Lesson 1, Section 9.1 Three dimensions
“Navigating” our real world, objects (points, surfaces, regions, distances).

1. Describing points with a triple (x,y,z) in space (3-D) vice a pair (x,y) the plane (2-D).

	[image: image1.emf]
	[image: image2.emf]


Terminology: coordinate axes, coordinate planes, octants, first octant, rectangular or cartesian coordinates

2. Right-hand rule determines direction of z-axis given x-axis and y-axis.

3. Distance formula:
[image: image3.wmf]

 EMBED Equation.3  [image: image4.wmf](
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4. Equation of a sphere:  
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[image: image6.emf]


Lesson 2, Section 9.2 Vectors

Describing direction

1. Vectors are objects, represented by arrows, with magnitude (length) and direction.

2. Generally, vectors have no particular location, and are denoted with boldface letters (v) or arrows over letters (
[image: image7.wmf]v

 ).  Displacement vectors go from an initial point A to terminal point B and are denoted 
[image: image8.wmf]AB

.

3. Vector arithmetic: addition, scalar multiplication, and subtraction each done:

  a. geometrically, or b. algebraically.

4.  Component description of vectors, such as 
[image: image9.wmf]c

b

a

,

,

, found from position vector or subtraction of components in displacement vectors.

5.  Length of vector given by  
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.  Unit vectors have length 1.

6.  Properties of vectors (8 of them) and zero vector, 
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7.  Standard basis vectors, i, j, k  with  
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------------------------------------------------------------------------------------------------------------

Worksheet:

1. For u = 
[image: image15.wmf]2
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  and  v = 
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  find  u + v   and  u – v  both geometrically and algebraically.

2.  Repeat 1 with u = 
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  and  v = 
[image: image18.wmf]1

,

1

,

1

-

-

.

3.  Find a unit vector in direction  2i + 2j - k.
4.  Wind is blowing FROM a direction 45˚ west of north and 40 knots and the plane is being steered 30˚ east of south at 200 knots.  Find the true course by adding the vectors and give the ground speed.

Partial answers:
1. u + v = 
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  and  u - v = 
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2.  u + v = 
[image: image21.wmf]2

,

3

,

0

  and  u - v = 
[image: image22.wmf]4

,

1

,

2

 .

3.  
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4.  About  
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 and  193.5 knots.
Lesson 3, Section 9.3 Dot Product

Multiplying vectors – method 1.

1.  Work = Force x Distance when in a single direction.  In general, 
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2.  Note:  
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3.  Easier formula:  
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 . Together with #1, lets us find angles between vectors.

4. Projections:

   a. scalar projection of 
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 onto  
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   b.  vector projection of  
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------------------------------------------------------------------------------------------------------------

Worksheet:

1. For u = 
[image: image37.wmf]2
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  and  v = 
[image: image38.wmf]1

,
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  find the angle between the vectors.
2.  Find the scalar projection of  u onto v . 
3.  Find the scalar projection of  v onto u .

4.  Find the vector projection of  u onto v .

5.  Find the angle between the diagonal of a cube and one of its edges.

Partial answers:
1. Angle is  
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)

32175

.

10

/

3

cos

1

»

-

 
2.  
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5.  Using 
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Lesson 4, Section 9.4 Cross Product

Multiplying vectors – method 2.

1. a x b is a vector perpendicular to both a and b (with choice of direction determined by the right hand rule) with length |a||b| sin(θ)  (equals area of the parallelgram a and b determine).

2. Torque is given by  r x F .
3. Not commutative:   a x b  = - b x a
4.  <a,b,c> x <d,e,f> = 
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 = crossp([a,b,c],[d,e,f]) on calculator.

5.  Triple product |a · (b x c) | gives the volume of the parallelpiped box determined by the vectors.
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	Mystery cross product
	http://www.phy.syr.edu/courses/java-suite/crosspro.html
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	Torque wrench
	simulation


Lesson 5, Section 9.5 Lines (in space)

1.  With parameter  t  the vector equation  r = r0 + tv  describes a line through the terminal point of position vector  r0  in direction  v .
2.  The corresponding scalar equations are  x = x0 + at , y = y0 + bt , z = z0 + ct  
where r0 
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3.  Solving for  t  we get symmetric equations  
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4.  Lines in space that don’t intersect but aren’t parallel are called skew.
[image: image54.jpg]
-------------------------------------------------------------------------------------

