
RIEMANN SUMS AND INTEGRALS

1. Introduction
The integral is one of the two fundamental concepts of Calculus. (The other is the

derivative, which you studied in Calculus I.) The integral provides a way to “add up” a
sum consisting of infinitely many pieces, each infinitely small. Such a sum might represent
many different things (as you shall see in this course): the mass of an object, the energy
needed to effect a change in a system, the volume of a solid, the length of a curve—but
to begin with we focus on the integral as representing the area under a curve. This does
not mean that the integral has more to do with area than any of the other concepts; area
under a curve is simply the easiest situation to visualize and draw pictures of.

Goals of these notes:

(i) Be able to calculate Riemann sums for any function.

(ii) Understand the definition of the integral as a limit of Riemann sums.

(iii) Be able to calculate the integral of exponential functions as a limit of Riemann sums.

2. Riemann sums

We consider the problem of calculating the area bounded by the graph of a function
f(x), the x-axis, and two vertical lines x = a and x = b (Figure 1).

a b
x

f(x)

Figure 1. Area under a curve

The first step is to approximate the region as a combination of N rectangles (Figure
2). The rectangles are constructed by splitting the interval a ≤ x ≤ b at (N − 1) points
x1, x2, x3, . . . , xN−1. We also define x0 = a and xN = b, so that

a = x0 < x1 < x2 < · · · < xN−1 < xN = b.
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Figure 2. Area under a curve approximated by rectangles

The N rectangles have bases [x0, x1], [x1, x2], . . ., [xN−1, xN ]. (Thus the rectangles do not
overlap but fill the entire space between the lines x = a and x = b.) The kth rectangle
therefore has width ∆xk, where

∆xk = xk − xk−1.

The height of the rectangle with base [xk−1, xk] is set at f(ξk), where ξk is any x-value
between xk−1 and xk. (Thus the top of the rectangle touches the graph of the function at
the point (ξk, f(ξk)).) The kth rectangle therefore has height f(ξk).

The area of the kth rectangle is therefore

∆xkf(ξk).

The total area of all N rectangles is

∆x1f(ξ1) + ∆x2f(ξ2) + · · ·+ ∆xNf(ξN).

This is a Riemann sum.
Many choices must be made in order to calculate a Riemann sum. How do we choose

the widths ∆x1, . . .∆xN? How do we choose the representative point ξk for each rectangle?
As it turns out, these choices don’t matter very much, at least not when f is bounded and
piecewise-continuous and the rectangles used are very narrow—which is the case which
interests us.

In order to keep things simple, we assume that all the rectangles have the same width,
so that

∆xk = ∆x =
b − a

N
;

and we let ξk = xk−1 (the left edge of the rectangle).
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Example 1: Calculate a Riemann sum for the function f(x) = 3x on the interval [2,5] using
2 equal subintervals. (This approximates the area under the graph of f between x = 2 and
x = 5.)

First we determine the partition points. Since the length of the interval [2,5] is 3 and
there are two subintervals, each subinterval has length ∆x = 1.5. Thus:

x0 = 2,

x1 = 3.5,

x2 = 5.

Thus the first subinterval is [2,3.5] and the second is [3.5,5].
Next we choose representative x-values ξ1 and ξ2 for the two subintervals. We could

choose any value as long as it lies within the corresponding subinterval. The choice of value
affects the answer we get, but for our ultimate goal it does not matter. For simplicity we
choose the left endpoint:

ξ1 = x0 = 2,

ξ2 = x1 = 3.5.

Thus the Riemann sum consists of the areas of two rectangles. Each has width ∆x =
1.5. The heights of the two rectangles are f(ξ1) = 32 and f(ξ2) = 33.5. The value of the
Riemann sum is therefore:

∆xf(ξ1) + ∆xf(ξ2) = ∆x(f(ξ1) + f(ξ2))

= (1.5)
(
32 + 33.5

)

= 83.6481....

Example 2: Calculate a Riemann sum for the function f(x) = 3x on the interval [2,5] using
5 equal subintervals. (This approximates the area under the graph of f between x = 2
and x = 5. With smaller subintervals [narrower rectangles], we expect the approximation
to improve.)

First we determine the partition points. Since the length of the interval [2,5] is 3 and
there are five subintervals, each subinterval has length ∆x = 0.6. Thus:

x0 = 2,

x1 = 2.6,

x2 = 3.2,

x3 = 3.8,

x4 = 4.4,

x5 = 5.

