m-files

Defined:

· An m-file is a MATLAB program

Why an m-file?
· Faster execution versus typing each command one-by-one

· Record of commands used to produce a result

· Can edit and/or modify

· Can share with others

File Extension:

· MUST be .m i.e., psi.m

· MATLAB sees .m files as programs to be executed

Types:

· script file

· function file

Script m-file

A MATLAB program that contains a set of MATLAB commands to be executed in the order listed. These files may contain any number of commands, including those that call functions (built-in or created).

Execution:

· Type the name of the file without the .m extension at the prompt

>> psi

(not psi.m)

· This is the same as typing all the commands stored in the script file one by one

· The script uses variables already defined in the workspace. Results obtained from executing script files are left in the workspace.

Function m-file
Similar to a script m-file, but the variables are all local. They are subroutines that scripts can ‘call’ instead of having to reenter a portion of code in a script.

Advantages:

· Break your program into separate tasks (called modular programming)

· Write the code once, test it and use it several times

· Main program, which calls the function, is easier to read

· Keeps the interactive MATLAB workspace free of unnecessary variables; the variables are all local

Disadvantages:

· Functions are harder to test because the local variables, which may be needed for debugging, are not passed to the interactive MATLAB workspace

· Increases the number of m-files to keep track of in your directory

The first line of a function m-file have mandatory format – this is how MATLAB can tell the difference between the two m-file types.

· Function definition line: defines inputs and outputs

· function [output variables] = function_name (input variables)

Workspace or one line in your script m-file:

>>[X,Y,Z]= compute_something(A,B,C)

Function that is called:

function[R,S,T]= compute_something(x,y,z)

Functions use variables already defined in the workspace

· Only variables identified to be output from the function are stored in the workspace

· Additional variables defined in the function, but not designated as output, are NOT added to the workspace

· All other variables are deleted after the function is executed
Creating m-files:

Open MATLAB’s built in file editor

· Use the ‘open folder’ icon to open an existing m-file

· Use the ‘blank page’ icon to open a new (blank) m-file

· The text editor will highlight in different colors certain programming commands; this is especially helpful to the programmer!

Save your work frequently – recall the file extension MUST be .m!

Rules:

· The names of m-files must begin with a letter and cannot be longer than 63 characters

· Do not use a period in the name except for the .m

· Avoid names that identify build in function names (i.e., cos, sin, etc) or predefined variables such as pi or other functions/variables you have created
· Never name a script and function files the same name.

· The m-file MUST be in the directory listed in the MATLAB path you are in otherwise MATLAB will never find it.

· Called functions must be in the same path as the script calling it

· Path (or current directory) is located along the top of the MATLAB window (below the file, edit, help etc) in Current Directory – you can also change directories here using the browse button (the … button to the right of your location).

Writing a function:

· Define what the function will accomplish – identify the steps

· Identify the input, output and local variables

· Write the lines of MATLAB code first as a script m-file (NOT a function)
· This is so you can test the script m-file in the interactive MATLAB workspace

· Testing the script m-file

· Define input variable with test values

· The input variable names for the test MUST match the names used in the script m-file because all the variables are in the interactive workspace

· Run the script m-file. The results, output and local variables, are computed and reside in the interactive workspace

· Check that the steps and equations executed as planned

· If the equations use array operations, use arrays as your test variables

· Choose a meaningful function name (the name of the m-file)

· Write the first line of the function m-file following the correct syntax:

· function [output variables] = function_name (input variables)

· Resave assigning the function filename to the file (function name = filename)

· Test your function m-file by calling it from the interactive workspace. For convenience, use test input variable names that are the same as the names in the function

· Document (comment) your function. Be sure to include units and type (scalar, array or matrix) for each variable.
· Comment on the use of the function, remind yourself of assumptions made, what it is meant to do etc. Trust me, you will not remember the details a week later.

Calling a function from a script:
· Ensure the function name is the same as your filename and is in your current directory

· Input variable lengths and types are appropriate for the function

· Don’t input arrays if the program was written for scalars

· Units of the input data match the units used in the function

· Input variables in the call statement are listed in the same order as in the function.
· The names do not have to match, but the type of data (temp, pressure, etc) MUST match what the function expects

· Output variables in the call statement are listed in the correct order

· The names do not have to match, but the type of data (temp, pressure, etc) MUST match what the function expects

· [streamfunction] = psi (u,v)

· This calls the function m-file psi.m with input variables u and v and output variable streamfunction
Example:

Script m-file
% filename = lab4.m

% J. Beattie 10 Jan 2009

% SO414 Lab 4
%

% Purpose: Calculate relative humidity
%

% Variables:

%
tmpc = Temperature (C)
%
dwpc = Dew Point Temperature (C)
%
relh = Relative humidity
%

% Functions called:
%
rel_humidity.m
%--

% begin script (example purpose only)
tmpc = [10 14 20; -1 5 -3];

dwpc = [9.6 8 5; 8 5.0 -1];

[relh] = rel_humidity (tmpc, dwpc);
% note the format in which the function is called
%
output in []

%
function name – exactly as function is saved
%
input in ()

Function m-file

function [streamf] = psi(ua,ub,va,vb)

% J. Beattie 10 Jan 2009

% SO414 PBL Project

%

% Purpose: Calculate the streamfunction given mean and anomaly

% horizontal winds

%

% Variables:

%
ua = anomaly east/west wind
%
ub = mean east/west wind
%
va = anomaly north/south wind
%
vb = mean north/south wind
% -----------------------------

% begin function
� Adapted from: Jordon, M. S. 2007: MR2020 Course Notes and Pratap, R. 2006: Getting Started with MATLAB 7: A quick introduction for scientists and engineers.