Lesson 6.  Section 9.5  Planes

1. Vector equation:  n · (r - r0) = 0  
containing  terminal point of position vector  r0  with normal direction n .

2.  Scalar equation:  a(x-x0) + b(y-y0) + c(z-z0) = 0  

with  r0 
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3.  For the plane given by  ax + by + cz + d = 0  distance from point (x1, y1, z1)  is given by  
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	[image: image58.jpg]
	[image: image59.jpg]


Lesson 7, Section 9.6  Functions and Surfaces

1. A function, f , of two variables is a rule that assigns to each ordered pair (x,y) in a domain D  a real number denoted  f(x,y).  The range of  f  is the set of all values  f(x,y) .

2.  The graph of such an  f  is the set of all points  (x,y,z)  in space with  z=f(x,y) .

3.  One technique of sketching surfaces given by an equation in  x, y, and z  is to look at traces:  intersection curves with  planes  x=k , y=k, or z=k . Other case: missing variable.

	plot3d(sin(y)*exp(-x^2),x=-4..4,y=-2*Pi..2*Pi);
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Examples:

A. Identify the domain and range of  
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B. Wave heights h as a function f of wind speed  v  and duration  t  are given by:

	v\t
	10
	15

	20
	5
	7

	30
	9
	13


What’s  f (20,10)?  What’s a guess for  f (10,10)?  Describe the expected properties of the function of  t only given by  f (20,t).

C.  Graph the linear function  g(x,y) = 2x + y - 3.

D.  Graph  
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-------------------------------------------------------------------
Lesson 8.  9.6 continued (quadric surfaces) – see page 691 for summary chart.

4. Recall the three conic sections:
A. parabola 
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     C.  hyperbola  
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5. The six quadric surfaces:  A.  ellipsoid,  B. bowl,  C. saddle, D. (double) cone, 

E. hyperboloid of one sheet,  F. hyperboloid of two sheets.  One way to identify – look for conic sections in the traces.

	[image: image66.jpg]
	[image: image67.emf]


Lesson 9, Section 9.7:  Cylindrical and Spherical Coordinates

1.  Cylindrical:  x=r cos(θ), y=r sin(θ) , z=z .  Also,  r2= x2+ y2 .
2.  For constant k , r=k gives a cylinder,  θ=k  gives a vertical plane containing the z-axis.  
3.  Spherical:   r=ρ sin(φ), so   x= ρ sin(φ) cos(θ) and y= ρ sin(φ) sin(θ). And z= ρ cos(φ).


Also,  ρ 2= x2+ y2 + z2 .
4.  For constant k , ρ=k gives a sphere, φ=k gives a cone, and θ=k  gives a vertical 

half-plane (note:  ρ ≥ 0 and  0 ≤ φ ≤ π.)
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	“swinging door picture”
	


Lesson 13, Section 10.1 Vector Functions and Space Curves

Describes paths in space.

1. Vector valued functions can be given in terms of argument functions, such as  

r(t) = < f(t) , g(t) , h(t) > .  Limits are then taken “componentwise” and they are graphed as spacecurves (the terminal point of position vectors r(t) are plotted).

Example: lines in space:  r(t) = < x0 + at , y0 + bt , z0 + ct > .

	[image: image70.jpg]

	twisted cubic space curve <t,t2,t3>


Lesson 14, Section10.2 Derivatives and Integrals of Vector Functions

1.  r’(t) = dr/dt = 
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 = a tangent vector to the curve!
2. Differentiate componentwise: r’(t) = < f’(t) , g’(t) , h’(t) >

3. Integrate componentwise.

	[image: image72.emf]

	Spacecurve with tangents and axes


Lesson 15, Section 10.3  Arc Length
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	[image: image74.emf]




Lesson 16. Section 10.4  Motion in Space

1. r’(t) = v(t)

2. v’(t) = a(t) 

3.  speed = |v|
4.  g = -9.8 j m/s2 = -32 j ft/s2
5. F = m a
	[image: image75.emf]




Lesson 17-18, Section 10.5  Parametric Surfaces

Parametric curves have been represented by 
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.  Similarly, surfaces can be represented parametrically as  
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 .  The domain is a set in the uv-plane.  Methods of graphing include eliminating parameters and plotting “grid curves” for which  u or  v  are constant.  To parameterize a surface, choose the best coordinate system (e.g., spherical, cylindrical, or rectangular).

