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Abstract Turbulent boundary layer measurements were
made on a flat plate covered with uniform spheres and
also on the same surface with the addition of a finer-
scale grit roughness. The measurements were carried out
in a closed return water tunnel, over a momentum
thickness Reynolds number (Reh) range of 3,000–15,000,
using a two-component, laser Doppler velocimeter
(LDV). The results show that the mean profiles for all
the surfaces collapse well in velocity defect form. Using
the maximum peak to trough height (Rt) as the rough-
ness length scale (k), the roughness functions (DU+) for
both surfaces collapse, indicating that roughness texture
has no effect on DU+. The Reynolds stresses for the two
rough surfaces also show good agreement throughout
the entire boundary layer and collapse with smooth wall
results outside of the roughness sublayer. Quadrant
analysis and the velocity triple products show changes in
the rough wall boundary layers that are confined to
y<8ks, where ks is the equivalent sand roughness height.
The present results provide support for Townsend’s wall
similarity hypothesis for uniform three-dimensional
roughness. However, departures from wall similarity
may be observed for rough surfaces where 5ks is large
compared to the thickness of the inner layer.
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sw Wall shear stress
x Wake function

Superscript

+ Inner variable (normalized with us or us/m)

Subscripts

min Minimum value
max Maximum value
R Rough surface
S Smooth surface

1 Introduction

Turbulent boundary layers over rough surfaces occur in
a wide range of flows. These include boundary layers on
ships (Grigson 1992; Schultz 2000), in turbomachinery
(Acharya et al. 1986; Bons et al. 2001), in pipes (Moody
1944), and on air and spacecraft (Pimenta et al. 1979).
Meteorologists also wish to understand and predict the
effect that roughness, such as terrestrial topography and
vegetation, has on the atmospheric boundary layer for
weather prediction (Andreopoulos and Bradshaw 1981).
For these reasons, a great deal of effort has been made to
quantify the effect of surface roughness on boundary
layer structure. Raupach et al. (1991) give a thorough
review of this work and point out that, while rough wall
flows are of great importance, they are much more
poorly understood than flows over smooth walls. Their
review also concludes that there is strong experimental
support for Townsend’s wall similarity hypothesis
(Townsend 1976). This hypothesis states that the tur-
bulence outside of the roughness sublayer, a layer
extending out approximately five roughness heights
from the wall, is independent of the surface condition at
sufficiently high Reynolds numbers. However, some re-
cent research casts doubts on the wall similarity
hypothesis, stating that roughness effects can be ob-
served well into the outer layer. This is witnessed by
studies that indicate that surface roughness alters the
velocity defect profile (Krogstad et al. 1992; Acharya
et al. 1986), leads to a higher degree of isotropy of the
Reynolds normal stresses (Krogstad et al. 1992; Krogs-
tad and Antonia 1999; Antonia and Krogstad 2001),
and changes the Reynolds shear stress profiles in the
outer region of the boundary layer (Krogstad et al. 1992;
Krogstad and Antonia 1999; Antonia and Krogstad
2001). The implication of these results is that the inter-
action of the inner and outer regions of the boundary
layer may be more important than previously thought.
They also imply that classical mixing length approaches
to modeling the Reynolds shear stress in the outer region

of rough wall boundary layers may not be appropriate
(Antonia and Krogstad 2001).

Some of the seminal studies of rough wall boundary
layers were made by Clauser (1954) and Hama (1954).
Both these authors showed that the effect of surface
roughness on the mean flow was to cause a downward
shift in the logarithmic region of the boundary layer.
For k-type rough walls, this downward shift, DU+, the
roughness function, correlates in some fashion with the
roughness Reynolds number. The roughness Reynolds
number, k+, is defined as the ratio of the roughness
length scale, k, to the viscous length scale, m/us. The
mean velocity profile in a rough wall boundary layer,
therefore, can be expressed as:

Uþ ¼ 1
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j

� �
: ð1Þ

Hama (1954) found that, by evaluating Eq. 1 for both a
rough and a smooth surface (DU+

s ” 0) at y=d, the
roughness function is found by subtracting the rough
wall log-law intercept from the smooth wall intercept, B,
at the same value of Red. The roughness function can,
therefore, be expressed as:
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It should be noted that Eq. 2 is valid provided the mean
velocity profiles collapse is in velocity defect form, given
as (Clauser 1954):
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y
d

� �
: ð3Þ

A majority of the experimental evidence seems to sup-
port the universality of the defect law (Antonia and
Krogstad 2001; Clauser 1954; Bandyopadhyay 1987).
Collapse of the mean defect profiles for rough and
smooth walls is also consistent with the wall similarity
hypothesis of Townsend (1976).

The utility of the roughness function is that, once
DU+=f(k+) for a given roughness is known, it can be
used in a computational boundary layer code or a sim-
ilarity law analysis to predict the drag of any body
covered with that roughness (Townsin and Dey 1990).
However, it is not presently clear how to specify k for a
generic rough surface by a physical measurement of the
surface roughness alone. Granville (1958) first pointed
out that a single roughness length scale would not be
suitable to collapse the roughness function for a range of
roughness types, and multiple length scales were needed
to account for the differences in texture. To this end,
Townsin and Dey (1990) proposed that a height
parameter based on the first three even moments of the
surface profile power spectral density reasonably col-
lapsed the roughness functions for a ship’s hull rough-
ness. However, Grigson (1992) contends that, for
arbitrary roughness, DU+ must be measured and cannot
be predicted a priori based on correlation with measures
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of the surface topography. The collapse of the roughness
functions for all types of surfaces also seems unlikely due
to the inherent difference in the shape of the functions
for uniform sand roughness (Nikuradse-type, Nikuradse
1933) and random engineering roughness (Colebrook-
type) as noted by Colebrook and White (1937). Cole-
brook and White also showed that, in pipe flow, the
inclusion of a few large scale roughness elements (cov-
ering �5% of the surface area) in a uniform sand
roughness greatly increased the friction factor in the
fully rough regime. The ratio of the length scales of
roughness used in their experiments was �10. Interest-
ingly, the friction factor with just the isolated large ele-
ments was much less than the large elements with the
smaller background roughness. This indicates that
small-scale roughness can have an effect on the mean
flow in the presence of larger scale roughness. Ligrani
and Moffat (1986) showed that the behavior of the
roughness function in the transitionally rough regime for
close-packed spheres is different to that for close-packed
sand. This also seems to indicate that the roughness
texture is important even for uniform roughness, but the
question as how to best quantify it remains unanswered.

