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MODELING BUBBLE GROWTH IN MICRO-CHANNEL COOLING SYSTEMS

ABSTRACT

The project goal is to develop a mathematical model for bubble growth in a 
micro-channel cooling system.  The problem of heat transfer from high performance 
microprocessors is introduced.  Equations for volumetric bubble growth rate and local 
heat transfer coefficients shown to depend on the temperature profile beneath the 
bubble’s base.  The three-dimensional problem is simplified to a two-dimensional cross-
section along the micro-channel.  A partial differential equation is then solved resulting in 
a function for the temperature profile.  The equation for local heat transfer coefficient is 
solved.  These solutions are incorporated into a MatLab program for analysis.  Plots of 
temperature profile and local heat transfer coefficients are generated.
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INTRODUCTION

Microprocessors are a widespread and important component of modern 
computing devices.  The heat generated by a processor increases with the number of 
operations per second.  This heat must be carried away somehow to prevent the processor 
components from melting.  Conventional devices employ simple air-convection fans to 
achieve this cooling effect.  However, such a cooling mechanism has limits, which 
current processor designs may be approaching.  In particular, the U.S. Navy’s Office of 
Naval Research has set a target heat flux of 1 kW/cm2 for processors in an advanced 
RADAR system, and that amount of heat simply cannot be driven away using a 
conventional cooling system.  An alternative to cooling via air convection is the use of 
micro-channels embedded in the microprocessor.  Coolant flows through the channels, 
carrying heat away from the processor components.  The physical mechanism for this 
cooling effect is latent heat.  Heat flux from the processor results in the formation of 
bubbles in the micro-channel.  Though some physical experimentation has taken place, 
very little mathematical modeling has been done regarding formation and growth of 
bubbles in micro-channels.  The goal of this research project is to develop a mathematical 
model for bubble growth in a micro-channel cooling system.

MATHEMATICAL SOLUTIONS

The model for bubble growth rate by volume will be obtained using the following 
relationship (see Appendix 1 for explanation of parameters):

ρ g h fg

∂ Vol 
∂ t

=kA ∂T
∂ y  y=0

(1)

The formula for the local heat transfer coefficient is provided by the following:

h=
k  ∂T

∂ y 
y=0

T wall−T sat

(2)

It is noted that both of these equations are dependent on the term T which represents the 
temperature profile under the bubble base.  Before proceeding further with development 
of the mathematical model, then, a solution for this temperature profile must be obtained.

The following figure represents the three-dimensional situation of a single bubble 
within a micro-channel:
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Figure 1:  3-D representation of single bubble in channel

The x,y,z coordinate system is indicated on the figure.  Q represents incoming heat flux 
from the processor.  The parameter δ represents the thickness of the liquid layer beneath 
the bubble, while δc represents the width of the micro-channel.  Because δ is very small 
compared to δc, the above can be simplified to a two-dimensional cross-section by 
ignoring the z coordinate:

Figure 2:  2-D cross-section of single bubble in channel, ignoring z

The origin for the coordinate system is set at the leading edge of the bubble, to the right 
on Figure 2.  Though the bubble is moving down the channel and growing, the origin 
remains fixed at this leading edge.

The situation in Figure 2 is represented in the following partial differential 
equation:

∂
2 T

∂ y2
= f  y ⋅

∂T
∂ x

(3)
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Where f  y  represents the fluid velocity profile under the bubble.  Further simplifying, 
it is assumed that f  y =uavg  where uavg  is the average velocity of the liquid beneath 
the bubble.  The resulting partial differential equation, which must be solved for the 
temperature profile in the liquid layer beneath the bubble base, then becomes:

∂2 T
∂ y2

=
uavg

α
⋅
∂T
∂ x

(4)

Because y ranges from 0 to δ and δ is very small compared to x (distance down the 
channel), the effects of any non-linear terms in the function for the temperature profile 
may not be evident except at extremely small values for x.  For this reason, it is necessary 
to non-dimensionalize x and y via the following:

