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Measurements are presented from turbulent boundary layers over periodic two- and
three-dimensional roughness. Cases with transverse rows of staggered cubes and cases
with solid square transverse bars of two sizes were considered. Previous results by
Volino, Schultz & Flack (J. Fluid Mech. vol. 635, 2009, p. 75) showed outer-layer
similarity between cases with three-dimensional roughness and smooth walls, and
deviations from similarity in cases with large two-dimensional transverse bars. The
present results show that differences also occur with small two-dimensional bars and
to a lesser extent when the bars are replaced with rows of staggered cubes. Differences
are most apparent in correlations of turbulence quantities, which are of larger spatial
extent for the rough-wall cases. The results with the staggered cubes indicate that part
of the periodic roughness effect is caused by the repeated disturbance and recovery of
the boundary layer as it encounters a row of roughness followed by a smooth surface.
A larger effect, however, is due to the blockage caused by the two-dimensional
transverse bars, which extend across the entire width of the boundary layer. The
small two-dimensional bars have a larger effect than the staggered cubes, in spite of
the bar height being only 11 viscous units and 1/7 of the cube height. The effect of the
small bars extends well into the outer flow, indicating that effects observed previously
with larger bars were not due only to a thickening of the roughness sublayer. The
observed differences between the rough- and smooth-wall results are believed to be
caused by large-scale attached eddies which extend from the roughness elements to
the edge of the boundary layer.
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1. Introduction

Roughness plays an important role in many wall-bounded flows, as most surfaces
of practical interest have texture or imperfections due to machining, fouling, pitting,
surface deposits, etc. The surface roughness generally leads to significant increases
in drag as the near-wall fluid moves around and over roughness elements. Even
surfaces that demonstrate smooth behaviour at low velocities can show roughness
effects with increasing Reynolds number. Understanding the mechanisms responsible
for the changes in turbulence parameters and increase in drag for a wide range of
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roughness types is important for the prediction of aerodynamic and hydrodynamic
performance.

A wide range of rough surfaces have been investigated as outlined in the review
articles of Raupach, Antonia & Rajagopalan (1991), Jiménez (2004) and Flack &
Schultz (2010). The focus of these studies has been to understand the extent that
roughness modifies the turbulent boundary layer for frictional drag prediction
and flow modelling. While geometric factors such as roughness height, slope and
density are important, whether the roughness geometry is two-dimensional (2-D,
e.g. transverse rods, bars) or three-dimensional (3-D) has proven to be particularly
significant. An important modelling assumption is that the flow over the rough-wall
boundary layer is similar to the flow over a smooth wall outside of a roughness
sublayer. Townsend’s (1976) Reynolds number similarity hypothesis states that
turbulent motions in the outer flow are unaffected by surface conditions when
normalized with the friction velocity, u,, and the boundary layer thickness, §. The
hypothesis assumes that § is large compared to the roughness height k. A number of
studies have shown support for Townsend’s hypothesis for 3-D roughness of various
types including the works of Ligrani & Moffat (1986) for packed spheres, Perry & Li
(1990) for expanded mesh, Flack, Schultz & Shapiro (2005) for sandpaper and mesh,
Kunkel & Marusic (2006) for salt flats ground cover, Shockling, Allen & Smits (2006)
for a honed pipe, Schultz & Flack (2007) for a scratched surface and Wu & Christensen
(2007) for roughness replicating deposits on gas turbine blades. Similarity has also
been observed to exist for large 3-D roughness as demonstrated by Castro (2007)
for mesh, staggered cubes and gravel chips with k/8 < 1/10 for the largest roughness,
and by Flack, Schultz & Connelly (2007) for mesh and sandpaper with k/§ < 1/16.
Similarity in the turbulence structure, as quantified by turbulence spectra, probability
density functions (PDFs) of the swirl strength, two-point spatial correlations of
turbulence quantities and swirl, structure angles and length scales of correlations,
was reported by Volino, Schultz & Flack (2007) for mesh roughness. The dominant
structure in both the rough-wall and smooth-wall outer layers was the vortex packet.
Wu & Christensen (2007) reported similarity in the outer-layer turbulence structure
for smooth walls and a wall with replicated turbine blade roughness.

