'if' statements, 'for' and 'while' Loops

‘if’ statements

Purpose: Tests an expression and only executes the code if the expression is true.

Format:

if expression

statement(s) to be executed (know as the body of the
loop)

end
Rules:

· The variables in the expression to be tested must have values assigned prior to entering the IF statement.
· The block of code will only execute if the expression is true. If the expression is false, then the code is ignored.
· Values assigned to the variables used in the expression may be changed in the block of code inside the IF statement.
Examples:

x = 100;

y = -10;

if x < 50

%test to see if x is less than 50

 z = x – y^2;

 A = x + 12.5*y + z^3;

end

% won’t run because x is not less than 50
DEMO:

Run a program using an IF statement (enter the following in an m-file):

x = input(‘Enter x’)
% prompt to enter a value for x

if x < 4
 disp (‘x is less than 4’)

end

Enter several values of x, both greater than and less than 4 to see what happens. What do you expect if you entered 3? What about 10?
'for' loops

Purpose:

To repeat a statement or a group of statements for a fixed number of times.

Format:

for variable = expression

statement(s) to be executed (know as the body of the
loop)

end
Rules:

· FOR loops must end with the END statement (lower case).
· The values for the loop variable are controlled by the expression
· The first time through the loop, the variable is assigned the first value in the expression. For the second time through, MATLAB automatically assigns to the variable the second value in the expression. This continues for each value in the expression. The loop terminates after the body of the loop has been executed with the loop variable assigned to each value in the expression.

· The body of the loop is executed many times, but the loop is only executed once for each value in the expression.

· The expression in a FOR loop is an array of values. The number of times a loop executes equals the number of values in the expression array.

· After the loop is finished executing, the loop variable still exists in memory and its value is the last value used inside the loop.

· Any name can be used for a loop variable.

· If the name of the loop variable was already used in the program prior to execution of the loop, old values of the variable are erased and the values of the variable are controlled by the loop.

· i, j, and k are common loop variables; they should not be used if working with complex numbers.

· Loops can be nested.

Examples:

Sequential numbers

for i=1:3

%executes three times

x=i^2

end

x =

1

x =

4

x =

9

Non-sequential numbers

for i=5:10:35

%executes four times

i

end

i =

5

i =

15

i =

25

i =

35

Nested (FOR loop inside a FOR loop)
for i=1:3

%executes three times

i

for j = 10:10:30

j

end

end

i =

1

j =

10

j =

20

j =

30

Continued on next page

i =

2

j =

10

j =

20

j =

30

i =

3

j =

10

j =

20

j =

30
DEMO:

Write a program using a FOR loop:

· Variables: X, Y and loop variable i
· Initialize X = 5 outside the loop

· Loop variable, i, start = 0, end = 150, increment = 10

· In the loop:

· Calculate Y = X*i
· Display i, X and Y to the screen using the command:

sprintf(‘Inside the loop: i = %3.0f X = %3.0f Y = %8.2f \n’,i,X,Y)

· After the loop, write i, X, Y to the screen with the command:

sprintf(‘After the loop: i = %3.0f X = %3.0f Y = %8.2f \n’,i,X,Y)

· Lessons learned:

· The FOR loop stops after executing with i=150

· The last values of i, X, Y inside the loop are the same as the values after completion of the FOR loop

'while' loops
Purpose:

To execute a statement, or a group of statements, for an indefinite number of times until the condition specified by while is no longer satisfied.

Format:

while expression is true

statement(s) to be executed (known as the body of the
loop)

end

Rules:

· Must have a variable defined BEFORE the ‘while’ loop, so you can use it to enter the loop.

· The variable in the while statement must change INSIDE the while loop, or you will never exit the loop.

· After the loop is finished executing, the loop variable(s) still exist in memory and its value is the last value the variable had in the while loop.

Examples:
Basic Execution

x = 0;

while x <= 100

 x = x+30

end

% The while loop is executed 4 times.

% The values are:

x = 30

x = 60

x = 90

x = 120

% When x = 120, the test (x<=100) failed, so the loop was exited.

As a counter

x = 10;

y = 20;

i = 1;

%initialize the counter

while(i<= 50)

x=x+(y^2)

%calculate x

i=i+1

%increment the counter

end

%This loop will execute exactly 50 times.

-OR-

x = 10;

y = 20;

i = 0;

%initialize the counter; starting with

%i=0

while(i < 50)

%test for i<50

x=x+(y^2)

%calculate x

i=i+1

%increment the counter

end

%This loop will execute exactly 50 times.

DEMO:

Write a program using a WHILE loop:

•
Variables: X, Y and loop variable j

•
Initialize X = 5 outside the loop

•
Loop variable, j, start = 0, exit loop when j = 10

•
In the loop:

o
Calculate X = X*j

o
Display j, and X to the screen using the command:

sprintf(‘Inside the loop: j = %3.0f X = %3.0f Y = %8.2f \n’,j,X,Y)

•
After the loop, write j and x to the screen with the command:

sprintf(‘After the loop: j = %3.0f X = %3.0f Y = %8.2f \n’,j,X,Y)

· Lessons learned:

· The 'while' loop stops after j = 10

· The last values of j and X inside the loop are the same as the values after completion of the ‘while' loop
� Adapted from: Jordan, M. 2007: MR2020 MATLAB Course Notes and Pratap, R. 2006: Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers

