Lab 3: Stability
SO414 Oceanic and Atmospheric Processes
1. MATLAB Review

A. Loop structures

Often it is the case in MATLAB that we wish to do an operation multiple times over an index. For example, performing the following summation:

[image: image1.wmf]å

=

+

+

+

+

+

=

21

1

21

...

4

3

2

1

i

i

Now, we might derive the fact that the above expression is equal to
[image: image2.wmf]11

21

2

22

21

×

=

÷

ø

ö

ç

è

æ

, but we wish to use MATLAB to find a quick means to directly calculate the above expression. One method to quickly perform this sum is by means of loops.

sum=0

for i=1:21

 sum=i+sum

end

*Confirm that the above code in MATLAB equals the same as
[image: image3.wmf]11

21

×

In the above program:

sum=0 – initializes the variable, sum, to the value 0.

for i=1:21 – specifies that we are going to execute a loop over the index i from values from i=1 to i = 21 with increments of 1.

sum=i+sum – is an equation that represents the equation
[image: image4.wmf]å

=

21

1

i

i

end – specifies the end of the loop

B. Derivatives using loops

Now that we understand the basics of how to create a loop; let’s create an array based on the derivative of a function. First, let’s review the equation of finite differences for a two point derivative.

Recall the standard Taylor series out to first order to a nearby point,
[image: image5.wmf]1

x

D

 is:

[image: image6.wmf](

)

(

)

(

)

2

1

1

x

O

x

dx

df

x

f

x

x

f

o

o

D

+

D

+

=

D

+

(1)

We can also reference the Taylor series to an adjacent point,
[image: image7.wmf]x

D

-

, as follows:

[image: image8.wmf](

)

(

)

(

)

2

2

2

x

O

x

dx

df

x

f

x

x

f

o

o

D

+

D

-

=

D

-

(2)

Notice that
[image: image9.wmf]1

x

D

 does not have to equal
[image: image10.wmf]2

x

D

.

Subtracting equation (1) from equation (2) only considering terms of first order in
[image: image11.wmf]x

D

, we obtain:

[image: image12.wmf](

)

(

)

(

)

2

1

2

1

x

x

dx

df

x

x

f

x

x

f

o

o

D

+

D

=

D

-

-

D

+

Solving for
[image: image13.wmf]dx

df

, we obtain,

[image: image14.wmf](

)

(

)

(

)

2

1

2

1

x

x

x

x

f

x

x

f

dx

df

o

o

D

+

D

D

-

-

D

+

=

Now, as a matter of notation, if we specify:

[image: image15.wmf](

)

o

x

f

 as
[image: image16.wmf]i

f

[image: image17.wmf](

)

1

x

x

f

o

D

+

 as
[image: image18.wmf]1

+

i

f

[image: image19.wmf](

)

2

x

x

f

o

D

-

 as
[image: image20.wmf]1

-

i

f

Further, we can see from the following figure that:

[image: image21.wmf](

)

1

1

2

1

-

+

-

=

D

+

D

i

i

x

x

x

x

[image: image22]
Using the index formulation, we can create a program in MATLAB for calculating derivatives.

Now, we will create a script m-file for calculating the derivative of
[image: image23.wmf](

)

x

p

2

sin

 over the domain
[image: image24.wmf]1

0

£

£

x

. This is a nice continuous function and we know the answer is
[image: image25.wmf](

)

x

p

p

2

cos

2

. A graph of the original function and its derivative are shown below.

[image: image26.emf]00.10.20.30.40.50.60.70.80.91

-8

-6

-4

-2

0

2

4

6

8

x

f(x)

sin(2*pi*x) and its derivative

sin(2*pi*x)

d/dx(sin(2*pi*x)

We are interested in creating a code that will reproduce the above graph. The code is shown below and will be demonstrated.

del_x=0.01;
x_o=0;
x_f = 1;
n=(x_f-x_o)/del_x;
for i=1:n
 x(i)=(i-1)/n;
 f(i)=sin(2*pi*x(i));
end
plot(x,f)
hold on
df_dx(1)=2*pi
df_dx(n)=2*pi
for j=2:n-1
 dx(j)=(x(j+1)-x(j-1));
 df_dx(j)=(f(j+1)-f(j-1))/(dx(j));
end
plot (x,df_dx,’g’)
The above code is fairly general. All we need to do to find the derivative of another function over the domain is to input it in the line: f(i)=sin(2*pi*x(i));
We just need to also be careful about the value of the derivative at i=1 and i=n.
2. Use of finite differences and loops to calculate stability in the ocean
We will now utilize the above code to calculate the stability parameter in the ocean for a given density profile.

