Chapter 9: Equations of motion in a rotating frame and Geostrophic wind
1.  Solid body rotation – rotational frame preliminaries
In chapter 9 we derived the inviscid equations of motion as  
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Since we are interested in atmospheric and oceanographic systems, we must account for one important additional contribution to equation (1); the effects of the rotation of the earth.  The question then becomes how is equation (1) modified in a rotating frame.  Before going into the details of how to answer this question, let us examine the concept of solid body rotation.  Solid body rotation is defined as a fluid or object that rotates at a constant angular velocity so that it moves as a solid. 

Let us derive a general expression for solid body rotation using the tangential velocity of a bug that is attached to a record player as in figure 1 as an example.  
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Figure 1 – Bug located at position 
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moving at constant angular velocity 
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The velocity of the bug is defined as
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An overhead view of figure 1 will be helpful to relate 
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.  
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Figure 3 – Overhead view of the bug on record player showing the relationship between 
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We can see from figure 3 that the arc length of the bug for a given time 
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 and the normalized direction of the bug is deduced from the right hand rule as 
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.   Given all this information, equation (2) becomes 
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We conclude that the equation for solid body rotation velocity is
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Equation (3) will be of use for deriving how the equation of motion is modifying for objects in a rotating coordinates system.

2.  Equations of motion in a rotating frame

Consider an orthogonal coordinate system which is rotating about an arbitrary axis with constant angular velocity 
[image: image18.wmf]W

 as seen in figure 3.


[image: image19]
Figure 3 – The circular trajectories mapped out by the tips of each of the unit vectors of an orthogonal coordinate system being rotated about an arbitrary constant rotation vector, 
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.  It is clear that the associated velocity of each basis vector is provided by the equation of solid body rotation with 
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 constant.

If we examine a general vector 
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 that is moving relative to this rotating CS we notice that, from an external or inertial frame of reference, that it has two contributions to its change of position with respect to time: one is due to the movement of the vector relative to its defined coordinate system and another due to the movement of the coordinate system itself.  This is expressed quantitatively as:
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(4)

The first three terms in equation (4) are the standard motion of the vector in its relative frame and so we can define it as a relative rate of change of the vector 
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The second three terms require some additional physical insight to express them in a more tractable form.  We can see from figure 3 that each basis vector of the coordinate system maps out a circular trajectory in space and the velocity of rotation of each of these vectors is simply a solid body rotation with associated velocity
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for the ith basis vector. Substitution of equation(s) (5) into equation (4) we see that the rate of change of the vector 
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 in the inertial frame of reference is expressed as
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Notice that there was no physical significance or properties given to the vector 
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 besides that its motion was given relative to a moving CS and so the result of equation (6) is true for any vector that is defined relative to the rotating CS.  Due to this generality, we can express (3) in an operator format as 
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This is similar to what we did in chapter 3 when we defined the del or gradient operator.


Our main goal with the above analysis is to represent accelerations or apparent forces that arise due to this rotating frame of reference in equation (1).  Accelerations are given by the second derivative of a position vector with respect to time.  We can square the general operator above to obtain a second order time derivative:
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Applying this second order operator on a position vector 
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, which is defined in the rotating frame of reference, we obtain the apparent acceleration:
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Let us examine each of the terms of equation (7):

 I) 
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:  This term represents the acceleration of an object in the rotating frame of reference.    Since all of our observations are made in the rotating frame, it is normal convention to consider this term to be the only acceleration term in the equation of motion.   It is usually called the inertial term.  Notice that it is a material derivative and not a local derivative in the final equality. The other terms of equation (4) are then described as apparent forces/accelerations in the equation of motion.  

II) 
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- This term is called the Coriolis acceleration and measures the deflection of the fluid parcel as observed in the rotated coordinate system.  Notice that its effect is proportional to the magnitude of rotation and the speed of the object. It is this deflection that leads to most of the unique phenomena we observe in the atmosphere as well as effects in the ocean such as Ekman transport.   