While most studies have demonstrated that outer-layer similarity with smooth-wall
boundary layers holds for a large range of 3-D roughness types and sizes, boundary
layers over 2-D k-type roughness have exhibited different behaviour. Krogstad &
Antonia (1999) considered 2-D transverse rods. The streamwise rod spacing, p, in
this case was four times the rod diameter. Significant increases in the Reynolds
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stresses above smooth-wall results, particularly in the v2 and —u’v’" components,
were present throughout the boundary layer. Leonardi et al. (2003) performed a
direct numerical simulation (DNS) of flow over transverse bars on one wall of a
channel with 1.33 < p/k <20. A bar spacing of p/k =28 resulted in the largest form
drag and subsequently produced the largest roughness function. Djenidi et al. (2008)
conducted experiments with 2-D transverse square bars and p/k ranging from 8§
to 16. The roughness function was greatest for p/k =8; however, the largest effect
on the Reynolds stresses occurred for p/k=16. Volino, Schultz & Flack (2009)
conducted experiments with transverse square bars and p/k=38. They reported an
increase in the Reynolds stresses in the outer layer for the 2-D bars compared to
smooth-wall cases. They also noted the same hairpin structure as in smooth-wall
cases with the same flow structure angles. Frequent eruptions of the fluid from the
near-wall region were observed which extended into the outer part of the boundary
layer over 2-D roughness. These eruptions were not observed over smooth walls or
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walls with 3-D mesh roughness. The eruptions were tied to about a 40 % increase
in the extent of attached eddies from the wall into the boundary layer. Two-point
correlations of turbulence quantities and swirl strength indicated an increase in the
size of flow structures in the 2-D roughness case by about 40 % in the streamwise and
wall-normal directions, and 15 % in the spanwise direction compared to smooth-wall
and 3-D roughness cases. Lee & Sung (2007) conducted a DNS for a turbulent
boundary layer over a wall with 2-D disturbances. The disturbances modelled 2-
D transverse square bars with p/k=38. They also reported an increase of all the
Reynolds normal stresses and the Reynolds shear stress across most of the boundary
layer. The aforementioned studies all involved turbulent boundary layers. Krogstad
et al. (2005) considered a turbulent channel flow with 2-D bars both experimentally
and with DNS, and for the most part showed no roughness effects in the outer
layer. As noted in Krogstad et al. (2005) and also in Volino et al. (2009), channel
flows respond differently to roughness than boundary layer flows possibly due to the
difference in the outer boundary condition.

The studies discussed above seem to indicate that 2-D and 3-D roughnesses affect
turbulent boundary layers differently. For these studies, the 2-D roughness height
has been a significant fraction of the boundary layer thickness and the spacing of
the 2-D elements has been such as to create a large disturbance. It is therefore
unclear whether 2-D roughness behaves in a fundamentally different way than 3-D
roughness or whether the differences observed are simply due to the relative roughness
height or the manner in which the boundary layer is periodically disturbed. The aim
of this paper is to experimentally investigate two fundamental questions, posed
below, related to the differences observed between 2-D and 3-D rough-wall boundary
layers.

First, does 2-D roughness cause a breakdown of Townsend’s outer-layer similarity
hypothesis, or does 2-D roughness simply increase the thickness of the roughness
sublayer relative to the total boundary layer thickness? For 3-D roughness, Flack
et al. (2007) found that the roughness sublayer extended roughly 5k or 3k, from
the wall, with 5k approximately equal to 3k,. For 2-D k-type roughness, k; can be
much larger than k, as the flow must go over the top of 2-D transverse roughness
elements, while for 3-D elements the flow can simply go around the roughness. When
the flow goes over the top of a 2-D element, the boundary layer separates, and if p/k
is sufficiently large, it reattaches before the next element. The repeated separating
and reattaching results in a large effective roughness height relative to k. In the 2-D
roughness case of Volino et al. (2009), k,/k =13.6. Significant differences were seen
between the 2-D rough- and smooth-wall cases outside of 5k, but if the outer layer
were defined in terms of 3k, the entire boundary layer would be within the roughness
sublayer, and no conclusion could be drawn regarding outer-layer similarity. Most
of the previous studies that observed differences in the Reynolds stresses used 2-D
roughness with a large effective roughness height. Outer-layer similarity may hold if
the size of the 2-D roughness elements is significantly reduced.