[image: image78.jpg] 

Examples (1-3) from old tests.  

Sketch and describe the surfaces with vector equations given.

1. r(u,v) =  vcos(u)i + vj + vsin(u)k
2. r(u,v) = 2vsin(u)i + 2vcos(u)j + 4v2k 

3.  r(u,v) = < 2 cos(u) sin(v), 2 sin(u) sin(v), 2 cos(v) >

4.  Give a parameterization of the single cone with an apex angle of 1 radian from the axis and a slant height of 2.
Lessons 20-22.

11.1 Functions of Several Variables

1. A contour map of a function  f(x,y)  of  two variables is a collection of level curves : graphs of  f(x,y)=k  for various constants  k.

2.  Level surfaces for a function  g(x,y,z) of  three variables is a collection of graphs of  g(x,y,z)=k  for various constants  k .

	[image: image79.jpg]
	[image: image80.jpg]

	11.1 Nested Level-Surface Dolls
	11.3 Partial Derivative on Hill


11.3 Partial Derivatives

1. The partial derivative with respect to one independent variable is found by treating the other independent variables as constants.  It’s the rate of change of the function with respect to that variable.  Example: 
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 .  On calculator  d(x^2*y,x).

2. Formally, for example, 
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3. Clairaut’s Theorem.  If  fxy and fyx are continuous near (a,b), then  fxy(a,b) =  fyx(a,b).

Lessons 23. 11.4 Tangent Planes and Linear Approximations

1. The tangent plane to  z=f(x,y) at  (x0 , y0 , z0 ) has equation:  

      z – z0 = fx(x0 , y0)(x - x0) + fy(x0 , y0)(y - y0)
2. Solving the tangent plane equation for  z  (just add  z0  to both sides), we get the linearization function of f at  (x0 , y0), also called the linear or tangent plane approximation:

   L(x,y) =  z0 + fx(x0 , y0)(x - x0) + fy(x0 , y0)(y - y0)
3.  For surfaces defined parametrically with  r(u,v), the tangent plane is defined by normal direction  ru× rv .
	[image: image83.emf]



	Tangent plane, problem 11.4 #6.


Lessons 24. 11.5  Chain rule (for functions of more than one variable).  The right hypotheses are assumed.

0. Review.  Chain rule for functions of 1 variable.  y=f(u), u=g(x), then  
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Associated tree:

1. Chain rule 1.  z=f(x,y), x=g(t), y=h(t), then  
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Associated tree:

2.  Chain rule 2.  z=f(x,y), x=g(s,t), y=h(s,t), then  
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   and 
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Associated tree:

	[image: image88.emf]



	 Upside down tree


3.  Implicit differentiation.  For  F(x,y)=0, dy/dx=-Fx/Fy .
Lessons 25-26. 11.6  Directional Derivatives and the Gradient Vector

1. The directional derivative of  f  at  (x0, y0) in direction of unit vector  u = < a,b > , is the rate of change of  f  as we move in direction  u .  It’s given by:
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2. The gradient vector is the vector of 1st partials:  
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4.  The maximum rate of change of  f  at a given point is 
[image: image92.wmf]

 EMBED Equation.3  [image: image93.wmf]f
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  and is in direction  
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5.  These formulas all generalize to fns. of 3 variables, for example:
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6.  The tangent plane to level surface  F(x,y,z)=k  has normal direction  
[image: image96.wmf]F
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7.  The gradient is perpendicular to level curves and level surfaces and points in the direction of fastest increase.  Water tends to flow in the direction of steepest descent. 

	[image: image97.jpg]

	Creek – steepest descent


Lesson 29. 12.1  Double Integrals over Rectangles.

1. Let  f(x,y)  be defined on rectangle  R = [a,b]x[c,d].  We divide  [a,b]  into  m  equal subintervals and [c,d]  into  n  equal subintervals, in order to divide  R  into  mn  equal subrectangles of area  ΔA .  In each subrectangle we choose a sample point  (xij , yij ).  Then 
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  is the total volume of the blocks as in the picture below.  If the limit of these sums exists as m and  n  go to infinity no matter how the sample points are chosen, then that limit is called the double integral of  f  and is denoted  
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 .  It equals the “signed” volume under the surface that is the graph of  f  and above  R  in the xy-plane.