III)  
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: Using the triple cross product identity we can represent this term as two components: 
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.  Without loss of generality we can assume that 
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 and that the rotation axis is in the 
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.  The two terms of the triple cross product can then be expanded out as 
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 where 
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  is the horizontal vector perpendicular to the rotation axis to the point of observation.  The resulting term 
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 is the centripetal acceleration. It is always directed inward towards the axis of rotation and is a maximum at the equator and zero at the poles. Since the net force associated with the centripetal acceleration is conservative, it is common convention to couple this term with any gravitation forces in the problem and define the sum of both the gravitational and centripetal force as the effective or apparent gravitational force.


Now that we have an appreciation for each of apparent acceleration contributions we can represent the equation of motion in a rotating frame as (Dropping the relative frame subscript):
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(8)

Finally, it is shown without proof that equation (8) can be expressed in component form in a simplified local frame (f-plane approximation) as the following:
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(9)
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Rather than assuming a CS centered on the spherical earth, the f-plane approximation assumes a local plane tangent to a given latitude as in figure 4. 

[image: image49]
Figure 4 – Diagram showing the f-plane CS.

2.  Rossby Number:

Equation (8), Conservation of Mass and the equation of state make up five equations to solve for the five unknowns of 
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.   These equations along with the additional information contained in the boundary conditions gives us all the mathematical tools we need to start to define the motion of the atmosphere or ocean. The non-linear character of the equation of motion, prevent us from developing simple analytic solutions for a given scenario in the ocean or atmosphere.  Even more, numerically solving the above non-linear equations in the atmosphere or ocean is a challenge for even the most sophisticated supercomputers 

 
To circumvent these difficulties, it is up to the oceanographer or meteorologist to use their physical understanding of the problem in order to simplify the equations of motion to a manageable computational problem. In this next section, we will use scaling arguments to simplify the equations of motion to the most fundamental atmospheric problems and examine the characteristics of the associated solutions.  

For starters let us show equations (9) again
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We now assume that the ocean or atmospheric medium we are examining is shallow such that, for vertical scale Z and horizontal scale L, 
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.   Given this assumption we can see using dimensional analysis of the continuity equation, that the vertical flow, W, field is significantly smaller than the horizontal flow, U  
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We can therefore neglect the vertical velocity field in all advective terms and in the vertical momentum equation.  Vertical conservation of motion then yields the equation of hydrostatic balance in the vertical direction:
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We will now assume that we are considering flows where the Coriolis force dominates over horizontal inertial effects (horizontal material derivative terms: 
[image: image58.wmf]Dt
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).  If the local derivative is of the same order as the advective term in the material derivative then we can consider either in our scaling analysis. It is often easier to consider length scales over time scales in our problems so we will express our inertial dimensional scales in terms of the horizontal advective term - 
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.  Now introduce the Rossby number; which relates the comparative scales of the inertial terms with the Coriolis force
. 
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Geostrophic Wind:

We are interested in problems where the Rossby number is small so we can neglect the inertial terms of the equation of motion. For a Coriolis parameter of ~ 
[image: image61.wmf]4
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, an atmospheric flow of 
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 with a length scale of ~ 1000km (the size of a high or low pressure system), the Rossby number is ~ 0.3.  This shows that for standard atmospheric parameters, the assumption of neglecting the inertial terms with respect to rotation is fairly valid. If this assumption holds then we obtain the equations for Geostrophic flow which is indicated by a balance between the gradient and Coriolis force:
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(10)
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For the mid-latitudes, equations (10) holds surprisingly well for many local barotropic weather systems.  When expressed in vector form 
[image: image66.wmf]p

u

f

h

o

h

Ñ

-

=

´

r

1

, we can immediately see that the flow field is parallel along the isobars , 
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Exercise:  Show that 
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Alternatively,  this also means that pressure is constant along the streamlines of the flow field.  
f-plane


CS located here
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� The L subscript in the Rossby number is to indicate that we considered the advective contribution for the inertial effects.  An additional Rossby number can be developed if we consider time scales and thus the local time derivative (This form of the Rossby number would be more appropriate in a spectral analysis of a normal mode solution for example) :
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