The purpose of the present study is to document and
compare the mean velocity, Reynolds stress, and higher-
order velocity moment profiles over two rough surfaces
in the fully rough regime. One of the surfaces is covered
with uniform diameter, close-packed spheres. The other
is the close-packed spheres covered with a finer-scale grit
roughness. The grit adds a secondary roughness length
scale and effectively changes the roughness texture. The
two surfaces, therefore, represent a uniform roughness
and a roughness that is more random. From these
results, it is hoped that the applicability of Townsend’s
wall similarity hypothesis can be evaluated, and the
existence of a suitable roughness scaling parameter
related to the surface topography of both surfaces can be
found. Both goals are important to properly model and
predict turbulent flows over rough surfaces.

2 Experimental facilities and method

The present experiments were carried out in the closed
circuit water tunnel facility at the United States Naval
Academy Hydromechanics Laboratory. The test section
is 40·40 cm in cross-section and 1.8 m in length, with a
tunnel velocity range of 0–6.0 m/s. In the present inves-
tigation, the freestream velocity was varied between
�1.0 m/s and 3.5 m/s (Rex=1.4·106�4.9·106). Flow
management devices include turning vanes placed in the
tunnel corners and a honeycomb flow straightener in the
settling chamber. The honeycomb has 19-mm cells that
are 150 mm in length. The area ratio between the settling
chamber and the test section is 20:1. The resulting free-
stream turbulence intensity in the test section is �0.5%.

The test specimens were inserted into a flat plate test
fixture mounted horizontally in the tunnel. The test
fixture is the same as that used by Schultz and Flack

(2003) and is shown in Fig. 1. The fixture is 0.40 m in
width, 1.68 m in length, and 25-mm-thick. The forward
most 200 mm of the test fixture is covered with 36-grit
sandpaper to trip the developing boundary layer. The
use of a strip of roughness was shown by Klebanoff and
Diehl (1951) to provide effective boundary layer thick-
ening and a fairly rapid return to self-similarity. The test
specimen mounts flush into the test fixture and its for-
ward edge is located immediately downstream of the
trip. The removable test specimens are fabricated from
12-mm-thick cast acrylic sheet 350 mm in width and
1.32 m in length. The boundary layer profiles presented
here were taken 1.35 m downstream of the leading edge
of the test fixture. The trailing 150 mm of the flat plate
fixture is a movable tail flap. This was set with the
trailing edge up at �5� in the present experiments to
prevent separation at the leading edge of the plate. The
physical growth of the boundary layer and the inclined
tail flap created a mildly favorable pressure gradient at
the measurement location. The acceleration parameter
(K) was <7.0·10�8 over the range of Reynolds numbers
tested. The pressure gradient varied only slightly
between the test specimens.

Three test surfaces were tested in the present study.
One was a smooth, cast acrylic surface. Another surface
consisted of uniform diameter, close-packed spheres.
The last surface consisted of uniform diameter, close-
packed spheres covered with a smaller-scale grit
roughness. The surfaces with uniform spheres were
constructed of no. 9 lead shot with a diameter of
2.12±0.04 mm (mean±95% confidence interval). The
spheres were attached to the test specimen with poly-
amide epoxy sprayed over the surface. The uniform
spheres with grit surface was the same as the uniform
spheres surface but was also covered with a very thin
layer of epoxy mixed with sand grit. The surface
roughness profiles of the test plates were measured using
a Cyber Optics laser diode point range sensor (model no.
PRS 40) laser profilometer system mounted to a Parker
Daedal two-axis traverse with a resolution of 5 lm. The
resolution of the sensor is 1 lm, with a laser spot
diameter of 10 lm. Data were taken over a sampling
length of 50 mm and were digitized at a sampling
interval of 25 lm. Ten linear profiles were taken on each
of the test surfaces. No filtering of the profiles was
conducted, except to remove any linear trend in the
trace. Figure 2 shows typical roughness profiles for the

Fig. 1 Schematic of the flat plate test fixture for the velocity profile
method
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two rough surfaces. Note that that the major influence
of the grit on the surface was to increase the height and
slope of the roughness peaks. The maximum peak to
trough roughness heights (Rt) for the uniform spheres
and uniform spheres with grit were 960±40 lm and
1130±60 lm, respectively. Roughness profiles were also
taken on a smooth surface sprayed with the mixture of
sand grit and epoxy in order to determine the secondary
length scale that was added. Rt for this surface was
130±15 lm. The ratio of the sphere and sand grit length
scales was �7.5.