Let x∗¿
x
δ

 and let y∗¿
y
δ

The resulting non-dimensionalized partial differential equation is

∂2 T
∂ y¿2

=
δ⋅uavg

α
⋅
∂T
∂ x ¿

(5)

The equation is subject to the following conditions:
i    T x¿ ,0 =T sat

 ii   T0,y¿ =T mf

 iii    
∂T
∂ y¿

 x ¿ , 1=
Q0 δ

k

The analytical solution of (5) begins with a transformation to a homogeneous boundary 
condition:

Let θ=T  x , y −T sat    
Then ∂θ=∂T

The resulting partial differential equation is then:

∂2 θ
∂ y¿2

=
δ⋅uavg

α
⋅
∂ θ
∂ x ¿

(6)

and is subject to:
i    θ  x¿ ,0 =0

 ii    θ 0, y¿ =T mf−T sat
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 iii    
∂ θ
∂ y¿

 x ¿ ,1 =
Q0 δ

k

Next, the function θ  is split up into two functions, one function in both x and y and one 
function in y only:

Let θ  x ¿ , y¿
=ψ  x¿ , y¿

φ y¿


Performing this substitution results in the following equation:

∂2 ψ
∂ y¿2


∂2 φ
∂ y¿ 2

=
δ⋅uavg

α
⋅
∂ψ
∂ x¿

(7)

which is subject to:
i ψ  x ¿ , 0 φ0 =0
 ii ψ 0, y¿

φ y¿
=T mf−T sat

 iii 
∂ψ
∂ y¿

 x ¿ ,1 
∂φ
∂ y¿

1 =
Q0 δ

k

This partial differential equation and its conditions are then split into the following:

1    
d 2 φ
dy¿2

=0    subject to   i    φ0 =0

                                      ii    
dφ

dy¿
1 =

Q0 δ

k

2   
∂

2 ψ
∂ y¿2

=
δ⋅uavg

α
⋅
∂ψ
∂ x¿

   subject to   i ψ  x ¿ , 0 =0

                                                        ii ψ 0, y¿ =T mf −T sat−
Q 0 δ

k
⋅y¿

                                                        iii 
∂ψ

∂ y¿
 x¿ , 1 =0

The first part is an ordinary differential equation which is easily solved for

φ  y¿ =
Q 0 δ

k
⋅y¿

The second part is solved analytically via separation of variables:  
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ψ  x¿ , y¿
=X  x ¿

⋅Y  y¿


⇒   X ' Y =
α
δ⋅uavg

⋅XY ''

⇒
X '

αδ⋅uavg
 X

=
Y ''
Y

=−λn
2

Because X and Y are functions of independent variables, their ratios above must be equal 
to some constant which is denoted −λn

2  here.  The above is divided into two problems, 
one solved for the function X and the other solved for the function Y.  The result of 
applying separation of variables is the following:

X  x¿ =An e
−λ n

2αδ⋅uavg  x¿

   and

Y  y¿ =c1sin  λn y¿ c2 cos  λn y¿ 

⇒ψ  x¿ , y¿ =An e
−λn

2α
δ⋅uavg ⋅x¿

[c1 sin λn y¿ c2 cos  λn y¿ ]

Using condition (7)(i) it is determined that c2 =0 and therefore

ψ  x¿ , y¿ =∑
n=1

∞

An e
− λn

2α
δ⋅uavg ⋅x ¿

sin  λn y¿

and   φ  y¿=
Q0 δ

k
⋅y¿

Having solved for ψ  and φ , back-substitution provides the solution for θ ; one further 
step yields the function T for the temperature profile beneath the bubble base.  