A second question arises regarding the mechanism by which 2-D roughness changes
the boundary layer. Are the differences observed between 2-D and 3-D roughness
cases due to the 2-D nature of the roughness elements themselves, which completely
block the near-wall flow, or is the repeated disturbance and recovery caused by
elements with large p/k that is responsible for the changes in the boundary layer? If
the latter is the case, then 3-D roughness elements in an arrangement that repeatedly
disturb the boundary layer may produce outer-layer effects. Possibly both spanwise
blockage and repeated disturbances play a role.
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k=0.23 mm

FIGURE 1. Schematic of (a) a 2-D bar and (b) 3-D staggered cube roughness.

The present study addresses the above questions. To test outer-layer similarity,
a wall was fabricated with very small transverse bars. Comparisons will be made
between the flows over the previously tested larger bars and the bars that have
a roughness height 7.5 times smaller. The small-bars result in a boundary layer
with § significantly larger than k;. To answer the second question, experiments were
conducted on a wall with the transverse bars of Volino et al. (2009) replaced by
rows of staggered cubes with the same k and p/k. The boundary layer experiences
repeated disturbances; however, the flow can move around the roughness elements
through transverse gaps of dimension k. Comparisons will be made between the flow
over the previously tested larger transverse bars and the rows of staggered cubes.

2. Experiments and data processing

Experiments were conducted in the water tunnel as described by Volino et al.
(2007). The test section was 2m long, 0.2 m wide and nominally 0.1 m tall. The lower
wall was a flat plate which served as the test wall. The upper wall was adjustable and
set for a zero streamwise pressure gradient. The acceleration parameter, defined as

_LdUe
U2 dx’

(2.1)

was less than 5 x 10~°. The upper wall and sidewalls provided optical access. The
first test wall was an acrylic plate machined with small 2-D transverse square bars, as
shown in figure 1. The bar height was k =0.23 mm. The bar spacing was p/k =8. The
second test wall was also an acrylic plate and was machined with rows of staggered
cubes, as shown in figure 1. The cube height was k =1.7 mm. The spanwise spacing
between the cubes was also 1.7 mm. The streamwise spacing between the rows was
p/k =38. For both test walls, the boundary layer was tripped near the leading edge with
a 0.8 mm diameter wire, ensuring a turbulent boundary layer. Velocity measurements
showed that a core flow remained at the measurement location. Smooth and large
2-D transverse bar comparison cases were documented in Volino et al. (2007) and
Volino et al. (2009) respectively. An acrylic test plate was used for the smooth-wall
case. The large 2-D bars were machined in a similar plate with bars of the same
height and streamwise spacing as the cubes of the present study.

The present geometry was selected to maintain the same p/k (as defined in figure 1)
for both of the present roughness types. Previous investigations have shown that the
response of the flow is sensitive to this ratio (e.g. Perry, Schofield & Joubert 1969;
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X U, 5 U, Rey  Re,=6" kf
Wall (m) (ms™!) (mm) (ms™Y) Ub/v =ud/v =ku/v k/§
Small 2-D bars 1.00 0.951 36.7 0.0492 4984 1749 97 0.0062
3-D staggered cubes 1.00  0.681 469 0.0391 4952 1869 255 0.036
Smooth wall 1.50  1.255 352  0.0465 6069 1772 — —
Large 2-D bars 1.00  0.499 54.6  0.0341 4260 1790 755 0.031

TaBLE 1. Boundary layer parameters.

Furuya, Miyata & Fujita 1976). In maintaining p/k, the roughness area density ratio,
defined as the windward frontal area of the roughness divided by the planform area,
is 12.5 % for the 2-D bars and 6.25 % for the 3-D cubes. Leonardi & Castro (2010)
showed that the area density ratio is an important parameter for arrays of staggered
cubes and that the largest drag is produced for roughness area density ratios of
~15%. Although they do not match, both area ratios lie in what is considered the
sparse roughness regime as defined by Jiménez (2004).

Flow was supplied to the test section from a 4000 1 cylindrical tank. Water
was drawn from the tank to two variable speed pumps operating in parallel
and then sent to a flow conditioning section consisting of a diffuser containing
perforated plates, a honeycomb, three screens and a 3-D contraction. The test section
followed the contraction. The free-stream turbulence level was less than 0.5 %. Water
exited the test section through a perforated plate emptying into the cylindrical
tank. The test fluid was filtered and deaerated water. A chiller was used to
keep the water temperature constant to within 1°C during all tests.