Velocity measurements were made using a TSI
IFA550 two-component, fiber-optic laser Doppler
velocimeter (LDV) system. The LDV used a four-beam
arrangement and was operated in backscatter mode. The
probe volume diameter was 90 lm, and its length was
1.3 mm. The viscous length (m/us) varied from a mini-
mum of 5 lm for uniform spheres with grit at the
highest Reynolds number to 24 lm for the smooth wall
at the lowest Reynolds number. The diameter of the
probe volume, therefore, ranged from 3.8 to 18 viscous
lengths in the present study. The LDV probe was
mounted on a Velmex three-axis traverse unit. The tra-
verse allowed the position of the probe to be maintained

to ±10 lm in all directions. In order to facilitate two-
component, near-wall measurements, the probe was til-
ted downwards at an angle of 4� to the horizontal and
was rotated 45� about its axis. Velocity measurements
were conducted in coincidence mode with 20,000 ran-
dom samples per location. Doppler bursts for the two
channels were required to fall within a 50-ls coincidence
window or the sample was rejected.

In this study, the skin-friction coefficient, Cf, for the
smooth surface was found using the Clauser (1954) chart
method with log-law constants j=0.41 and B=5.0. For
the rough walls, Cf was obtained using a procedure
based on the modified Clauser chart method given by
Perry and Li (1990). To accomplish this, the wall datum
offset was first determined using an iterative procedure.
This involved plotting U/Ue versus ln(yUe/m) for points
in the log-law region (points between y+=60 and
y/d=0.2) based on an initial guess of us obtained using
the total stress method detailed below. Note that
y=yT+e, where yT is the location of the top of the
roughness elements, and e is the wall datum offset, which
is initially taken to be zero. The wall datum offset was
increased until the goodness of fit of a linear regression
through the points was maximized. The following for-
mula was then used to determine Cf based on the slope
of the regression line (Lewthwaite et al. 1985):

Cf ¼ 2j2 dðU=UeÞ
d ln yUe=mð Þ½ �

	 
2

: ð4Þ

For all the test surfaces, the total stress method was also
used to verify Cf. If the viscous and turbulent stress
contributions are added together, Cf may be calculated
using the following expression, evaluated in the inner
layer or overlap region of the boundary layer:

Cf ¼
2
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e

m
@U
@y
� u0v0

� �
: ð5Þ

On the smooth walls, the total stress was calculated at
the plateau of the Reynolds shear stress profile in the
overlap region of the boundary layer. For the rough
walls, it was calculated outside of the roughness sublayer
at the outer edge of the overlap region (y/d=0.2). The
results from the Clauser chart methods and the total
stress method agreed to within their uncertainty for both
the rough and smooth walls.

It should be noted that neither method used to
determine the wall shear stress on the rough surfaces in
the present study is ideal. The modified Clauser chart
method assumes that the log law is valid for rough wall
boundary layers and requires the solution of additional
degrees of freedom (the wall offset, e, and the roughness
function, DU+). Krogstad et al. (1992) modified this
procedure by including the wake region in the determi-
nation of the wall shear stress. Although this method
allows for more points in the boundary layer to be used
in determining the wall shear stress, it assumes both the
existence of the log law and the functional form of theFig. 2 Representative surface profiles for the rough specimens
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law of the wake for rough wall flows. The method also
simultaneously determines Cf, e, and DU+. It was noted
by Acharya et al. (1986) that simultaneous selection of
these parameters can yield an improved statistical fit of
the data but may, in some cases, give increased an error
in Cf. Using the total stress method on rough wall
boundary layers has its own shortcomings. This method
relies on a plateau in the Reynolds shear stress profile,
which is often not clearly defined in the roughness sub-
layer, and has fairly high measurement uncertainty in
this region.

Unfortunately, most wall shear stress determination
methods employed on smooth wall boundary layers are
either not feasible or have increased uncertainty on
rough walls. For example, direct measurement methods,
such as using a floating element force balance, can be
fraught with difficulties. As discussed by Winter (1977),
measurement uncertainties with force balances arise due
to misalignment and gaps, as well as replicating the
roughness exactly on the floating element. An accurate
means of independently measuring the wall shear stress
in rough wall boundary layers is obviously needed.

3 Uncertainty estimates

Precision uncertainty estimates for the velocity mea-
surements were made through repeatability tests using
the procedure given by Moffat (1988). Ten replicate
velocity profiles were taken on both a smooth and a
rough plate. The standard error for each of the mea-
surement quantities was then calculated for both sam-
ples. In order to estimate the 95% confidence limits for a
statistic calculated from a single profile, the standard
deviation was multiplied by the two-tailed t value
(t=2.262) for 9 degrees of freedom and a=0.05, as given
by Coleman and Steele (1995). LDV measurements are
also susceptible to a variety of bias errors, including
angle bias, validation bias, velocity bias, and velocity
gradient bias, as detailed by Edwards (1987). Angle or
fringe bias is due to the fact that scattering particles
passing through the measurement volume at large angles
may not be measured since several fringe crossings are
needed to validate a measurement. In this experiment,
the fringe bias was considered insignificant, as the beams
were shifted above a burst frequency representative of
twice the freestream velocity (Edwards 1987). Validation
bias results from filtering too close to the signal fre-
quency and any processor biases. In general, these are
difficult to estimate and vary from system to system. No
corrections were made to account for validation bias.
Velocity bias results from the greater likelihood of high-
velocity particles moving through the measurement
volume during a given sampling period. The present
measurements were burst transit time weighted to cor-
rect for velocity bias, as given by Buchhave et al. (1979).
Velocity gradient bias is due to variation in velocity
across the measurement volume (Durst et al. 1998). The
errors due to velocity gradient bias were negligible since

all data in the present study were taken at y+‡35,
therefore, no correction for this bias error were made.
An additional bias error in the v¢ measurements of �2%
was caused by introduction of the w¢ component due to
the inclination of the LDV probe. This error effects u0v0
as well, but to lesser degree (<1%), since u¢ and w¢ are
uncorrelated and u¢ is much larger than v¢ across the
entire boundary layer.