θ  x ¿ , y¿
=ψ  x¿ , y ¿

φ y¿


⇒θ  x¿ , y¿ =[∑
n=1

∞

An e
−λ n

2α
δ⋅uavg ⋅x ¿

sin  λn y¿ ]Q0 δ

k
⋅y¿

θ=T  x¿ , y¿
−T sat ⇒T  x¿ , y¿

=θ  x¿ , y¿
T sat

⇒T  x¿ , y¿
=[∑

n=1

∞

An e
− λn

2α
δ⋅uavg ⋅x ¿

sin  λn y¿]Q0 δ
k

⋅y¿
T sat

Employing condition (7)(ii) it is possible to solve for the formula for the Fourier 
coefficients, An .  The resulting formula for Fourier coefficients is
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An=2∫0

1 T mf−T sat−
Q 0 δ

k
⋅y¿sin  λn y¿ dy¿

This rather complicated formula can be easily simplified through the following 
substitution:

Let  θsup=T sup−T sat  where T sup=T mf−
Q0 δ

k
⋅y¿

⇒ An=2θsup∫0

1
sin  λn y¿dy¿=

2θsup

λn

Condition (7)(iii) is used to solve for the eigenvalues, λn .  The resulting formula for the 
eigenvalues is

λn=
2n−1 ⋅π

2

The final solution for the temperature profile under the bubble base is then

T  x ¿ , y¿
=[∑

n=1

∞

An e
−λn

2α
δ⋅uavg ⋅x¿

sin λn y¿ ]Q0 δ
k

⋅y¿
T sat

where

An=
2θsup

λn

                    λn=
2n−1 ⋅π
2

And all other parameters are constants, with the obvious exceptions of x ¿  and y¿ .

Having obtained T, it is necessary to calculate  ∂T
∂ y  y=0

to solve for the local heat 

transfer coefficient.  Differentiating the above with respect to y¿ and evaluating at y¿ = 
0 results in

 ∂T

∂ y¿ 
y=0

=[∑
n=1

∞

An λn e
−λ n

2 α
δ⋅uavg ⋅x ¿

]Q0 δ
k

Finally, this result is substituted into (2), providing a solution for local heat transfer 
coefficient h as a function of x ¿ .
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DISCUSSION AND RESULTS

With the solutions for temperature profile and local heat transfer coefficient 
obtained, a MatLab program can be developed incorporating them.  MatLab is then used 
to generate data in the form of plots.  These plots are used to verify that the solutions 
obtained thus far are valid, and thus may be used in the bubble growth model.  Data from 
these solutions can also be compared to experimental data for further validation of the 
model.  For the plots below, the coolant is assumed to be water.

The first plot generated represents level curves of the temperature profile, depicting 
curves of temperature vs. y at unique x values.
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Figure 3: Plot of T(x,y) vs. y at unique x values

It should be noted that y=0 corresponds to the base of the bubble, while y=1 corresponds 
to the micro-channel wall.  The x variable starts at 0 and increases through values of 0.1, 
0.5, 1, 2, and 3.  Values beyond that are very difficult to distinguish from the line at x=3, 
the lowest line on the plot.  The effect of the non-linear terms in the function for T(x,y) is 
noticeable in the level curves.  As x increases, the exponential term dies out, and the 
linear term dominates.  

Because T is a function of x and y, the temperature profile may be better represented by a 
three-dimensional surface plot, which allows viewing of all possible values for a given 
set of parameters simultaneously.

Figure 4: Surface plot of temperature profile at θsup = 50 Kelvin

In this plot, rather than displaying T vs. x and y, T was plotted against y and a grouping 
“B” where

B=
α⋅x¿

δ⋅uavg
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which better incorporates into the plot the effects of other parameters.  From this surface 
plot it is readily apparent that as distance down the channel increases, the nonlinear terms 
in T tend towards zero and the surface becomes more planar.  The origin of the level 
curves from Figure 3 is also apparent as the surface curvature is higher for small values 
of B.  Similar plots were generated for values of θ sup = 10 Kelvin and θ sup = 100 Kelvin, 
shown below.

