Lesson 1

e Objectives
Properties of solids, liguids and gases
Continuum hypothesis
Volume and Surface force
Relative motion near a point




State Properties

e Solid

Rigid system with definite shape and volume
Desk, chair, book, brick
Maintain their identity

Molecules are not free to move around

Nearly incompressible

If you apply a moderate shear stress, you may deform
the solid slightly - if the force is significant you could
break the solid



State Properties

e Liquids

Nearly incompressible (assumed
Incompressible)

Deforms to fit container

e Gases
Molecules are free to move around
Compressible



State Properties

e Fluid

A material whose molecules change position
significantly when suitable forces are applied

e Liquids and gasses are fluids as neither are
rigid
Deforms continuously when acted on by a
shearing stress of any magnitude

Need different magnitudes of force to deform

e Fluid vs. Solid

The deformation (strain) of a solid is linearly
proportional to the stress



Continuum Hypothesis

e Fluid dynamics - the concern is with large scale
motion (scales of weather and climate)
For these motions the discrete molecular nature of the
atm/ocean can be ignored
e Useful to assume that the atmosphere/ocean is a
continuous fluid - the molecular structure can be
ignored and can treat it as a continuous fluid entity

e Formally:

The macroscopic behavior of a fluid is the same as if it was
perfectly continuous in structure

Locally homogeneous



Continuum Hypothesis

e Allows us to:

Treat all physical properties as continuous
variables
Allowing a clear understanding of that property at a
point
Establish equations that are independent of the
molecular structure

Derive the Navier-Stokes (equations of motion
(EOM)) equations



Continuum Hypothesis

e Falls apart when we:
Examine quantum mechanical scales of materials

Consider fluids with significant concentrations of
particles or sediments

Consider extremely low density environments or
rapid spatial variations



Fluid Behavior

e Surface Force
Act on a thin layer adjacent to the fluid boundary
Short range
Direct contact is needed
Friction (wind stress)
e Volume (body) Force
Acts on all elements of a fluid
Long range

Direct contact i1s not needed
Gravity



Fluid Behavior

e Stress

A measure of the internal forces in a body
between its constituents as they resist tension
and compression or sliding in response to
external forces
Shear Stress

Sliding
Normal Stress

Compression



Material Derivative

e \We will use the Eulerian framework for this
course

e Recall, the material derivative represents the
change of a fluid parcel as it travels through
the domain

o It considers the time and space dependence
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Material Detivative

e Imagine this past weekend in Annapolis, with
a cold northwesterly. Standing in T-court,
the temperature dropped with time. If we
rode along with the the air, we'd observe a
constant temperature with time.

e A parcelwith T = 270K passed us in T-court
at O800L still has T = 270K at 1400L even
thought Is out over the Atlantic.

e The drop In temp we observe Iin T-court IS
due to the continuous import of an Artic air
mass



Material Derivative

e Example

A car is driving straight southward, past a service
station at 100 km/h. The surface pressure is
decreasing toward the southeast at 1 Pa/km.
What is the pressure tendency at the service
station if the pressure measured by the car is
decreasing at a rate of 50 Pa/3 h?



Relative Motion

e We know that the flow field varies in x and y
directions (u and v velocity components)

e These four equations can describe fluid flow -
each combination has a name



Relative Motion
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Relative Motion
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Figure 1.8 A field of pure, positive vorticity (= 1)




Relative Motion
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Figure 1.9 A field of pure, positive divergence (D = 1)




Relative Motion
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Figure 1.10 A field of pure, positive stretching deformation (F, = 1). The dark sofid lines are stream-
fines of the deformation fiekd The r-axis serves as the axis of dilatation and the y-axis is e ais
of contraction




Relative Motion
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Figuwre 1.11 (a) A fluid element in a field of pure comvergence. The lighler square represents the
initially square element, Nabe that the area of the fluid dement (s decreased in 2 field of comvergence.
(b} A fluid element in 2 field of pure stretching deformation. The original square is deformed iinto 2
rectangle whost 2rea is the same as thal of the square



Relative Motion
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Figure 1,12 A field of pure, positive shearing deformation (F; = 1). The dark solid lines are stream-
lines of the deformation fleld. The axes of dilatation and contraction are indicated by the dashed lines



Relative Motion

e Total Deformation
/=2 2 \1/2
F _ (Fstr + I:shr)

Resultant deformation has axis of dilatation at an
angle counterclockwise to the original x-axis

Rotation has no effect on vorticity or divergence -
rotationally invariant

Enables vorticity and divergence to explain the
behavior of fluids



