
Lesson 4

�Objectives
– Fundamental Forces

• Inertial Reference Frame
– Gravitational Force 
– Pressure Gradient Force (PGF)
– Friction (Viscosity) Force

• Non-inertial Reference Frame
– Centrifugal Force
– Coriolis Force

– Conservation of Mass
• Continuity Equation

Equations for a Nonrotating Fluid
� The state of the atmosphere or ocean can be 

defined by 5 variables
– u, v, w, P and T

• Recall, using the EOS ρ can be found from P and T

� We therefore need 5 independent equations 
(with boundary conditions) to determine the 
evolution of a fluid
– The Laws of motion (3 directions)
– Conservation of Mass
– The 1st Law of Thermodynamics

Fundamental Forces
� In lesson 1 we made an assumption - that the 

atmosphere and ocean were continuous in 
structure and properties at our scale of 
interest
– This means they are Newtonian fluids and therefore 

can use N2L,               , to describe acceleration
• The approach is slightly different than we saw in Physics

– In Physics we dealt with discrete objects of constant mass
– In Fluids we deal with a continuous field of matter with varying 

density
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Law of Motion (N2L)

� Inertial frame of reference
– A non-accelerating coordinate system
– Follow the same parcel around - therefore

the time derivative is a total derivative

� N2L becomes:

– where: 
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Gravitational Force (g*)
� Newton’s Law of Universal Gravitation
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Every particle in the universe attracts every other particle witEvery particle in the universe attracts every other particle with a force that is h a force that is 
proportional to the product of their masses and inversely proporproportional to the product of their masses and inversely proportional to the tional to the 
square distance between them.  The force acts along the line joisquare distance between them.  The force acts along the line joining the two ning the two 
particles.particles.
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Pressure Gradient Force (PGF)

� P = F/A
� Force due to variation of pressure within 

a fluid
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Pressure Gradient Force (PGF)

� Example
– Consider a SLP of 1000.3 hPa from a 

station near the center of a low, with a 
temperature of 9 C.  500 km away a 
second station reports a SLP of 1000.9 
hPa.  What is the pressure gradient force?

• Hint: IGL is needed

Frictional (Viscous) Force 
� Molecular friction

– Accelerates (±)  a body that is in contact with another 
body moving at a different speed

– Molecules collide with those of another 
• If one object moves (has momentum: p = mv), the other 

object will receive some of it and move

� Eddies can exchange momentum and therefore 
cause frictional forces
– Wind experiences a retarding force: Ffr (ground)
– The ground experiences an accelerating force

• Free moving surface - waves, currents…



Viscous Force

� A fluid is a state that continuously yields to 
any shear stress

� Here a solid exerts a shear stress on a 
fluid

z = 0

z = d

u(0) = 0

u(z)

u(l) = u0

u0

Viscous Force
� Force on upper plate

� µ (“mu”): dynamic (or shear) viscosity 
coefficient
� Property of the fluid 

� This force must just equal the force 
exerted by the upper plate on the fluid 
immediately below it (N3L)

� State of uniform motion
� Every horizontal layer of fluid must exert the 

same force on the fluid below it 
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Viscous Force

� The shear stress - τ (“tau”) - exerted on the 
fluid by the upper plate is proportional to the 
velocity of the plate and inversely proportional 
to the distance between the plates (d)

� The x-component of the shear stress can be 
written:

– It is a flux of momentum
• Momentum per unit time per unit area

τ ˆ i =µ ∂u

∂z

Shear Stress

� Defined steady state flow - no 
acceleration and therefore no net 
viscous force
– The shear stress (internal friction) does not 

cause a net force

� So, there must be a gradient in the 
shear stress 
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Shear Stress

� υ (“nu”) is the kinematic viscosity coefficient
– Atmosphere: 1.46 x 10-5 m2/s
– Ocean: 1.0 x 10-6 m2/s

� Shear stress is a vector
– Shear stress has nine components (3D)

Fx = υ∇2u

Fy = υ∇2v

Fz = υ∇2w
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Apparent Forces

� Non-inertial reference frame
– An accelerating reference frame
– Uniform circular motion

