7: Continuity Equation (Mass conservation):

Mass Conservation –
In the previous chapter we learned that Gauss’ Theorem allows us to express surface area integrals in terms of the volume of the object of interest. In the notation of figure 1, 
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Figure 1.  Diagram showing an arbitrary fixed volume V and associated surface area A with a unit vector 
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 pointing outward normal to the surface. 

for a fixed volume element V, enclosed by a surface 
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,  Gauss’ theorem is expressed as
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We will now see the usefulness of equation (1) by using it to derive conservation of mass.  
For a fluid with density field, 
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,  defined over a fixed volume, V,  the change in mass, M,  with respect to time is represented as 
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. Conservation of mass states that matter can neither be created or destroyed so 

any increase or decrease in mass must be due to the flux of matter through the surface bounding the volume V.  The density flux through the surface A bounding the volume V is defined as  
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.  Now there is an ambiguity about whether the flux integral represents the outflow or inflow of mass through the surface.  Utilizing the standard convention that the normal vector, 
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, points outward on the closed surface 
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 as shown in figure 1,  we can see that 
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 represents the outflow of mass through the surface.  Thus conservation of mass shows us that 
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Using Gauss’ theorem, we can write the final term in equation (3) as a volume integral as
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 and equation (3) can then be written as:
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There are two possibilities for  
[image: image14.wmf](

)

0

=

÷

ø

ö

ç

è

æ

×

Ñ

+

¶

¶

ò

dV

u

t

V

r

r


I. The first is that there exists a unique boundary, shape or symmetry leading to the integral being zero.  As an example of these unique symmetries, we notice that  
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We know the above integral is zero because we are adding up an equal positive area to an equal negative area of the sine curve.  This possibility that there is unique boundary leading to equation (5) being 0 is too restrictive to our analysis since we wish for our result to be true for any arbitrary volume or shape.  This leads to our second possibility.

II. The second option is that the integrand itself is equal to zero for the entire domain.

This might seems like a trivial possibility but this leads to the exact result we are looking for:
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Equation (4) is called the continuity equation and is the differential equation form of conservation of mass. Given the definition of the material derivative of the density field as 
[image: image17.wmf]r

r

r

Ñ

×

+

¶

¶

=

u

t

Dt

D

 , equation (4) can be expressed in the alternate form as
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Equation (5) shows that the fractional rate of change of the density (or volume) of a fluid element fluid is related to the divergence of the flow field.  

Conditions under which incompressible flow is valid: 
If variations in density are small compared to the background density the fluid is said to be incompressible.  Equation (4) then takes the simple form: 
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(6)
The flow field is also said to be solenoidal under these circumstances.  For most applications in the ocean and many in the atmosphere it is safe to assume that the fluid medium is approximately incompressible.  To formally examine the necessary conditions in which it is safe to assume a medium is solenoidal; we need to perform dimensional analysis on equation (5).  For a flow field scale, U which varies slightly over a length scale L, the requirement for incompressibility is
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To gain further insight into these necessary conditions we must assume an equation of state.  Now we are going to formally define the fluid as incompressible provided that the density does not depend on the pressure of the fluid medium.  The details of the analysis will be seen next semester in SO414 but the result is still of interest here.  What we find is that the medium can be considered incompressible provided that  
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 Where 
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 is the sound speed of the fluid medium and 
[image: image23.wmf]U

 is an approximation of the fluid flow.  We can see from equation (7) that most examples that we consider in both the ocean and atmosphere allows us to use the incompressibility requirement. 
Incompressible fluid flow example- Vertical flow in the ocean
Provided that 
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 and a layer of depth, h, in the ocean is well mixed, we can integrate over the continuity equation in the form 
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 to obtain the vertical velocity.  This is extremely useful for experimental applications since vertical motions are hard to measure whereas horizontal flow is easily determined from current meters or the drift of an object over time.  Splitting up equation (6) into its vertical and horizontal components:
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It can easily be shown that, if separation of variables is possible, that the left side of the equality is a function of z and the right hand side of the equality is only a function of x and y. The only non- trivial way that this is possible is if both sides equal a constant.  

Integrating both sides with respect to z and applying the fundamental theorem of calculus we can see that 
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Although there will be vertical variations on the surface with wave motion, we will assume that the average vertical velocity is 0 so 
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 and we have an equation that relates vertical velocity in a well mixed layer with the horizontal divergence at an arbitrary depth h.  We can also find the time it takes a fluid parcel to be transported vertically in the fluid column by noting that 
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.  If we consider a Lagrangian frame with a fluid parcel at initial position 
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 , we obtain the relationship
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Where we have expressed the constant horizontal divergence as 
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Thus the net time it takes for a fluid parcel to travel vertically between the points 
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 can be found by integrating:
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(9)
Assume an approximate horizontal divergence of 
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, application of equation (9) shows us that, for a parcel to travel from 10 meters to 50 meters in the vertical, it would take
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Example: Find the vertical current of a parcel at a depth of 40m given the following information:
The divergence in the mixed layer (the first 100m of the ocean) is 
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 The time-averaged flow at the surface is zero so 
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� Image taken and modified from Wikipedia at the following link: http://en.wikipedia.org/wiki/Image:Divergence_theorem.svg
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