These bias estimates were combined with the preci-
sion uncertainties to calculate the overall uncertainties
for the measured quantities. The resulting overall
uncertainty in the mean velocity is ±1%. For the tur-
bulence quantities u02; v02; and u0v0; the overall uncer-
tainties are ±2%, ±4%, and ±7%, respectively. The
precision uncertainties in Cf were calculated using a
series of repeatability tests, in a manner similar to that
carried out for velocities. These were combined with bias
estimates to calculate the overall uncertainty in Cf. The
uncertainty in Cf for the smooth walls using the Clauser
chart method is ±4%, and the uncertainty in Cf for the
rough walls using the modified Clauser chart method
was ±7%. The increased uncertainty for the rough walls
resulted mainly from the extra two degrees of freedom in
fitting the log law (e and DU+). The uncertainty in Cf

using the total stress method is ±10% for both the
smooth and rough walls. The uncertainties in d, d*, and
h are ±7%, ±4%, and ±5%, respectively.

4 Results and discussion

4.1 Experimental conditions

The experimental conditions for each test case are pre-
sented in Table 1. The results show significant increases
in the boundary layer thickness (d) on both of the rough
surfaces compared to the smooth wall at the three
highest values of Reh. While the integral length scales (d*

and h) were also increased on the rough walls, the
change in d* was more pronounced. This is seen in the
shape factor, H, which was higher on the rough walls.
No significant changes were observed in these boundary
layer parameters when comparing the packed sphere
surfaces with and without grit. The wake parameter, P,
showed no definitive trend with change in the wall
condition. The results of Krogstad et al. (1992) and
Keirsbulck et al. (2002) showed that P was increased on
mesh-type and transverse-bar-type roughnesses, respec-
tively. They attributed the increase to greater entrain-
ment of irrotational fluid. The results of Schultz and
Flack (2003) also showed a slight increase in P over
sandgrain roughness. It should be noted that the wake
parameters for all of the present test cases are less than
0.55, the value given by Coles (1956) as the high Rey-
nolds number asymptote for smooth walls. This may
have been the result of slightly elevated freestream tur-
bulence in the present study.

The skin-friction coefficient for the three test surfaces
are shown in Fig. 3. Also shown for comparison are the
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smooth wall results of Coles (1962) and DeGraaff and
Eaton (2000). The rough surfaces show a significant in-
crease in Cf over the entire range of Reh, compared to the
smooth wall. At the highest Reh, the uniform sphere sur-
faces exhibit a 120% and a 140% increase, with and
without grit, respectively. The surface with the grit shows
a modest increase (10%) over the surface without grit.
While this increase is within the combined experimental
uncertainty of the measurements, a consistent trend of
higherCf for this surface is observed throughout the range
ofReh. It should be noted that the values ofCf presented in
Fig. 3 and Table 1 were calculated based on the Clauser
chart method for the smooth walls and the modified
Clauser chartmethod for the roughwalls. Thiswas chosen
because these methods have a lower experimental uncer-
tainty than those obtained using the total stress method.
The total stress method was used for verification, and in
all cases, the results from the methods agreed to well
within the experimental uncertainty.

4.2 Mean velocities

The mean velocity profiles in wall coordinates for all the
test surfaces at Reh�9,000 are presented in Fig. 4. The

smooth wall results collapse well on a smooth log-law
profile, while the rough wall results display a log region
that is shifted by DU+ below the smooth profile. There is
a slight increase in the roughness function for the surface
with grit. The mean velocity profiles for the three sur-
faces at similar Reh are plotted in defect form in Fig. 5.
Also shown for comparison is the smooth wall, direct
numerical simulation (DNS) results of Spalart (1988) at
Reh=1,410. The behavior of the mean profile for rough
walls in the buffer layer depends strongly on DU+. If the
roughness effect is weak (DU+ is small), the profile shape
shows a departure of the mean profile below the log-law,
as is seen for the smooth wall. If the roughness effect is
large (DU+ is large), the profile in the buffer layer can lie
above the log-law, as is seen for the present rough walls.

As indicated by the velocity defect profiles, the sur-
faces collapse well in the overlap and outer regions of
the boundary layer. A universal velocity defect profile
for rough and smooth walls was proposed by both
Clauser (1954) and Hama (1954). A collapse of the de-
fect profiles also supports the wall similarity hypothesis
of Townsend (1976) that states that turbulence outside
of the roughness sublayer is independent of the surface
condition at a sufficiently high Reynolds number.

Fig. 3 Skin-friction coefficient versus momentum thickness Rey-
nolds number. (Overall uncertainty in Cf: smooth wall, ±4%;
rough wall, ±7%)

Table 1 Boundary layer
parameters for the test cases Surface Ue (m/s) Reh Cf·103 d (mm) d* (mm) h (mm) H P DU+

Smooth 1.01 2,990 3.35 29.5 3.83 2.90 1.32 0.43 –
2.57 6,570 2.99 26.3 3.22 2.49 1.29 0.31 –
3.05 7,940 2.86 26.5 3.25 2.54 1.28 0.36 –
3.50 9,050 2.75 25.0 3.26 2.53 1.29 0.42 –

Uniform spheres 1.00 4,060 5.07 29.2 5.57 3.94 1.41 0.49 5.5
2.51 9,620 5.57 31.0 5.31 3.74 1.42 0.38 8.2
3.01 11,900 5.60 31.5 5.49 3.84 1.43 0.35 8.6
3.53 14,450 5.35 32.7 5.75 3.98 1.44 0.40 8.9