Boundary layer velocity measurements were obtained with a TSI FSA3500 two-
component laser Doppler velocimeter (LDV). The LDV consists of a four-beam fibre
optic probe that collects data in backscatter mode. A custom-designed beam displacer
was added to the probe to shift one of the four beams, resulting in three co-planar
beams that can be aligned parallel to the wall. Additionally, a 2.6:1 beam expander
was located at the exit of the probe to reduce the size of the measurement volume.
The resulting probe volume diameter (d) was 45 um with a probe volume length (/)
of 340 pm. The corresponding measurement volume diameter and length in viscous
length scales were d™ < 2.2 and [T < 16.

Measurements were made 1 m downstream of the trip. The velocity in the test
section was set for each case so that the turbulent Reynolds number approximately
matched the value of the smooth-wall comparison case, as shown in table 1. For the
velocity profiles, the LDV probe was traversed to 40 locations within the boundary
layer with a Velmex three-axis traverse unit. The traverse allowed the position of
the probe to be maintained to +5um in all directions. A total of 50000 random
velocity samples were obtained at each location in the boundary layer. The data
were collected in coincidence mode. The flow was seeded with 2 pm diameter silver-
coated glass spheres. The seed volume was controlled to achieve acceptable data
rates while maintaining a low burst density signal (Adrian 1983). Measurements were
made 3k downstream of the centre of a roughness element. Measurements showed
no significant variation between profiles acquired at different streamwise or spanwise
positions except for a region within about 3k of the wall.

Flow-field measurements were acquired using particle image velocimetry (PIV). A
streamwise—wall-normal (xy) plane was acquired at the spanwise centreline of the test
section. The flow was seeded with 2 um diameter silver-coated glass spheres. The light
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source was a Nd:YAG laser set for a 350 us interval between pulses for each image
pair in the small 2-D transverse bar case and to a 525 ps interval for the 3-D cube
case. The fields of view were 90 mm x 67 mm and 107 mm x 80 mm, in the 2-D bar
and 3-D cube cases respectively, extending from near the wall into the free stream in
both cases. A CCD camera with a 1376 x 1024 pixel array was used. Image processing
was done with TSI Insight 3G software. Velocity vectors were obtained using 16 pixel
square windows with 50 % overlap. For each measurement plane, 2000 image pairs
were acquired for processing.

The data processing techniques used to compute the mean velocity, turbulence
statistics and wall shear are described in detail in Schultz & Flack (2007). The
techniques used to compute spatial correlations and swirl strength are described in
Volino et al. (2007) and defined again below.

The two-point spatial correlation is defined at the wall-normal position y,., as

A(x, Yrer) B(x + AX, yror + Ay)
UA(yreff)OB(yref‘i' Ay)

where A and B are the quantities of interest at two locations separated
in the streamwise and wall-normal directions by Ax and Ay, and o, and op are
the standard deviations of A and B at y., and y., + Ay respectively. At every
Yref» the overbar indicates that the correlations were averaged among location pairs
with the same Ax and Ay, and then time averaged over the 2000 vector fields.
Correlations of u, v, the swirl strength, and all cross-correlations were considered.

The swirl strength, 4, can be used to locate vortices. It is closely related to the
vorticity but discriminates between vorticity due only to shear and vorticity resulting
from rotation. It is defined as the imaginary part of the complex eigenvalue of the
local velocity gradient tensor and is defined as follows (Zhou et al. 1999):

A
[dij] = [Ur Uer vci] )Lcr ;Vci [vr Uer vci]il, (23)
_;“ci ;Lcr

Rap(Yrer) = : (2.2)

where [d;;] is the velocity gradient tensor. It is used in the present study in a 2-D form
as explained in several studies including Hutchins, Hambleton & Marusic (2005). A
more complete discussion is available in Chong, Perry & Cantwell (1990). By defini-
tion, A is always =0, but a sign can be assigned based on the local vorticity to show the
direction of rotation. Rotation in the direction of the mean shear would have negative-
signed swirl strength and is referred to as prograde swirl, and rotation in the opposite
direction is referred to as retrograde. The swirl strength, A, is assumed signed in the
present work. In the xy plane, A can be used to identify the heads of hairpin vortices.