Find the ctd_data.mat file on the course website.
Task:
Begin your Lab 3 script m-file, ensuring to follow the format presented in the style guide. A sample file (stable_template.m) is given on the course website.

In your script m-file, load the data file. Examine the structure of the file. You will see that the first column contains the Temperature (units of degrees Celsius); the second Column is the Salinity (PSU); and the final column is water depth (negative values) (meters).

Define the appropriate arrays for depth, pressure, salinity and temperature from the array, i.e., z=ctd(:,1)
You will need to convert the depth readings to pressure readings; be sure to describe this conversion in your write up.

Now we need to establish a maximum array size.
nmax=size(depth,1); % Establishes the max array size and calls it nmax.

The following lines initialize the arrays we will make.

dens=zeros(nmax,1);
E=zeros(nmax,1);
N=zeros(nmax,1);

The loop below creates a density array so that density is defined as a function of depth. Notice that it contains a rho(S,T,P) function. You can turn the script you wrote for Lab 2 into a general function to use in this lab. Recall: In order for this program to work, be sure that your rho.m function M-file is contained in the MATLAB working directory (the same directory where stable.m is)!!

for i=1:nmax
 dens(i)=rho(S(i),T(i),p(i));
end
The four lines below are the boundary conditions of the problem. They specify the values of the stability parameter (E) and Buoyancy frequency (N) at z=0 and at max depth
E(1)=-(1/dens(1))*(dens(2)-dens(1))/z(2);
E(nmax)=-(1/dens(nmax))*(dens(nmax)-dens(nmax-1))/(z(nmax)-z(nmax-1));
N(1)=sqrt(g*E(1));
N(nmax)=sqrt(g*E(nmax));
for k=2:nmax-1
Include the following in your script:

1. Utilize what you learned in section 2 to write a finite difference code to calculate stability parameter as a function of depth (as an array).

2. Calculate the Buoyancy frequency as a function of depth.
3. Plot the stability parameter and buoyancy frequency as a function of depth, ensuring to think of the proper orientation and labeling of the axes.

end
3. Results and guidance for the computational portion of your write-up

Your lab write up should include the following:

 * Introduction: In this discussion be sure to include a background of the finite differencing method, the stability parameter and buoyancy frequency.

* Hypothesis: This statement should note the observation of conditions and offers an explanation to why the phenomenon exists or behaves in a specific manner.

* Methods: Identify the parameters your data contains and where it was collected. Also include an explanation of how you verified that your code works.

* Results: Discuss what the out come tells you about the water column.

* Analysis: Explain the science behind what you have observed, the results of the calculations, and the analysis questions. From your plots of the stability parameter and buoyancy frequency, describe the features of the curves as a function of depth; i.e. discuss the profiles.

* Conclusions: State whether or not your results and analysis support your hypothesis. Discuss any ambiguities, why your hypothesis was (or was not) correct.

In your lab write up be sure to include your script m-file.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

[image: image27.wmf]i

x

[image: image28.wmf]1

+

i

x

[image: image29.wmf]1

-

i

x

[image: image30.wmf]2

x

D

[image: image31.wmf]1

x

D

[image: image32.wmf]1

1

2

1

-

+

-

=

D

+

D

i

i

x

x

x

x

_1262596539.unknown

_1262596830.unknown

_1262598471.unknown

_1262666478.unknown

_1262666484.unknown

_1262598500.unknown

_1262598552.unknown

_1262597737.unknown

_1262597790.unknown

_1262597846.unknown

_1262597770.unknown

_1262597678.unknown

_1262597731.unknown

_1262597648.unknown

_1262596693.unknown

_1262596760.unknown

_1262596779.unknown

_1262596719.unknown

_1262596671.unknown

_1262596685.unknown

_1262596560.unknown

_1262587034.unknown

_1262596321.unknown

_1262596342.unknown

_1262596257.unknown

_1262596289.unknown

_1262596205.unknown

_1262586852.unknown

_1262587017.unknown

_1262586802.unknown