Uniform spheres
with grit

1.00 3,920 5.47 29.8 5.43 3.81 1.42 0.35 6.7
2.52 9,970 5.90 32.1 5.50 3.86 1.43 0.34 8.8
3.01 12,220 5.94 32.2 5.65 3.97 1.42 0.30 9.1
3.48 14,330 5.91 32.6 5.69 3.99 1.43 0.31 9.5

Fig. 4 Mean velocity profiles in wall coordinates for all surfaces at
Reh�9,000. (Overall uncertainty in U+: smooth wall, ±4%; rough
wall, ±7%)
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Numerous studies, including the works of Hama (1954),
Antonia and Krogstad (2001), and Schultz and Flack
(2003), have shown that the mean profiles for rough and
smooth walls collapse in defect form for a range of
roughness types.

The shift in the rough wall log-law profile as
a function of the roughness height is called the roughness
function, DU+=f(k+). The existence of a roughness
function for a class of surface roughness facilitates the
prediction of frictional drag based solely upon a physical
measure of the roughness height. This was demonstrated
for roughness on flat plates by Granville (1958), who
used boundary layer similarity analysis to predict the
frictional resistance coefficient, Cf=f(DU+), for plates of
arbitrary length. The knowledge of the roughness func-
tion for a given surface roughness can also be extremely
useful in turbulence modeling. If Townsend’s wall simi-
larity hypothesis is valid, DU+ for a given surface could
be used as an input for wall function and mixing length
models to predict the drag of rough surfaces of engi-
neering interest, as discussed by Patel (1998).

The roughness functions for the present surfaces are
shown in Fig. 6. Also shown for comparison are the
results of Ligrani and Moffat (1986) for a surface cov-
ered with close-packed uniform spheres. The results
from both the present surfaces show good collapse to a
Nikuradse-type roughness function (Schlichting 1979)
using k=Rt, the maximum peak to trough height. In
earlier work on sandpaper surfaces, Schultz and Flack
(2003) observed a similar collapse using k=0.75Rt. It
has been hypothesized by several researchers that, for
random rough surfaces, a single length scale related to
roughness height may not be sufficient to characterize
roughness and that some means of quantifying the sur-
face texture is also necessary (Townsin and Dey 1990;
Musker 1980; Grigson 1992). Townsin and Dey (1990)
have proposed a roughness length scale based on the
first three even moments of the surface profile power

spectral density in order to account for texture and have
shown reasonable collapse of the roughness functions
for a range of painted ship hull surfaces. In the present
study, it was originally hypothesized that the addition of
a secondary roughness length scale would make it nec-
essary to employ a roughness parameter that accounts
for surface texture. This proved not to be the case, as the
roughness functions for the two surfaces collapsed well
using simply Rt. Use of the Townsin and Dey (1990)
roughness length scale yielded a much poorer collapse of
the roughness functions. It should be noted that the
present surfaces were operated in the fully rough regime,
indicated by a linear roughness function. Both Ligrani
and Moffat (1986) and Bandyopadhyay (1987) observed
a greater degree of sensitivity of the roughness function
to roughness geometry in the transitionally rough flow
regime.

4.3 Reynolds stresses and quadrant analysis

The Reynolds stresses for all the test surfaces are shown
in Figs. 7, 8, and 9. Only the profiles at similar Reynolds
number (Reh�9,000) are presented. However, similar
trends were observed for the entire range of Reynolds
number tested. Also shown for comparison are the
results of the smooth wall direct numerical simulation
(DNS) of Spalart (1988) at Reh=1,410. The primary
reason for the lack of agreement of the present smooth-
wall data and the results of Spalart’s DNS is the dif-
ference in Reynolds number. The effects of the Reynolds
number for the axial Reynolds stress are an increase in
the peak and a shift in the peak towards the wall when
plotted with the outer variables. The differences
observed in the wall-normal Reynolds normal stress is a
peak shifted closer to the wall for higher Reynolds
numbers. These results were also documented by
DeGraaff and Eaton (2000) for similar Reynolds num-
bers. Near the outer edge of the boundary layer, the
present smooth-wall results lie above the DNS results.

Fig. 5 Velocity defect profiles for all surfaces at Reh�9,000.
(Overall uncertainty in (Ue�U)/us: smooth wall, ±5%; rough
wall, ±7%)

Fig. 6 Roughness functions (DU+ versus k+) for the rough
specimens. (Overall uncertainty in DU+, ±10%)
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This is due to the fact that there was some freestream
turbulence in the water tunnel (�0.5%), which was not
present in the DNS.

The axial Reynolds normal stress ðu02=u2sÞ profiles are
shown in Fig. 7. Some differences in u02=u2s are noted in
the near-wall region (y/d £ 0.1) between the rough and
smooth walls. For y/d>0.1, collapse of the axial Rey-
nolds normal stresses is observed for all of the surfaces.
The results also show good agreement with the smooth
wall DNS of Spalart (1988) for y/d>0.1. It is of note
that 5k, the approximate extent of the roughness sub-
layer given by Townsend (1976), corresponds to y/
d=0.16 and y/d=0.18 for the uniform spheres and
uniform spheres with grit surfaces, respectively. Excel-
lent agreement in the axial Reynolds normal stress
profiles is seen for both rough walls over the entire
boundary layer. Agreement of rough and smooth wall
axial Reynolds normal stresses outside the roughness
sublayer has been observed previously by Krogstad et al.
(1992), Perry and Li (1990), and Schultz and Flack

(2003). The absence of a near-wall peak in the u02=u2
s

profiles over the rough walls as is seen in the smooth
wall results is, according to Ligrani and Moffat (1986),
indicative of a boundary layer in the fully rough regime.