	
	[image: image100.emf]



	R cut into 4x3  

subrectangles   
	Blocks or rods with volume approximating that under a surface.


2.  average value of  f = fave = 
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Lesson 30. 12.2  Iterated Integrals

1.  Integrating a function of two variables with respect to one of them is done as the inverse of partial differentiation – it gives the area of a slice perpendicular to the constant axis.  For example, the area of a slice for fixed x is given by  
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2.  Integrating areas of slices gives volume:  
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   (from Chapter 6).

3.  So, we can evaluate double integrals with two “iterated” integrals (Fubini’s theorem):
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Evaluate iterated integrals from the “inside” to the “outside”.

	[image: image105.jpg]

	Finding volume with slices


4.  Example.  For  
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 EMBED Equation.3  [image: image108.wmf]òò
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Lessons 31-2. 12.3 Double Integrals over general regions


1. If the function  f  is defined over a region R as drawn below, with either bottom curve y=g(x) and top curve y=h(x), or left curve x=g(y) and right curve x=h(y), then we can evaluate the double integral as either (respectively):
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  or  
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	[image: image111.jpg]
	[image: image112.jpg]

	Type I region – bottom & top curves

y=cos(x)  &  y=2+sin(x)
	Type II region – left & right curves

x=2y2-1 & x=y2


2.  Note that there are regions that are of both types, allowing us to reverse the order of integration.

Lessons 33-34. 12.4 Double Integrals in Polar Coordinates & Center of Mass

12.4  For  f  continuous on region D={(r,θ)| α ≤ θ ≤ β, g(θ) ≤ r ≤ h(θ)} we have:
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	Region in Polar Coordinates
	Balancing on Center of Mass


12.5  For a flat lamina with density  ρ(x,y)  the mass, moment about the x-axis, moment about the y-axis, and center of mass, are given by:
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Lesson 35. 12.6.  Surface Area.

1.  If a surface is described parametrically (& smoothly) by  r(u,v)  then its area is given by
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2.  In the special case of the graph of a function, e.g., z=f(x,y),  then we can use the paramerization  r(x,y) = < x , y , f(x,y) > to get
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(compare to arc length formulas)

	[image: image122.jpg]

	Torus surface – exercise 26


Lessons 36-37.  12.7 Triple Integrals.

1.  For  f  continuous on box  B = [a,b] × [c,d] × [r,s], 
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There are SIX different orderings of the iterated integrals.

	[image: image124.emf]



	Subboxes for triple integral


2.  For more general regions, the innermost integral is “surface-to-surface” and can be any of “bottom-to-top” (dz), “back to front” (dx), or “left-to-right” (dy).  For example:
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  first goes bottom-to-top.

3.  Applications.  In the following,  ρ(x,y) is density,  Mxy  is moment about the xy-plane, etc.

a.  Volume(E) =  
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d.   center of mass = 
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Lessons 38-39.  12.8 Triple Integrals with Cylindrical and Spherical Coordinates
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Lessons 42-43.  13.1 Vector Fields

Examples of vector fields are gravitational fields, electrical and magnetic fields, and velocity fields from flows of air or water.  In  R2, a vector field is a function that assigns to points (x,y), a vector F(x,y) = < P(x,y) , Q(x,y) > .  Similarly, in  R3, a vector field is a function that assigns to points (x,y,z), a vector F(x,y,z) = < P(x,y,z) , Q(x,y,z) , R(x,y,z) > .

Example 1 (below):  F(x.y) = < x , y > .
	[image: image136.emf]

	with(plots): 
fieldplot([x,y],x=-1..1,y=-1..1,grid=[7,7],arrows=thick);


Example 2. G(x,y) = < y2 , 2xy >
Note that for  g(x,y) = xy2 ,  G = 
[image: image137.wmf]g

Ñ

 .  In this important case, when a vector field is a gradient, it’s called a conservative vector field and a gradient vector field and g is called its potential function.  We’ll see later that not all vector fields are conservative.
Lessons 44-45.  13.2 Line Integrals

There are 3 very different (but closely related) versions of line integrals, depending on whether we’re integrating with respect to:

a. arc length, s, (use differential ds) (typical application – mass of a wire),

b. a coordinate, x, y, or z (using differentials, dx, dy, or dz  -- warning, in this case one is not doing “partial integration” as with multiple integrals), or

c. vector tangent to curve, r’(t) (dotting with differential dr) (most common type, used to find work done by vector field along curve)

	[image: image138.jpg]
	[image: image139.emf]

	Return of the twisted cubic
	plot3d([t,(t-2)^3-t+3,z], 

    t=.8..3,z=0..4-t):
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	Opposing arrows – negative work
	text fig – area of curtain = “ds” int. 


