Lab 6 –Examination of time dependent flows and the associated trajectories.
We have learned about many aspects of the dynamics of the ocean and atmosphere.  One significant result that we have discovered is that the atmosphere and ocean are coupled through wind forcing at the ocean surface.  Models by Stommel and Munk created in the mid 20th century provide major insight into the formation of the gulf stream which is a large ocean frontal system off the east coast of the United States.  These models are sophisticated but are time independent and thus neglect one of the major features related to mixing within the ocean.  In his paper “On the wind-driven ocean circulation”   Munk discussed that his model only accounted for half the observed transport in the Gulf Stream.  Using a simple toy model of the gulf stream, we can theoretically observe how adding time dependence leads to additional transport across the gulf stream ocean front.  
1.  The time dependent double-gyre ocean model
We will consider an analytic toy model of the periodically varying double-gyre flow.  This model was discussed in S.C Shadden et al
 and can be considered a local view of gulf stream ocean front.  The velocity field is defined over the domain 
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 - Represents the amplitude of the periodic oscillations

The velocity field of equation (1) looks like figure 1 where the front oscillates from left to right with time.  Figure 2 shows an operational model of the Gulf Stream with a double gyre flow pattern within the red box.  Understand that fronts are supposed to act like boundaries to the flow.  From figure we should predict that fluid parcels in the domain 
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 should not travel into the region 
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.  This statement is actually true for the time-independent situation of this problem.  The next section will shows us that the frontal boundary is not as well defined as we may think for the time dependent case.
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Figure 1 – Velocity field for double gyre flow defined by equation (1) for t=0.  At this time, the ocean front itself is located at x=1.  
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Figure 2 – Operational model of the Gulf Stream.  The red box indicates a double gyre flow.  Image from: http://oceanworld.tamu.edu/resources/ocng_textbook/chapter15/chapter15_05.htm

a) Verify that figure 1 is correct by creating a MATLAB file that plots the velocity field defined by equation (1) at t=0.  Include this graph in your results.
b) Make two additional plots of the velocity field at times t=0.25 and t=0.75 to show the time dependent nature of the flow field.  Include these graphs in your results.
c)  Explain what would happen to your time dependent velocity field if we defined 
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2.  Use of the ode45 function to examine parcel trajectories 

In this next section, we will use a numerical integration command in MATLAB called ode45 which uses the Runge-Kutta technique for solving ordinary differential equations.
Basic explanation of Runge-Kutta technique  


Equation (1) shows us that we are interested in solving ordinary equations of the form
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Notice that we require knowledge of the initial position and velocity of the system. For starters and simplicity, let us reduce the dimensions of the problem and just consider the equation 
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.  The most simple numerical technique to solve this equation is Euler’s method which essentially finds the position, x, by multiplying by the speed by the time step
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A graph of the technique in equation (3) is shown in figure 3.


[image: image18]
Figure 3 – Graphical representation of Euler’s method.  Notice the technique assumes we know the speed for all positions and times.  We can also see how errors inherent in the technique will propagate as we integrate forward in time
The problem with Euler’s method is that the position is a first order estimate and will some error associated with it (the order is of order 
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).  As we estimate positions further out, the error will carry forward and get larger.  The Runge-Kutta technique refines this method to reduce these propagating errors. The basic premise of the technique is to find the speed or velocity between the two intervals and then use that speed to look for the next position.  A graph of a second order Runge-Kutta or midpoint method technique is shown in figure 4.
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Figure 4 – Graphical representation of how the midpoint method improves the accuracy of Euler’s method.
In higher order Runge-Kutta techniques, speeds or velocities are found at other points in the time interval and a weighted average is taken of the various slopes to estimate the next position.  In general these higher order techniques will improve accuracy provided the velocity field is well behaved.  MATLAB uses sophisticated higher order and adaptive Runge-Kutta technique to solve equations (2).  The most commonly used MATLAB Runge-Kutta function is probably the ode45 function: 
[tt,y] = ode45(@dblegyre,[0 tfinal],[x_o(j) y_o(j)]);
Procedure

We are interested in using the MATLAB ode45 command to find parcel trajectories for the double-gyre velocity field.  The instructor or professor will provide you the full code to perform the proper integration with the files “dble_exe.m” and “dble.m”
dble_exe.m calls the ode45 command based on specified initial times and positions.

dble.m defines the velocity field given by equation (1).

You will modify the initial positions and time domain in the dble_exe.m file to examine the trajectories of various parcels in this velocity field.  

1. Run the code dble_exe.m for the following initial positions and time domains and print out the resultant graphs.  
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c)  
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2.    Do the results from part (a) through (c) make sense?  Think of what the velocity field looks like at t=0 and where the frontal boundary is.  Do any of the results indicate that the front is leaky? Explain your answer.  
3.  Explain how your results show that time dependent wind fields will lead to mixing across the gulf stream.
Gulf Stream front



Actual Gulf Stream double gyre
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Refined estimate of position based on midpoint speed





� S.C Shadden, F. Lekien, J. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212 (2005) 271-304. 
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