Thus the subintervals are [2,2.6], [2.6,3.2], [3.2,3.8], [3.8,4.4], and [4.4,5].
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Next we choose representative x-values ξ1 . . . ξ5 for the five subintervals. Again, we
could choose any value as long as it lies within the corresponding subinterval, but for
simplicity we choose the left endpoint:

ξ1 = x0 = 2,

ξ2 = x1 = 2.6,

ξ3 = x2 = 3.2,

ξ4 = x3 = 3.8,

ξ5 = x4 = 4.4.

Thus the Riemann sum consists of the areas of five rectangles. Each has width ∆x =
0.6. The heights of the five rectangles are f(ξ1) = 32, f(ξ2) = 32.6, f(ξ3) = 33.2, f(ξ4) =
33.8, and f(ξ5) = 34.4. The value of the Riemann sum is therefore:

∆xf(ξ1)+∆xf(ξ2) + ∆xf(ξ3) + ∆xf(ξ4) + ∆xf(ξ5)
= ∆x(f(ξ1) + f(ξ2) + f(ξ3) + f(ξ4) + f(ξ5))

= (0.6)
(
32 + 32.6 + 33.2 + 33.8 + 34.4

)

= 150.453....

Example 3: Calculate a Riemann sum for the function f(x) = 3x on the interval [2,5] using
N equal subintervals. (This requires that we generalize the previous two examples to an
unknown value of N . We expect that this approximates the area under the curve better
and better for larger and larger values of N .)

First we determine the partition points. Since the length of the interval [2,5] is 3 and
there are N subintervals, each subinterval has length ∆x = 3/N . Note that the values of
N and ∆x are linked. We can determine ∆x from N or vice-versa. All our computations
could be done in terms of N , or in terms of ∆x. It turns out that ∆x is more convenient.
So we have:

x0 = 2,

x1 = 2 + ∆x,

x2 = 2 + 2∆x,

· · ·
xN−1 = 2 + (N − 1)∆x,

xN = 2 + N∆x = 5.

Thus the subintervals are [2, 2 + ∆x], [2 + ∆x, 2 + 2∆x], . . ., [2 + (N − 1)∆x, 2 + N∆x].
Next we choose representative x-values ξ1 . . . ξk for the k = 1 . . .N . As before we

choose ξk = xk−1.
Thus the Riemann sum consists of the areas of N rectangles. Each has width ∆x.

The heights of the N rectangles are f(ξ1), . . . f(ξN). The value of the Riemann sum is
therefore:

∆xf(ξ1) + · · · + ∆xf(ξN ) = ∆x(f(ξ1) + · · · + f(ξN ))

= ∆x
(
32 + 32+∆x + 32+2∆x + · · ·+ 32+(N−1)∆x

)
.
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We can simplify this by recognizing that the sum in parentheses is a geometric series.
Recall that the sum of a finite geometric series is given by:

a + ar + ar2 + · · ·+ ark−1 =
a − ark

1 − r
.

In our Riemann sum, we have a = 32 (the first term), r = 3∆x (the ratio of two successive
terms) and k = N (the number of terms). So the Riemann sum equals:

∆x

(
32 − 32+N∆x

1 − 3∆x

)
.

We have one more simplifying step: replace N∆x by 3 (recall how we obtained ∆x):

∆x

(
32 − 32+3

1 − 3∆x

)
= − 234∆x

1 − 3∆x
= L(∆x).

Once we have figured this out, it is simple to get better and better approximations to
the area by using smaller and smaller values of ∆x:

L(0.6) = 150.453,

L(0.1) = 201.51,

L(0.01) = 211.828.

3. Integrals

Let Lf,a,b(∆x) denote the Riemann sum for a function f on an interval [a, b], using
subintervals of width ∆x and using the left endpoint xk−1 of each subinterval as the
representative point ξk—just as we did in the previous section. If f is bounded and
piecewise-continuous, then it can be proven that the limit

lim
∆x→0

Lf,a,b(∆x)

exists. This is the definition of the integral of f on [a, b]:

∫ b

a

f(x) dx = lim
∆x→0

Lf,a,b(∆x).

This is also called the Riemann integral. It gives us the exact area under the graph of f
between x = a and x = b.