***In all 3 cases, evaluation of the integrals can be done by putting everything in terms of the parameter  t  to get an ordinary integral, as follows:

In the plane.

a. The line integral of  f(x,y) along curve  C  with respect to arc length is given by
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b. The line integral of  f(x,y) along curve  C  with respect to x  is given by
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 .  (Similarly for  dy  or  dz .)
c. The line integral of vector field  F =<P,Q>  along  C (parameterized by  r(t)) is given by
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(We can think of  dr = < dx, dy > .)

In space, for all three cases above, just include  z  in the usual way. 

Lessons 46-47.  13.3 Fundamental Theorem for Line Integrals

A.  The following are equivalent (where sufficient smoothness for curves and functions and connectedness for domains is assumed):


1. 
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  for some  f  (namely with  
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curve C  from any  a  to any  b .


2.  
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3.  
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  for all closed paths C.


4.   F is conservative (i.e., it has a potential function  f  with  
[image: image149.wmf]F

=

Ñ

f

).

5.   For  F  =  <  P , Q  > ,  Py = Qx .  (Note: condition 5 is in R2 and for it to imply 


the others, we need the domain simply connected.)

B. To find the potential function, do “partial integration” getting “constants” of integration equal to functions of the variables held constant.
Lessons 47-48.  13.4.  Green’s Theorem

Green’s Theorem is a type of “Fundamental Theorem” in that it connects an integral of a derivative with values on the boundary of the region.

1. Green’s Theorem.  Assuming smoothness, we have:
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[image: image151.wmf]D
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 is the counterclockwise oriented boundary curve of  D .  (For  D  not simply connected, “interior” boundaries are included with clockwise orientation.)

2. Application.  By making the right hand integrand above equal to one, we get area:
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	[image: image153.jpg]

	Planimeter – for measuring area by tracing boundary curve – as does Green’s Theorem


Lesson 49. Curl and Divergence.
These are two operators on vector fields F = < P,Q,R >.  They are easiest to define by viewing the  
[image: image154.wmf]Ñ

 symbol used in gradient as an operator:  
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  (note that for gradients,  
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1. Then 
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  a vector. The curl is associated with rotations caused by  F .  If  curl(F) = 0 , then F is called irrotational.  
2. And  
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 a scalar.  The divergence measures expansion (or, when negative, compression).  If  div(F) = 0, then  F is called incompressible.
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	Curl demo: http://www.math.umn.edu/~nykamp/m2374/readings/divcurl/


You should be able to prove Theorems a and c following:

Theorem a.  For  F smooth,  
[image: image160.wmf]0
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.  (And so, for conservative vector field  F ,  curl(F) = 0 .)

Theorem b.  If  F  is defined and smooth on all of  R3, and  curl(F) = 0, then  F  is conservative.

Theorem c.  For  F  smooth,  div(curl(F)) = 0.

Lesson 50. 12.6. Surface Integrals.

In Lesson 35, section 12.6, we looked at two formulas for surface area.  If, now, a function  f  is defined on the surface we can analogously integrate  f  over  S :

1. For S given parametrically by  r(u,v):  
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2. For S  the graph of g(x,y):  
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Application: if  f  is density of  S  then the integral gives mass of the surface.

To integrate a vector field, F , over S we first take its dot product with a consistently chosen unit normal vector  n .  This gives : 

3. 
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  which is the flux of  F  across  S.

4. For  S  the graph of  g(x,y):   
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Lessons 56-57.  12.7. Stokes Theorem.

For  S  oriented and bounded by  C  with positive orientation and everything smooth:
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Note that it follows that changing the “spanning” surface  S  doesn’t change the double integral.

Lessons 52-53. 12.8. The Divergence Theorem (a.k.a. Gauss’ Theorem)

For  E  a simple solid with outward oriented boundary  S  and everything smooth:
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	Stokes’ Theorem picture
	Divergence Theorem picture
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