3. Results

The boundary layer thickness, friction velocity and other quantities from the
velocity profiles of the present cases and the comparison cases are presented in
table 1. Although alone they do not necessarily guarantee fully rough conditions,
the roughness Reynolds numbers based on the equivalent sand roughness height,
ki =ksu,/v, which are 255 (cubes), 97 (small bars) and 755 (large bars) are large
enough to imply fully rough conditions. The roughness Reynolds number is given by
the following (Schlichting 1979):

1
AU' = —Ink} — 3.5, (3.1)
K
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FIGURE 2. Mean velocity profiles in inner variables.

where AU is the roughness function. The ratios of k,/k are 13.6, 8.9 and 3.8 for the
large bars, small bars and staggered cubes, respectively. These ratios agree with the
results of Jiménez (2004), who showed k,/k as a function of the blockage caused by
roughness elements. Both &, and k" for the staggered cubes lie between the values for
the two bar cases. The friction velocity, u,, was determined using the Clauser chart
method with k =0.41 and B =15.0. The uncertainty in u, was +3 % and +6 % for
the smooth- and rough-wall cases respectively. The total stress method was also used
to evaluate u,, and the resulting values agreed with those from the Clauser chart
method to within 2 %. The uncertainties in the boundary layer thickness (based here
on U/U,=0.99) and momentum thickness were 7 % and 4 % respectively.

Uncertainty estimates were obtained using the method of Moffat (1988) to
combine precision and bias errors. Precision errors were found by using the observed
variability from repeated velocity profiles taken on both the smooth and rough
plates. The precision uncertainty bounds were calculated at 95 % confidence. The
LDV data were corrected for velocity bias using the burst transit time weighting
scheme of Buchhave, George & Lumley (1979). Velocity gradient bias was corrected
on the smooth-wall results using the methodology of Durst et al. (1998). Velocity
gradient bias for the rough-wall profiles was insignificant due to the lack of velocity
measurements very near the wall. Fringe bias was also considered insignificant, as
the beams were shifted well above a burst frequency representative of twice the
free-stream velocity (Edwards 1987). Further details of the uncertainty determination
methods are given in Flack et al. (2005).

3.1. Mean velocity and turbulence profiles

Mean velocity profiles for the cases in table 1 are shown in figure 2 in inner
coordinates. The results in figures 2 and 3 are based on LDV measurements. The
larger roughness elements (both cubes and 2-D bars) result in a larger shift than the
small bars, and the large bars result in a larger shift than the equally sized cubes. Mean
velocity and Reynolds stress profiles are shown in outer coordinates in figure 3. As
previously shown in Volino et al. (2009) for the smooth-wall and large 2-D bar cases,
no clear differences are visible in the mean profiles in defect coordinates. Similarity
in the mean profiles was also noted by Krogstad & Antonia (1999) for 2-D and 3-D
roughnesses. These results indicate that the mean flow in the outer layer is fairly
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FiGURE 3. Velocity profiles in outer coordinates. (a) Mean velocity in defect form,
(b) streamwise Reynolds normal stress, (c¢) wall-normal Reynolds normal stress and
(d) Reynolds shear stress.

insensitive to surface conditions, even for significant wall perturbations, consistent
with the observations of Connelly, Schultz & Flack (2006) and Castro (2007).

The u> normal stress is shown in figure 3(b). The results for the large 2-D bars
are somewhat higher than those in the smooth-wall case in the outer layer, but the
differences are not large. No significant effect is observed for the small 2-D bars or
the 3-D cubes outside the roughness sublayer. The present observation that surface
roughness has little effect on u’? in the outer flow is consistent with the literature
(e.g. Kr&gﬁtad & Antonia 1999; Flack et al. 2005; Wu & Christensen 2007).

The v2 normal stress is presented in figure 3(c). The large 2-D roughness results
are ~20 % higher than thgg:r in the smooth-wall case. This difference is observed to
y/8 of about 0.7. While v for both the small 2-D bars and the 3-D cubes lies
above that in the smooth-wall case in the outer layer, the difference observed is much
smaller than that for the large 2-D bar case. An increase in v2  for 2-D roughness is
consistent with the observation of Krogstad & Antonia (1999).

For the —u/'v/ " profiles (figure 3d), differences between the four cases are more
apparent. Again the large 2-D bars show the largest difference from the smooth wall,
but the small bars show fairly large deviation as well, that persists for y/8 <0.7.
For the small bars, y/§ =0.7 corresponds to 12.4k,, indicating significant effects well
beyond the roughness sublayer. Also shown for comparison is the analytical result
from Perry, Marusic & Jones (2002), which agrees well with the present smooth-wall
data. The results for the 3D cube are slightly below the smooth-wall results although
this difference is within the experimental uncertainty of the measurements.