The wall-normal Reynolds normal stress ðv02=u2
sÞ

profiles are presented in Fig. 8. Reasonably good
agreement of the profiles is observed for all the surfaces
throughout the boundary layer. Collapse of the wall-
normal Reynolds normal stresses outside the roughness
sublayer was also seen on mesh roughness by Perry and
Li (1990) and on sandgrain and paint roughness by
Schultz and Flack (2003). However, Krogstad et al.

(1992) observed significant changes in v02=u2
s well into

the outer boundary layer for mesh roughness and, more
recently (Krogstad and Antonia 1999), for transverse

rod roughness. The differences seen in v02=u2
s may result

from a less severe boundary condition on the wall-nor-
mal velocity component for rough walls as compared to
a smooth wall, as discussed by Krogstad et al. (1992).
Between roughness elements, for example, y=0 is
located at some distance above the wall itself, unlike the
smooth wall case. However, the severity of the boundary
condition depends largely on the roughness type. Some
roughness types, including mesh, can provide a relatively
large DU+ for their height, k.

A quantitative measure of the effect on the mean flow
is the ratio of ks/k, where the equivalent sand roughness
height, ks, is calculated as (Raupach, Antonia and Raj-
agopalan 1991):

DUþ ¼ 1

j
ln kþs
� �

� 3:2: ð6Þ

For the present rough walls, ks/k�1, whereas ks/k�3
for the mesh roughness of Krogstad et al. (1992) and ks/
k�6 for the transverse bar roughness of Krogstad and
Antonia (1999). The present authors believe that, since
ks provides a ‘‘common currency’’ among roughness

Fig. 9 Normalized Reynolds shear stress profiles for all surfaces at
Reh�9,000. (Overall uncertainty in �u0v0=u2

s : smooth wall, ±8%;
rough wall, ±10%)

Fig. 8 Normalized wall-normal Reynolds normal stress profiles for
all surfaces at Reh�9,000. (Overall uncertainty in v02=u2

s : smooth
wall, ±6%; rough wall, ±8%)

Fig. 7 Normalized axial Reynolds normal stress profiles for all
surfaces at Reh�9,000. (Overall uncertainty in u02=u2s : smooth wall,
±5%; rough wall, ±7%)
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types for mean flow effects (Bradshaw 2000), it should be
more effective than k itself in defining the extent of the
roughness sublayer. Its main drawback is that it cannot
be predicted a priori for a generic roughness from
measurements of the roughness alone. Further research
is needed to identify the physical length scale that best
characterizes a generic rough surface.

If the extent of the roughness sublayer is taken to be
5ks, the roughness sublayer corresponds to y/d<0.33 for
the mesh roughness of Krogstad et al. (1992), and to
y/d<0.66 for the transverse bar roughness of Krogstad
and Antonia (1999), both of which are well into the
outer layer. In the present rough wall cases, the sublayer
defined in the aforementioned manner corresponds to
y/d<0.16 and y/d<0.18 for the uniform spheres and
uniform spheres with grit surfaces, respectively. The
roughness sublayer in this study is, therefore, large
compared with the thickness of the inner layer. Ligrani

and Moffat (1986) noted good collapse of v02=u2s in the
outer layer on uniform sphere roughness. In their study,
the largest value of 5ks/d was �0.1. This indicates that, if
the extent of the roughness sublayer is larger than the
inner layer itself (5ks/d>0.2), changes in the turbulence
structure in the outer layer are to be expected. It is worth
noting that the wall similarity hypothesis of Townsend
(1976) takes the rough wall case to be a small pertur-
bation to the smooth wall case, the assumption being
that k�d. For many rough wall flows, both laboratory
and real world, this simply is not the case and care
should be made in the application of the wall similarity
hypothesis. Further research is needed to better under-

stand the differences in v02=u2s observed on roughness of
different types.

The Reynolds shear stress ð�u0v0=u2
sÞ profiles are

presented in Fig. 9. Outside the roughness sublayer
(y/d‡0.2), there is very good agreement among the
Reynolds shear stresses for all of the surfaces and with
Spalart’s DNS results (1988). These results are in
agreement with the earlier studies of Ligrani and Moffat
(1986) on uniform spheres and Schultz and Flack (2003)
on sandgrain roughness. Krogstad et al. (1992) observed
moderate increases in the Reynolds shear stress well into
the outer layer on mesh roughness. They attributed this
to a significant increase in both the strength and fre-
quency of occurrence of the turbulent burst and sweep
motions well into the outer layer. Again, a better
understanding of how the type of the surface roughness
affects the wall-normal momentum transport is needed.
The Reynolds shear stress profiles for both of the rough
surfaces in the present study agree throughout the entire
boundary layer. The Reynolds shear stress correlation
coefficient, Ruv, shown in Fig. 10, also indicates good
agreement for y/d>0.2. In the near-wall region, Ruv is
larger for the rough walls than the smooth wall. This is
mainly due to the near-wall peak in u¢ for smooth walls,
which is absent for rough walls.

