
C3M12b

Evaluating Integrals Using Spherical Coordinates

We will begin with plotting using ‘sphereplot’ and then address the integrals. In parametric form
sphereplot uses [ρ, θ, φ] , where one of the three is in terms of the other two or is a constant. Remember
that φ is measured down from the “north pole” or the usual z -axis. To understand the relationships between
the coordinate systems it is good to start with the r of polar or cylindrical coordinates and recall that

x = r cos θ

y = r sin θ
Building on this, use the fact that r = ρ sinφ to obtain for [ρ, θ, φ]

x = (r) cos θ

y = (r) sin θ

z = ρ cosφ

=⇒
x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

It helps if we understand what it means for each of the variables to be held constant while the other two
vary. In the first of three simple plots we hold ρ constant. This should produce some portion of a sphere.
In order to have the axes appear at the origin we have included a graph in white which we do not list here.
It is not necessary to use the Greek names of the variables, but for demonstration purposes it is easiest. The
output is on the left.

> sphereplot([2,theta,phi],theta=0..Pi/2,phi=0..Pi/2,color=green);
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With the output above on the right, hold θ constant. The surface should be in the vertical plane
θ = π/3.

> sphereplot([rho,Pi/3,phi],rho=1..2,phi=Pi/4..Pi/2,color=blue);

Now hold φ constant. This restricts the surface to a portion of some cone.

> sphereplot([rho,theta,Pi/3],rho=1..2,theta=0..Pi/2,color=blue);
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φ is constant

Recall that in polar coordinates r = a sec θ produced a vertical line, x = a . And, r = a csc θ produced
a horizontal line, y = a . The equation r = a cos θ yielded a circle, but here, the angle φ is measured from
the z -axis, so ρ = a cosφ would produce a circle on the z -axis for every θ . This results in a sphere tangent
to the xy -plane. Let’s combine that with an equation of the form ρ = a cscφ , which is a vertical cylinder of
radius a ..

> A:=sphereplot([4*cos(phi),theta,phi],theta=0..2*Pi,phi=0..Pi/4,color=cyan):
> B:=sphereplot([2*csc(phi),theta,phi],theta=0..2*Pi,phi=Pi/4..Pi/2):
> display(A,B);

Now we turn to the integrals and begin with an example.

Example 1 Find the volume of the solid inside the sphere x2 + y2 + z2 = 9, above the xy -plane, below
the upper portion of the cone x2 + y2 = z2 , and excluding the first octant. This solid would require more
than one integral in rectangular coordinates, while in spherical it is quite straightforward. Remember that
in spherical coordinates dV = ρ2 sinφ dρ dφ dθ .

> with(student): with(plots):
> sph1:=sphereplot([3,theta,phi],theta=Pi/2..2*Pi,phi=Pi/4..Pi/2,color=blue):
> cone1:=sphereplot([rho,theta,Pi/4], theta=Pi/2..2*Pi,rho=0..3,color=red):
> side1:=sphereplot([rho,Pi/2,phi],rho=0..3,phi=Pi/4..Pi/2,color=cyan):
> side2:=sphereplot([rho,0,phi],rho=0..3,phi=Pi/4..Pi/2,color=cyan):
> display(sph1,cone1,side1,side2);
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> V1:=Tripleint(rhoˆ2*sin(phi),rho=0..3,phi=Pi/4..Pi/2,theta=Pi/2..2*Pi);

V 1 :=
∫ 2π

π/2

∫ π/2

π/4

∫ 3

0
ρ2 sin(φ) dρ dφ dθ

> valV1:=value(V1);

valV 1 :=
27
4

π
√
2

Example 2 Find the volume of the solid inside the sphere x2 + y2 + z2 = 4 that is outside the cylinder
x2 + y2 = 1.

A three-quarter view of this solid results from:
> sph2:=sphereplot([2,theta,phi],theta=Pi/2..2*Pi,phi=Pi/6..5*Pi/6,color=blue):
> cyl2:=sphereplot([csc(phi),theta,phi],theta=Pi/2..2*Pi,phi=Pi/6..5*Pi/6,color=red):
> side3:=sphereplot([rho,0,phi],rho=csc(phi)..2,phi=Pi/6..5*Pi/6,color=cyan):
> side4:=sphereplot([rho,Pi/2,phi],rho=csc(phi)..2,phi=Pi/6..5*Pi/6,color=cyan):
> display(sph2,cyl2,side3,side4);

Integrate first with respect toρand imagine generating rays emanating from the origin which begin as
they reach the cylinder and end as they exit through the sphere. Then add up those rays in vertical planes
that contain thez-axis to form little “orange slices” by integrating with respect toφfromπ / 6 d o w n t o 5 π / 6 . E n d b y i n t e g r a t i n g w i t h r e s p e c t t o θ f r o m t h e “ fi r s t s l i c e ” a t θ = 0 a n d a r o u n d t o θ = 2 π .

∫ 2 π

0 ∫ 5 π / 6
π / 6 ∫ 2

c s c φ ρ 2 s i n ( φ ) d ρ d φ d θ = 4 π √

3 C 3 M 1 2 b P r o b l e m s I n p r o b l e m s 1 a n d 2 , p l o t t h e s o l i d a n d fi n d i t s v o l u m e u s i n g s p h e r i c a l c o o r d i n a t e s
a n d M a p l e .

1 .

Q i s b o u n d e d b y t h e c o n e z = √

x 2 + y 2 a n d t h e p l a n e z = 3 . A h o r i z o n t a l p l a n e i n s p h e r i c a l c o o r d i n a t e s
h a s t h e f o r m ρ = a s e c φ . 2 . R i s t h e s o l i d t h a t l i e s a b o v e t h e c o n e z = √

x 2 + y 2 a n d i n s i d e t h e s p h e r e x 2 + y 2 + z 2 = 6 z .
3 . E v a l u a t e t h e i n t e g r a l b y c h a n g i n g t o s p h e r i c a l c o o r d i n a t e s : 3



∫ √
2

0

∫ √
4−y2

y

∫ √
4−x2−y2

0

√
x2 + y2 + z2 dz dx dy
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