(This definition is specific enough for our purposes, but in fact a much stronger state-
ment is possible. For a bounded piecewise-continuous function the subintervals can have
varying widths ∆xk and the representative point ξk can be chosen anywhere within its
subinterval and it can still be proven that the limit [as the maximum ∆xk goes to zero]
exists and always takes the same value—which is the value of the integral.)
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Example 4: Find

∫ 5

2

3x dx

using Riemann sums. (This will tell us exactly the area under the curve.)

Recall that in Example 3 we found the value L3x,2,5(∆x) of the Riemann sum for an
arbitrary value of N :

L3x,2,5(∆x) = − 234∆x

1 − 3∆x
.

The rest of the problem is fairly straightfoward. All we need do is take the limit as N → ∞
(or, equivalently, ∆x → 0):

∫ 5

2

3x dx = lim
∆x→0

− 234∆x

1 − 3∆x
.

Straight substitution of 0 for ∆x gives us 0/0. So we use L’Hôpital’s Rule (separately
differentiate the top and bottom of the fraction), and obtain:

lim
∆x→0

− 234∆x

1 − 3∆x
= lim

∆x→0
− 234

−3∆x ln 3
=

234
ln 3

.

Thus

∫ 5

2

3x dx =
234
ln 3

= 212.996...,

and this is exactly the area under the graph of 3x from x = 2 to x = 5.
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4. Exercises

1-4: Calculate the Riemann sum for the given function on the given interval, with the
given number N of subrectangles. Sketch the graph of f on the given interval along with
the rectangles used in your calculation.

1. f(x) = 4x on [0, 3], N = 3.

2. f(x) = (1/2)x on [1, 3], N = 4.

3. f(x) = 2x on [2, 6], N = 2.

4. f(x) = 3x on [−1, 1], N = 4.

5-8: (a) Calculate the Riemann sum for the given function on the given interval, for
an arbitrary number N of subrectangles. (b) Express your answer in terms of the width
∆x of each subrectangles.

5. f(x) = 4x on [0, 3].

6. f(x) = (0.5)x on [1, 3].

7. f(x) = 2x on [2, 6].

8. f(x) = 3x on [−1, 1].

9-12: Use Riemann sums to calculate the integral.

9.
∫ 3

0
4x dx.

10.
∫ 3

1
(0.5)x dx.

11.
∫ 6

2
2x dx.

12.
∫ 1

−1
3x dx.

13. (a) Find a Riemann sum for the function f(x) = cos x on the interval [0, .8] with four
subintervals.

(b) Use the formula

cos(0α) + cos(1α) + cos(2α) + · · ·+ cos([N − 1]α) =
1 − cos(Nα)

2
+

sin(Nα)
2 tan(α/2)

to find a formula for the value of the Riemann sum for f(x) = cos x on the interval [0, 0.8]
with an arbitrary number N of subintervals.

(c) Use your answer from part (b) to find

∫ 0.8

0

cos x dx.
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14. For the function f(x) = 3x on the interval [0, 1]:
(a) Calculate the Riemann sum using 5 subintervals and the left endpoint of each subin-
terval as the representative point.
(b) Calculate the Riemann sum using 5 subintervals and the right endpoint of each subin-
terval as the representative point.
(c) What is the difference between your answers for parts (a) and (b)?
(d) Sketch on a single set of axes the graph of f and the rectangles used in both parts (a)
and (b). Can you explain the value of the difference by looking at the diagram?
(e) Find a formula for the difference between the Riemann sums calculated with left and
right endpoints for an arbitrary number N of subintervals.
(f) What is the limit of your answer from part (e) as N → ∞?
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5. Answers

1. 21

2. 0.640165

3. 40

4. 1.82137

5. − 189
N(1−43/N)

= − 63∆x
1−4∆x

6. 0.75
N(1−(0.5)2/N)

= 0.375∆x
1−(0.5)∆x .

7. − 240
N(1−24/N)

= − 60∆x
1−2∆x

8. − 16
3N(1−32/N)

= − 8∆x
3(1−3∆x)

9. 63/ ln 4 ≈ 43.4449

10. 3/(8 ln 2) ≈ 0.541011

11. 60/ ln 2 ≈ 86.5617

12. 8/(3 ln 3) ≈ 2.4273

13. (a) 0.745293

(b) 0.4(1−cos(0.8))
N + 0.4 sin(0.8)

N tan(0.4/N)

(c) sin(0.8) ≈ 0.717356
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