlesum(f(x),x=0..3,frameno+4));

.9561427706
> Int(f(x),x=0..3)=evalf(int(f(x),x=0..3));∫ 3

0
x sin(πx) dx = .9549296583

Play the animation! Click on the display. A box will appear around the figure and a “tape player”
window will appear in the context bar. Click on the “Play” button and watch!
♠ It is important to note that Maple deals with definite integrals by simply including the range.

For example, the value of
∫ b

a
f(x) dx results from int(f(x),x=a..b).

Now we will turn our attention to f(x) and A(x) =
∫ x

a

f(t) dt . This integral intuitively ‘accumulates

area’ as x moves from left to right.
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We will state the first part of the Fundamental Theorem of Calculus and then illustrate it using a
function defined in a piecewise manner.
The Fundamental Theorem of Calculus (Part One): Assume that f is continuous on [a, b] and that
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the function A is defined by A(x) =
∫ x

a

f(t) dt for a ≤ t ≤ b . Then, A′(x) = f(x) for all x in (a, b). In

other words, A is an antiderivative for f .
Sometimes we write

Dx

(∫ x

a

f(t) dt
)
= f(x)

Maple Example: Suppose that f is defined by:

f(x) =



1− x, if x ≤ 1
ln(x), if 1 < x < e
(x− e− 1)2, if e ≤ x

We will plot the graph of f(x) and of A(x) =
∫ x

0
f(t) dt , which of course is the area accumulator function

for f(x). We will note that f is continuous, but is not differentiable at x = 1 and x = e . It will be
important to observe that the graph of A(x) is smooth at all points, indicating that A is differentiable
everywhere, as it should be.
> restart: with(plots): with(student): with(plottools):
> e:=exp(1);

e := e
> f:=x->piecewise(x<=1,1-x,x>1 and x<e,ln(x),x>=e,(x-e-1)ˆ2);

f := x→ piecewise(x ≤ 1, 1− x, 1 < x and x < e, ln(x), e ≤ x, (x− e− 1)2)
> A:=x->int(f(t),t=0..x);

A := x→
∫ x

0
f(t) dt

> A1:=plot(f(x),x=0..(e+2),color=red):
> A2:=plot(A(x),x=0..(e+2),color=blue):
> A3:=plot(f(x),x=0..3,color=yellow,filled=true):
> A4:=line([3,0],[3,A(3)],color=green):
> A5:=textplot([3.6,2,"A(x)"]):
> display(A1,A2,A3,A4,A5);
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Without fanfare we will state the rest of the Fundamental Theorem of Integral Calculus. The same
hypotheses still apply.
Fundamental Theorem of Calculus (Part Two): If F is any antiderivative of f , then

∫ b

a

f(x) dx = F (b)− F (a)
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Suppose that f is continuous on [a, b] and that F (x) =
∫ x

a

f(t) dt . If we apply the Mean Value Theorem

to F on [a, b] , then there is a point c in (a, b) for which

F (b)− F (a)
b− a

= F ′(c)∫ b

a
f(t) dt− ∫ a

a
f(t) dt

b− a
= f(c)

1
b− a

∫ b

a

f(t) dt = f(c)

This last value is sometimes called the average value of f(x) over [a, b] . We know that F ′ = f and∫ a

a
g(x) dx = 0 for any function g and these facts were used above. We summarize this as the

Mean Value Theorem for Integrals: If f is continuous on [a, b] , then there is a number c in [a, b]

such that
∫ b

a

f(x) dx = f(c)(b− a).

Maple Example: Find a value c that satisfies the MVT for integrals for f(x) = 3 e−x + x sin(πx) on the
interval [0, 3] and display a graph that illustrates this theorem.
> restart: with(plots): with(plottools):
> f:=x->3*exp(-x)+x*sin(Pi*x);

f := x→ 3 e−x + x sin(πx)
> A:=int(f(x),x=0..3);

A := −3(e
(−3)π − 1− π)

π
> c:=fsolve(f(x)=A/3,x,0..3);

c := .9601184662
> A1:=plot(f(x),x=0..3,color=red):
> A2:=plot(f(c),x=0..3,color=blue):
> A3:=plot(f(c),x=0..3,color=yellow,filled=true):
> A4:=line([c,0],[c,f(c)],color=green):
> A5:=textplot([.5,2.6,"f(x)"]):
> A6:=line([3,0],[3,f(c)],color=black):
> A7:=arrow([1.2,1.8],[1,1.4],.05,.13,.3,color=khaki):
> A8:=textplot([1.25,2,"(c,f(c))"]):
> A9:=textplot([1.5,.7,"f(c)(b-a)"]):
> display(A1,A2,A3,A4,A5,A6,A7,A8,A9);
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C1M14 Problems: Use Maple to solve the problems and plot the graphs.
1. For f(x) = 3 e−x sin(x) on [0, π] , evaluate (use evalf) and display graphically the the left, right, and
middle sums with 47 subintervals. Remember that the commands you will need are in student.

2. Define g(x) =
1
x
for x in [1/4, 5]. Then define G(x) =

∫ x

1 g(t) dt . This is how ln(x) is defined in some
textbooks when exponentials and logarithms are delayed until after the integral has been developed. Display
g and G on the same graph and fill the graph below g(x) from 1 to 3.

3. For f(x) = x sin(x2) on [0, π] , use Maple to find the average value of f on this interval and display a
graph that illustrates the Mean Value Theorem for Integrals.
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