In order to better quantify the possible differences
between the rough and smooth wall boundary layers, the

u¢–v¢ quadrant decomposition technique was used
(Wallace et al. 1972). Using the hyperbolic hole size
method of Lu and Willmarth (1973), calculations of the
contributions of burst (Q2) and sweep (Q4) motions to
the Reynolds shear stress were made. The contribution
to u0v0 from a given quadrant, Q, can be expressed as:

u0v0
� �

Q ¼ lim
T!1

1

T

ZT

0

u0v0ðtÞIQðtÞ dt, ð7Þ

where IQ(t) is a trigger function defined as:

IQ ¼ 1 when u0v0j jQ� h
ffiffiffiffiffiffi
u02

p ffiffiffiffiffiffi
v02

p

0 otherwise:

(

ð8Þ

Figure 11 shows the normalized contribution from Q2
Reynolds shear stress for h=0. The results indicate that
the Q2 contribution is significantly higher in the near-
wall region (y/d<0.15) for the rough walls than for the
smooth wall. Outside of the roughness sublayer, the

Fig. 10 Reynolds shear stress correlation coefficient. (Overall
uncertainty in Ruv±8%)

Fig. 11 Normalized Reynolds shear stress contributions from Q2
with H=0 for all surfaces at Reh�9,000. (Overall uncertainty in
u0v0
� �

Q2
=u2

s : ±10%)
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contributions for both the smooth and rough walls are
very similar. The addition of a secondary roughness
length scale had little effect on the Q2 contribution
throughout the boundary layer. The results of Krogstad
et al. (1992) for mesh roughness also showed an increase
in the Q2 (h=0) contribution compared to a smooth
wall, although the effect was observed throughout most
of the boundary layer. The normalized contribution
from Q4 Reynolds shear stress is presented in Fig. 12 for
h=0. The results indicate that the magnitude of the Q4
events are also significantly higher in the near-wall re-
gion (y/d<0.15) for the rough walls than for the smooth
wall, but outside the roughness sublayer, the profiles
collapse. Both rough walls show good agreement
throughout the entire boundary layer. Krogstad et al.
(1992) also showed an increase in the Q4 (h=0) contri-
bution compared to a smooth wall, although the dif-
ference was observed to slowly decrease all the way out
to the edge of the boundary layer, at which point, it was
negligible.

In order to investigate the contributions of the
stronger Q2 and Q4 events, quadrant analyses were also
made using h=2, which corresponds to instantaneous
Reynolds shear stress producing events stronger than
5 u0v0: These results are shown in Figs. 13 and 14. The
stronger Q2 events are observed to be enhanced for the
rough wall over the range 0.1<y/d<0.3. Further from
the wall, the profiles show reasonable agreement. Very
near the smooth wall, the contribution of strong Q2
events is more pronounced than on the rough wall. The
upturn in the contribution from strong Q2 ‘‘ejection’’
events on smooth walls was also documented by
Krogstad et al. (1992). This is due to the fact that strong
Reynolds stress contributions from ‘‘ejection’’ events are
more favored than from ‘‘sweep’’ events due to the wall
boundary condition. On the rough wall, this is not the
case.

In contrast (Fig. 14), the strong Q4 events were
enhanced on the rough walls for y/d<0.05. This was

also observed by Krogstad et al. (1992), and is probably
the result of the less strict boundary condition for wall-
normal flow near the boundary. At y/d>0.05, the results
from both the smooth and rough walls show good
agreement. The results for the two rough walls collapse
for both Q2 and Q4 (h=2) over the entire boundary
layer. To observe the relative importance of the Q2 and
Q4 events in the boundary layer, their ratio is presented
in Fig. 15 for h=0. The most significant difference is
again noted for y/d<0.05, where the strength of the Q2
events is higher than the Q4 for the smooth wall profiles,
while the opposite is true for the rough wall. Although
not presented here, the qualitative results for the h=2
case were quite similar to h=0.

4.4 Triple products

The distributions of the normalized triple products,
u03=u3

s and v03=u3s ; are presented in Figs. 16 and 17,

Fig. 13 Normalized Reynolds shear stress contributions from Q2
with H=2 for all surfaces at Reh�9,000. (Overall uncertainty in
� u0v0
� �

Q2
=u2

s : ±13%)

Fig. 14 Normalized Reynolds shear stress contributions from Q4
with H=2 for all surfaces at Reh�9,000. (Overall uncertainty in
� u0v0
� �

Q4
=u2

s : ±13%)

Fig. 12 Normalized Reynolds shear stress contributions from Q4
with H=0 for all surfaces at Reh�9,000. (Overall uncertainty in
� u0v0
� �

Q4
=u2

s : ±10%)
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respectively. The distributions of the normalized axial
and wall-normal turbulent flux of Reynolds shear stress,
u02v0=u3

s and u0v02=u3s ; are presented in Figs. 18 and 19,
respectively. Also given for comparison are the smooth
wall results of Murlis et al. (1982) at Reh=4,750 and the
results over sandpaper roughness of Andreopoulos and
Bradshaw (1981) at Red=1.7·105. There is good quali-
tative agreement between the present smooth wall results
for u03=u3s and those of Murlis et al. (1982). However,

there are significant differences in u03=u3s between

the present rough walls and the smooth wall for
0.1<y/d<0.3. The results indicate that there is increased
turbulent flux of axial Reynolds normal stress in the
streamwise direction for the rough walls. The region of
influence is the same as that identified by quadrant
analysis to be an area of enhanced strong Q2 events. It is
of note that there is very good agreement between the
uniform spheres and the uniform spheres with grit for
u03=u3

s : Andreopoulos and Bradshaw (1981) also noted
differences in the triple products for rough walls, com-
pared to smooth walls, that extended out to y=10k.
This is approximately the extent of influence noted in the
present study (�8k). It should be noted, however, that
there is considerable experimental uncertainty in all the
triple products. It is most pronounced in v03=u3

s and is an
inherent limitation resulting from measuring velocities at
an angle of �45� to the mean flow. This was noted by
Koskie and Tiederman (1991) for boundary layer data
measured by LDV, but it is doubtlessly true for triple
products measured with X-wire hot-wire probes as well.
The fourth-order moments are effected to a lesser degree
(Koskie and Tiederman 1991).