• Centrifugal force
• Coriolis force

Centrifugal Acceleration

� Appears to deflect the moving body 
outward from center of curvature
– Equal and opposite to centripetal acceleration
– Always perpendicular to Earth’s axis; directed 

outward

  

� 

F cf

m
= Ω2

� 

R 

Effective Gravity

� Resultant of gravitational and centrifugal 
forces

� Directed perpendicular to local tangent 
of Earth, not toward the center



Coriolis Force

� The force that appears to act on a body 
moving relative to a rotating system, when 
viewed from that system

� Merry-Go-Round Example
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Coriolis Force

Coriolis Acceleration

� The coriolis acceleration describes the 
tendency for fluid parcels to turn

� In the absence of other forces, a parcel 
would accelerate as:

� By definition: CF does no work, it only 
acts to change the direction of flow
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Coriolis Acceleration: Derivation

� Recall the coriolis parameter: 
f = 2Ωsinφ

dw

dt
= 2Ωucosφ  

dv

dt
= −2Ωusinφ = − fu  

Coriolis Acceleration: Derivation

� Horizontal
� Vertical
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Coriolis Acceleration: Full 3-D

dw

dt
= 2Ωu cosφ

dv

dt
= − fu

du

dt
= fv − 2Ωcosφw

Coriolis Acceleration

� Example
– The Coriolis acceleration can be calculated 

using observations.
– City X, has a latitude of 40N and reports a 

wind of 5 kts from the North.
– Calculate the Coriolis acceleration

Basic Laws of Physics
� Conservation of:

– Mass
• Leads to Continuity Equation
• SO335 and SO414

– Momentum
• Leads to EOM
• SO414

– Energy
• Leads to 1st Law of Thermodynamics
• SO345

Conservation of Mass

� Cannot create or destroy mass - 1 kg of a 
fluid will always be 1 kg of that fluid
– If fluid is compressible then the shape will 

change

� Continuity Equation 
– Provides relationship between horizontal and 

vertical motions

Parcel A Parcel B



Continuity Equation

� Consider:
– A cube fixed in space thru which a fluid flows
– Mass is continually advected through the 

sides by the fluid motion
• Net inflow of mass thru sides = Rate of 

accumulation inside the volume 

– Mass flux = ∂M
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Continuity Equation

� Mass Flux at the center of the cube is ρu
� Using Taylor's expansion about the 

center,  we get in/out flow per unit area 
through sides A and B

Continuity Equation

� Can get the net rate of flow into the 
volume due to the x component of velocity

� Then, the net rate of mass inflow per unit 
volume for all directions is:
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Continuity Equation 

� Mass Divergence form of mass 
continuity

� Velocity Divergence form of mass 
continuity
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The Boussinesq Approximation 

� Joseph Boussinesq (1842-1929) noted 
that we can safely assume density is 
constant except when it is multiplied by 
gravity in calculations of pressure

� The assumption will greatly simplify the 
equations of motion! 

Incompressibility
� If density is constant,         then the fluid 

is incompressible

� and                       becomes:

– Density MUST be constant (incompressible)
– Don’t consider vertical length scales so large 

that hydrostatic pressure causes density 
variations     
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� We can easily use                   to learn 
about vertical motions

� Expanded:

Incompressibility
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Example - Ocean
� We have an offshore wind, and must 

solve for the resultant upwelling (i.e. 
vertical velocity)

� Assume incompressible flow (why is this 
a good assumption?) N

v=10 cm/s
100 km

100 m



Example - Atmosphere

� Low-level convergence (1m/s each), solve 
for the vertical velocity 100 m from the 
surface if v = 0 and dx = 10 m.
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Notes 

� Conservation laws applied to flow in the 
atmosphere and ocean lead to equations of 
motion

� Flow in the ocean can be assumed to be 
incompressible except when describing sound

� Density can be assumed to be constant except 
when multiplied by gravity 

– Boussinesq approximation
� Conservation of mass leads to the continuity 

equation, which has an especially simple form 
for an incompressible fluid (why?)