In all the Reynolds stresses the 3-D cube case shows a relatively small deviation
from the smooth-wall results, while the 2-D bars exhibit larger differences, particularly
in —u'v'". This occurs despite the cubes being 7.5 and 3.2 times larger than the small
bars in terms of k and k, respectively. In fact, the height of the small bars is only 11
viscous length scales. It appears, therefore, that 2-D roughness, even if very small, can
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FiGURE 4. Instantaneous velocity vector field realizations with prograde swirl (grey shading)
and retrograde swirl (black shading) superimposed: (a) small 2-D bars and (b) 3-D cubes.

give rise to significant changes in the outer flow. This is noteworthy given that such
changes are not observed for most types of 3-D roughness, even in the limit of large
roughness height (e.g. Flack et al. 2007). In comparing the present Reynolds stress
results for the small 2-D bars and 3-D cubes, the spanwise blockage caused by the
2-D bars appears to have a larger effect than the repeated disturbance and recovery
of the boundary layer that results from roughness with streamwise periodicity. In the
following section, the turbulence structure for each of the cases will be considered.

3.2. Velocity fields, xy plane

Instantaneous velocity vector fields shown in Volino et al. (2009) showed frequent
large eruptions of fluid which extended from the near-wall region to the edge of
the boundary layer in the large 2-D bar case. Such eruptions were not seen in the
smooth-wall case or in 3-D roughness cases considered. In the present study, the large
eruptions were witnessed for all the rough-surface cases. Instantaneous realizations are
shown in figure 4 for the present rough-wall cases with a uniform convection velocity
0.8U, subtracted from each field. It should be noted that while large eruptions were
observed for both the small 2-D bar and 3-D cube cases, they were more routinely
observed and typically stronger for the small bars than for the cubes. This difference in
structure is quantified in figure 5, which shows the PDF of the instantaneous Reynolds
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FIGURE 5. Probability density function of instantaneous u'v'™ at y/§ =0.8.

shear stress (u'v'") for y/8 =0.8. Very strong —u'v'" events are much more prevalent
for the 2-D roughness cases than for the smooth-wall case. Events at y/§ =0.8 with
—u'v't < —4 occur 2.0 times as often with the small 2-D bars than with the smooth
wall, and 6.8 times as often with the large 2-D bars than with the smooth wall. A
more modest increase is observed for the 3-D staggered cubes, which show a 7 % rise
in events with —u'v'" < —4 than in the smooth-wall case.

Further quantification of the flow structure is provided in figure 6, which shows
two-point correlations of the streamwise fluctuating velocity, R,,, with the correlation
centred at y,.;/8 =0.4. The contours in figures 6(a) and 6(d) have similar shape, but
the small and large 2-D bars have the largest streamwise and wall-normal extent of
R,.. The 3-D cubes also show an increase in the spatial extent of R,, compared to the
smooth wall, although the increase is not as large as that observed for the 2-D cases.
The angle of inclination of R,, is related to the average inclination of the hairpin
packets. It was determined, as in Volino et al. (2007), using a least-squares method
to fit a line through the points farthest from the self-correlation peak on each of the
five R,, contour levels 0.5, 0.6, 0.7, 0.8 and 0.9 both upstream and downstream of
the self-correlation peak. For the present cases, the inclination angle remains nearly
constant for reference points between y/§ =0.2 and 0.5. For y/§ < 0.2 the angle drops
somewhat as the contours begin to merge with the wall. For y/§ > 0.5, the angle
decreases towards zero, as these points tend to be above the hairpin packets which
produce the inclination. For 0.2 < y/§ < 0.5, the angles are 12.0° +1.3°, 13.2° +1.4°,
10.2° £+2.7° and 10.6° 4+ 1.2° for the small 2-D bars, 3-D cubes, smooth and large 2-D
bar cases respectively. The range in each case indicates the span about the average
observed between y/§ =0.2 and 0.5. The difference between the cases is comparable
to the scatter in the data and the range reported in the literature for smooth-wall
boundary layers (e.g. Adrian, Meinhart & Tomkins 2000). Therefore the large-scale
events noted above do not significantly affect the structure angle.