There is reasonable qualitative agreement between
the present smooth wall results and those of Murlis et al.
(1982) for v03=u3s (Fig. 17). While there is some increase
in v03=u3

s for the smooth wall compared to the rough
wall, as also noted by Bandyopadhyay and Watson
(1988), the difference is within the experimental uncer-
tainty. Antonia and Krogstad (2001) noted differences in
the sign of v03=u3

s out to y/d=0.3 on a wall covered with

Fig. 16 Normalized triple product, u03=u3s ; for all surfaces at
Reh 9,000. (Overall uncertainty in u03=u3s : ±28%)

Fig. 17 Normalized triple product, v03=u3s ; for all surfaces at

Reh�9,000. (Overall uncertainty in v03=u3s : ±38%)

Fig. 15 Ratio of Reynolds shear stress contributions from Q2 to
Q4 with H=0 for all surfaces at Reh�9,000. (Overall uncertainty in
� u0v0
� �

Q2
= u0v0
� �

Q4
: ±10%)

Fig. 18 Normalized axial flux of Reynolds shear stress, u02v0=u3s ; for
all surfaces at Reh�9,000. (Overall uncertainty in u02v0=u3s : ±22%)
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transverse rods compared to a smooth wall and a mesh
roughness. There is quite good agreement between the
uniform spheres and the uniform spheres with grit for
v03=u3s over the entire boundary layer.

The axial turbulent flux of the Reynolds shear stress
ðu02v0=u3

sÞ results (Fig. 18) exhibit differences between
the rough and smooth wall profiles. These are observed
for 0.1<y/d<0.3 as an increase in the turbulent flux of
�u0v0 in the upstream direction for the rough wall flows
compared to the smooth wall. For y/d>0.3, there is
good agreement between all the surfaces. The agreement
for the two rough walls is excellent throughout the entire
boundary layer. Antonia and Krogstad (2001) also
noted good agreement in u02v0=u3s for mesh roughness
and a smooth wall, but observed significant differences
over a large part of the boundary layer for transverse
rod roughness. The wall-normal turbulent flux of the
Reynolds shear stress ðu0v02=u3sÞ results (Fig. 19) show no
significant differences for any of the surfaces tested.

5 Conclusion

In this work, the mean velocity and turbulence structure
of two rough surfaces were compared to that for a
smooth wall. Good collapse of the mean profiles for all
the surfaces in velocity defect form was seen. The
addition of a secondary roughness length scale had no
effect on the Reynolds stresses or higher moment tur-
bulence quantities throughout the entire boundary layer,
indicating that the larger scale roughness has a domi-
nant effect on the turbulence structure, even within the
roughness sublayer. The roughness function increased
slightly with the addition of the secondary length scale.
However, if the change in the roughness height is
accounted for, the roughness functions for both surfaces
agree, indicating that this roughness texture had no ef-
fect on DU+. This is in contrast to the work of Cole-
brook and White (1937), who showed the inclusion of a

smaller scale uniform roughness significantly increases
the wall shear stress for surfaces with sparse larger scale
roughness elements, even when the peak to trough
roughness height is unchanged. It is believed that the
reason for the difference is that the present rough sur-
faces were operated in the fully rough regime, while
those of Colebrook and White were transitionally rough.
The distinction being that viscous stresses are negligible
in the near-wall region of fully rough boundary layers,
whereas they may be appreciable in a transitionally
rough boundary layer. The inclusion of a small scale
roughness does not significantly alter the turbulent wake
of the larger scale roughness elements in the fully rough
regime.

The present results show good support for Town-
send’s wall similarity hypothesis (1976). Excellent
agreement among the smooth and rough surfaces was
observed in the Reynolds stresses for y>5k. The higher-
order turbulence statistics up to the fourth moment also
showed good agreement for y>8k. The most salient
change in the turbulence structure for the rough walls
was an increase in the Reynolds shear stress contribu-
tions from the Q4 events in the near-wall region. This
was also seen by Krogstad et al. (1992). It is presumably
the result of the less severe boundary condition for the
wall-normal velocity component on the rough wall.
There were also differences in u03=u3s between the rough
walls and the smooth wall for y<8k, indicating that
there is increased turbulent flux of axial Reynolds nor-
mal stress in the streamwise direction for the rough
walls. This is also thought to be related to the stronger
Q4 events that occur near the rough wall.

Evaluation of this work and previous rough wall
studies indicates that the equivalent sand roughness
height, ks, may be a more appropriate length scale for
defining the extent of the roughness sublayer than the
roughness height itself. The advantage of using ks is that
it provides a ‘‘common currency’’ (Bradshaw 2000)
among disparate roughness types which reflects the
roughness effect on the mean flow. Taking the roughness
sublayer thickness to be equal to 5ks also explains some
of the departures from the wall similarity hypotheses
that have been noted in the outer region of the boundary
layer in previous rough wall studies. It should be stressed
that Townsend’s hypothesis assumes that the rough wall
flow case is a small perturbation to the smooth wall case
(i.e., k«d). For many laboratory and engineering flows,
this underlying assumption is not satisfied. It is plausi-
ble, therefore, that if the roughness sublayer is large
compared to the thickness of the inner layer (5ks/
d>0.2), wall similarity should not be valid. A better
understanding of the conditions that give rise to depar-
tures from wall similarity and the physical mechanisms
responsible for the departures are needed.
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