4.  Advection and the Eulerian and Lagrangian Frameworks
1.  Advection 
Recall in chapter 3 that we briefly defined advection as the rate of change of a scalar quantity in a specific direction.  In the beginning of this chapter we will formally define advection and discuss its physical properties.  First we need to define the differential of a function T(x,y,z,t),  which is labeled dT.  A differential is an infinitesimal (meaning really small) change in the value of the multivariable function T and is expressed using the chain rule:
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Now take the time derivative of equation (1) with respect to time. 
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If we define a time dependent vector line element or curve in space as 
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, then we can see by inspection that the above derivative with respect to time can be represented as
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The last term is a consequence of defining the velocity field as 
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The time derivative of the temperature field shows that we have two terms in the final expression; the partial derivative of temperature with respect to time and a second term representing transport of temperature due to the effects of a net flow field and spatial variations in temperature.  This second term is related to a quantity called the advection of temperature due to the flow field.  


Recall that gradient directions are specified from lower to higher values in the vector field.  By convention, however, we wish to define advection as being positive when there is transport of larger amounts of a quantity into a region where there is a deficiency of that quantity.  In other words, temperature advection is positive when warmer air is being transported into colder air.  The expression  
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 along with the definition of the gradient contradicts this convention.  The resolution to this dillema is to simply define advection as
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Now the transport of a quantity is defined as we would expect and we can use all of our understanding of differential operators accordingly.


 Let us examine equation (2) in a bit more detail. First, we can expand out equation (2) into individual rectangular components as 
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Notice that the above expression is a scalar.  We can also express the dot product in equation (2) in its geometric form:
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(3)
Where the angle, , is the difference between the direction of the vectors 
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Figure 1 – Figure showing how the angle  relates to the vector flow field and the gradient of the temperature field.  The dashed lines represent isotherms.
Equation (3) is useful because it allows us to see that the intensity of advection depends on three physical criteria:

1.  The magnitude of the flow field

2.  The intensity of the gradient of the temperature field

3.  The relative orientation of the flow field with the gradient of the temperature field.
Example 1 – Calculate the temperature advection at the specified point on the surface chart below


[image: image13]
Figure 2.  Data plot from 850mb at 00Z 13 November 2002, with isotherms superimposed
2.  Lagrangian and Eulerian description of fluid flow

We will revisit the concept of advection in the next section. Prior to that, we need to formalize how to describe the flow field.  The concept of understanding the dynamics of the atmosphere and ocean is no more than formulating Newton’s second law: 
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Note that 
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 in equation (4) is a vector quantity called momentum and is not to be confused with the scalar pressure field, p. We will deal with the actual dynamics of establishing the various forces in a later chapter.  For the time being, let us focus on the kinematics in terms of how to describe the fluid motion, 
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 in equation (4).

  There are two options we may consider.  In the Lagrangian description, each fluid parcel is uniquely defined by its positions at an initial time period.  One then describes the fluid motion by tracing the motion or trajectory of all the parcels as they move throughout the fluid
 domain.  In terms of a solid object, the Lagrangian description is already familiar to us.  Consider shooting off a cannonball. We identity the cannonball uniquely by its initial position inside the cannon.  When the cannon shoots the ball, we trace out the trajectory of the ball in accordance with equation (4).  The difference in this case and the cannonball is that we are dealing with a fluid instead of a solid projectile so we have a large set of initial fluid parcels and need to take into account how they deform over time.  The Lagrangian framework can be defined mathematically as
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Where 
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 is the parcel position at 
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.  In terms of Newton’s second law, equation (5) only depends on time since the initial position 
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 is a constant with respect to time so the time derivative is a pure time derivative.  In other words, time derivatives in the Lagrangian description take the simple form:
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The other framework is the Eulerian description where we consider all points in space and time as independent variables.  One examines what happens at a given spatial point in the fluid field and observes how the system evolves over time.  The Eulerian framework is representative of placing a set of fixed current meters at every point in the fluid domain and recording the flow field measurements over time.  The Eulerian framework is defined mathematically as
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Notice in the second equality that one of the independent variable depends on time, 
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.  Due to the dependence of the position vector on time, taking the time derivative in the Eulerian framework is not as simple as in the Lagrangian case:
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The chain rule has been used in equation (8) and 
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 in the second equality might seem to be a strange notation but observe that  
[image: image27.wmf]^

^

^

k

z

j

y

i

x

x

d

d

¶

¶

+

¶

¶

+

¶

¶

=

 is just the gradient.  Notice that the second term in equation (8) is the advection quantity as defined in the first section.  The results reinforce that the analysis in section 1 was performed in the Eulerian framework.  

The question now becomes which description of the flow is better; the Lagrangian or Eulerian description?   There is no correct answer to this question.  Most of your courses over the next two years will use the Eulerian description.  This is due to the fact that the Lagrangian framework can be very unwieldy when one starts to take into account surface effects such as friction. Since the advent of chaos theory, however, many limitations of the Eulerian description have caused scientists to focus more on analysis in Lagrangian framework.  Further, the Eulerian framework can be misleading in terms of the actual physical behavior of material parcels.  One must be careful in terms of not associating the movement of single parcels with the results obtained in the Eulerian framework.  In other words, one might find a nice smooth flow field solution in the Eulerian framework but when one examines the trajectory of individual parcels over time they find completely different and unpredictable behavior.   
3.  The Material derivative

Equations (6) and equation (8) are both representations of accelerations that can be used in Newton’s second law.  It will be constructive to examine how these two equations relate to each other.  For a specific position, 
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 measured at time, 
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, these equations are equivalent to each other (See figure 2 for a graphical image of how these expression are equivalent).
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[image: image31]
Figure 3 – Picture showing the relationship between the Lagrangian and Eulerian description of a parcel velocity at position 
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 and time
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.  The velocity is the same in both systems at this point.  The initial position of the parcel is shown to indicate the concept of how the history of the parcel relates to its position at 
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A capital 
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 is used in the second equality to indicate that the derivative is taken in the Eulerian framework.  This operator is also called the material or substantial derivate.  It consists of two parts; a local derivative representative of the time derivative of the flow field at a point and a non-linear second term showing the contribution of advection of flow from one point to another.  Since the two expressions in equation (9) are equivalent we can see that the material derivative allows us to observe the changes of the fluid parcel as it moves with the fluid.

Notice that there is nothing special about the use of the velocity field in the above analysis of introducing the material derivative operator.  We could have just as easily recognized its application with the use of measuring temperature, pressure, vorticity or any other physical quantity.  Consequently, we can talk about a general material derivative operator which is expressed as 
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Equation (10) is a scalar operator and can be applied to either a scalar or vector to produce a scalar or vector respectively.  Although you will probably learn equation (10) through sufficient application, you need to ensure you can recall this equation from memory as it is implied in all total time derivatives in any future work in this course unless otherwise stated.
Example 2 
Given the following velocity and temperature flow field, find the material time rate of change of the temperature field at x=50m y = 50m, 
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Where 
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 and 
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 are constants and are equal to the following values
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� EMBED Equation.3  ��� in the Lagrangian description





� EMBED Equation.3  ��� in the Eulerian Description


These measurements are equivalent








� The definition of a fluid is a material such that relative positions of the elements of the material change significantly when suitable chosen forces are applied. Thus, both gasses and liquids are fluids. 
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