The streamwise and wall-normal extents of R,, are shown in figures 6(¢) and 6(f) as
a function of the reference point. The distance, Lx,,, is defined as in Christensen & Wu
(2005) as twice the distance from the self-correlation peak to the most downstream
location on the R,,=0.5 contour. In the streamwise direction, averaging between
y/8=0.2 and 0.5, the 3-D cube results are 18 % higher than the smooth-wall results.
The small and large 2-D bar results are 26 % and 38 % higher respectively than
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FiGgure 6. Contours of R, centred at y/§ ~ 0.4, outermost contour R,,, =0.5, contour spacing
0.1, (a) small 2-D bars, (b) 3-D staggered cubes, (¢) smooth wall, (d) large 2-D bars;
(e) streamwise extent of R,, =0.5 contour as a function of y/§ and (f') wall-normal extent of
R.. =0.5 contour as a function of y/3.
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the smooth-wall results for the same y/§ range. The wall-normal extent of the R,,
correlation, Ly,,, is determined based on the wall-normal distance between the points
closest and farthest from the wall on a particular contour. Figure 6(f) shows Ly,,/§
as a function of y/8 using the R,, =0.5 contour. Due to the contours merging with
the wall, Ly,, drops towards zero for y/8 <0.2. Averaging between y/§=0.2 and
0.5, the 3-D cubes result in 23 % larger Ly,, than the smooth wall, while the small
and large 2-D bars result in 30 % and 37 % larger lengths than the smooth wall
respectively. These results are consistent with the Reynolds stresses in figure 3, which
show that 2-D bars, particularly the large bars, have more effect than the 3-D cubes.

Figure 7 shows R,, contours centred at y/8§ =0.4 along with Lx,, and Ly,, as
functions of y/8. The length Lx,, is determined based on the streamwise distance
between the most upstream and downstream points on the R,, =0.5 contour. The
length Ly,, is defined as above for the R,, results. The streamwise extent of R,,
is considerably less than that of R,,, since R,, is tied to the common convection
velocity of each hairpin packet. The ratio Lx,,/Ly,, is about 0.75 for all walls. The
streamwise and wall-normal length scales average 35 % and 29 % larger for Lx,, and
Ly,, respectively for the large 2-D bars compared to the smooth wall. The 3-D cube
and small 2-D bars results are approximately equal and lie between the smooth-wall
and large-bar results at about 18 % and 13 % above the smooth wall for Lx,, and
Ly,, respectively.

Contours of the cross-correlation R,, centred at y/8§ =0.4 are shown in figure 8
along with Lx,, and Ly,, as functions of y/§. The lengths are computed as for R,,
but are based on the —0.15 contour. As with R,, and R,,, the general shape of the
correlation contours is the same for all walls. For the 3-D cubes, Lx,, and Ly,, are
16 % and 19 % larger respectively than in the smooth-wall case. The small 2-D bar
results are about 30 % larger than the smooth-wall results in both directions. The
large 2-D bar results are 34 % and 41 % above the smooth-wall values for Lx,, and
Ly,, respectively.

Contours of the auto-correlation of the signed swirl strength, R;;, at y/§=0.4 are
shown in figure 9 along with Lx;; and Ly,;, which are based on the R;; =0.5 contour.
The 3-D cube and smooth-wall results are close to each other with the 3-D cube
values slightly lower. As with the other correlations, the spatial extent is larger in
the large 2-D bar case, by an average of 56 % in Lx;; and 58 % in Ly;, compared
to the smooth wall. The small 2-D bar results lie between the large 2-D bar and
smooth-wall results at about 20 % above the smooth-wall values.

In summary, the shapes of the two-point correlations are similar for all four walls,
but the spatial extent of the correlations varies between walls. Differences between the
3-D cube and smooth-wall results are small for the R;; correlation, but the extents of
the 3-D cube correlations average 18 % larger than the smooth-wall results for the
Reynolds stresses. The 2-D bars cause more variation, with the small bars resulting in
roughly a 25 % increase in the length scales over smooth-wall values for all quantities
including R;, and the large bars resulting in about a 40 % increase over the smooth
wall. This is consistent with the presence of the large-scale motions noted above for
the rough-wall cases, and potentially a result of repeated separation and reattachment
of the boundary layer.