Figure 5: Surface plot of temperature profile at θsup = 10 Kelvin
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Figure 6: Surface plot of temperature profile at θsup = 100 Kelvin

Decreasing θsup  to 10 Kelvins results in a lower initial temperature on the surface plot, 
and the surface appears more planar.  Likewise, increasing θsup  to 100 Kelvins has the 
opposite effect, raising the initial temperature and prolonging the curvature of the surface 
a greater distance down the micro-channel.

Local heat transfer coefficients vary with x, and should approach a steady-state value 
with increasing distance down the channel.  Plots of h vs. x should illustrate this 
relationship.  The following figure displays several plots of h vs. x at varying values of 
θsup .
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Figure 7: Plots of h vs. x at increasing values of θsup

The behavior of the plots is as expected; each settles to a steady-state value fairly quickly. 
With increasing θsup , the curve shifts upward and reaches its steady-state value more 
slowly.

CONCLUSIONS

The solutions obtained for the temperature profile in the liquid layer under the 
bubble base, as well as for the local heat transfer coefficients, appear to be valid and 
could therefore be incorporated into the bubble growth model as the project continues. 
Both level curve and surface plot representations of the temperature profile behave as 
expected based on physical parameters, validating the model as developed up to this 
point.  Similarly, plots of local heat transfer coefficient versus channel length behave as 
expected.  With increasing distance down the micro-channel, local heat transfer 
coefficients decrease and approach a steady-state value.  With increasing θsup , the 
steady-state value is increased and achieved at greater distance down the channel. 
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Decreasing θsup  lowers temperatures throughout the temperature profile and results in a 
more planar temperature profile surface.  Increasing θsup  shifts the surface upwards to 
higher temperatures and results in greater curvature.

There are several goals for the project continuing into the Spring 2007 semester. 
So far, only water has been considered as a coolant, but it is possible that other coolants 
could be more desirable.  One example is FC-72.  The existing model is capable of 
generating similar data and plots by adjusting the parameters to the properties of the 
alternative coolant.  Another objective is to solve equation (1) for the bubble growth rate 
by volume, which constitutes the actual bubble growth model.  In addition, obtaining 
experimental data and comparing it to data from the mathematical model is a key element 
in validating the model.  If data from an outside source can be obtained next semester, 
this comparison will be done.

Other, more peripheral goals for next semester include analyzing the effect of the 
bubble in an increasing superheated channel, analyzing the bubble at zero velocity, and 
mathematical modeling of annular films.
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APPENDIX 1:  EXPLANATION OF PARAMETERS

A large number of variables and constants appeared throughout the solution for the 
temperature profile and local heat transfer coefficients; each is defined here.

α
Thermal diffusivity of coolant  m2

sec  ; α=
k
cρ

 where 
k= thermal conductivity
c= thermal capacity
ρ=density

δ Thickness of liquid film layer beneath bubble base; 10μm in examples above
δc Width of micro-channel
λn Eigenvalues; see page 7
θsup Constant equal to T sup−T sat

An Fourier coefficients; see page 7
h Local heat transfer coefficient; see page 2 equation (2)
k

Thermal conductivity  W
m⋅K 

Q0 Incoming heat flux from processor  W

m2 
T Function for temperature profile in liquid layer under bubble base, a function

of x, y, and z.  Output in Kelvins.
T mf Mean fluid temperature of liquid layer at bubble’s leading edge
T sat Coolant saturation temperature (373K for water)
T sup Temperature outside the bubble at a point just outside at the origin
T wall Temperature at channel wall, y= δ  (y*=1)
uavg Average velocity of liquid beneath the bubble
x Coordinate of distance along micro-channel
y Coordinate of distance from bubble into liquid layer beneath bubble base
z Coordinate of distance from bubble’s leading edge across width of channel; 

ignored in two-dimensional simplification
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