The above results show a clear difference between flows over smooth walls and
walls with periodic roughness, possibly due to the large-scale ejections into the outer
boundary layer caused by periodic roughness. Since the large structures are believed
to originate at the roughness elements, they indicate a direct connection of the outer
flow to the wall. They would be attached eddies in the terminology of Perry &
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Figure 7. Contours of R,, centred at y/§ ~ 0.4, outermost contour R,, =0.5, contour spacing
0.1, (a) small 2-D bars, (b) 3-D staggered cubes, (¢) smooth wall, (d) large 2-D bars;
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Chong (1982). In the smooth-wall case, the outer part of the boundary layer contains
only detached eddies (Perry & Marusic 1995), which have separated from the wall.
Hutchins et al. (2005) used a plot of Lyminuu/8 Versus y./8, where Ly, is the
distance from the wall to the closest point on a particular R,, contour and y,.r is the
reference point for the contour, to quantify the distance that attached eddies extended
into the boundary layer. For the R,, =0.4 contour used in figure 10, a change in
the slope of Ly is clear at y,,/8 =0.11 for the smooth case, at y,,;/6 =0.17 for
both 2-D bar cases and slightly lower at y,,/8§=0.15 for the 3-D cube case. The
change in slope is an indicator of the demarcation between attached and detached
eddies. Its location depends on the choice of R,, contour. Following the example of
Hutchins et al. (2005), the demarcation is shown as a function of R,, in figure 11.
The smooth-wall results agree with the results of Hutchins et al. (2005). Attached
eddies extend roughly 40 % farther into the boundary layer for the rough-wall cases.
If the detached eddies are similar in all turbulent boundary layers while the attached
eddies depend on the wall condition, the extent of the attached eddies into the outer
flow could explain the differences observed above for the rough-wall cases. Note that
such differences and the large-scale ejections which are believed to cause them appear
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to be peculiar to roughness which is periodically spaced in the streamwise direction.
They are not observed for cases with 3-D roughness that is uniformly distributed in
the streamwise direction (Volino et al. 2009).

4. Conclusions

An experimental study has been carried out in a turbulent boundary layer over
periodic two- and three-dimensional roughnesses. Included were cases with transverse
rows of staggered cubes and cases with solid square transverse bars of two sizes.
Previous results had shown outer-layer similarity between cases with three-dimensional
roughness and smooth walls, and differences in cases with large 2-D transverse bars
(Volino et al. 2009). The Reynolds stresses, particularly v2 and —u'v'", increased in
the outer part of the boundary layer with the 2-D bars compared to the smooth-wall
case. The mean flow was not as significantly affected. Correlations of turbulence
quantities indicated larger flow structures. The observed differences were caused by
large-scale attached eddies which extend from the roughness elements to the edge
of the boundary layer. The previous results raised the questions of whether these
differences were due to changes in the outer layer or to a thickening of the roughness
sublayer, and whether the effect was caused by the spanwise blockage caused by the
2-D bars or by their periodic streamwise spacing. The present results show that the
differences are not simply due to a thickening of the roughness sublayer. The small
2-D bars tested had a height of only 11 viscous units, and the roughness sublayer
(defined here as 3k,) was within the inner 20 % of the boundary layer. Clear differences
between the small-bar and smooth-wall results were observed outside the roughness
sublayer, indicating that 2-D roughness does affect the flow structure in the outer
layer. The outer-layer effects were apparent to some extent in the Reynolds stress
profiles, particularly in —u/v/+, and were more apparent in spatial correlations of the
turbulence, where increases in length scales of 25 % over smooth-wall results were
observed. Results with the staggered 3-D cubes indicate that periodic disturbance
and recovery of the boundary layer plays some role in changing the outer layer, with
the same evidence of attached eddies extending into the outer flow as in the 2-D bar
cases. Differences between the 3-D cube and smooth-wall results were small for the
Reynolds stresses, but length scales of spatial correlations were about 18 % larger for
the staggered cube case. The periodic disturbance alone, however, does not appear
to have as large an effect as the blockage caused by 2-D transverse bars. Since the
bars extend across the entire width of the boundary layer, the flow must go up and
over them. In contrast it is possible for the flow to go around the sides of individual
cubes. The large bars had a much larger effect than the cubes of equal size, and the
small 2-D bars had a larger effect than the cubes, in spite of the small-bar height
being only 1/7 of the cube height and k,/§ for the small bars being only 0.4 times
the value for the cubes.
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