Lesson 14 – Solution to Laplace’s equation
Fluid flow in a semi-infinite bay or river
:
Recall that an irrotational, divergence-free flow field can be described by Laplace’s equation in terms of either the velocity potential or the stream function. We will now obtain a solution to Laplace’s equation as applied to a simplified bay or river inlet with dimensions 
[image: image48.jpg].  We will only be concerned with the surface currents for this example and therefore neglect any vertical dependence.   
 Laplace’s equation is
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The stream function is related to the flow field by;
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The normal and tangential velocity at the boundaries must be zero due to the no-slip condition (water is wet).  Without loss of generality, these boundary conditions can be represented mathematically as
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Assume the solution is separable into products of functions of the independent variables, then 
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 and equation (1) is of the form::
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Dividing both sides by 
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 , we obtain:
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(2)
Now the left hand side of the second equation is strictly a function of x and the right hand side is only a function y. The only way this is possible is if both sides are equal to a constant.  Let us set both sides equal to the constant, 
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(3)
and
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Now equations (3) and (4) are second order 1-D differential equations and have the simple solutions
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And 
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Application of the boundary condition 
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Application of  
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Which requires:  
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Our stream function now takes the form 
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Where 
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Finally, application of the boundary condition 
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Now either the coefficient 
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 which is the trivial solution that the stream function is 0 throughout the entire spatial domain or we require 
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.  Clearly the latter is of more interest and we can place a constraint on the constant
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.  
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Notice that the constraint on 
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 is ambiguous by a multiple of the natural numbers so we must consider the sequence of constants, 
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; all of which are valid for the boundary condition 
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The conversion of the constant 
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 to a sequence of numbers related by the natural numbers should be of no surprise to us.  We have just represented the solution of the problem in terms of a Fourier series in y.  There are an infinite number of stream functions that satisfy equation (1) with the associated boundary conditions for this problem.  They all have the form:  
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(5)
The coefficient 
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 determines the weighting of each mode of the general solution.
Figure 1 shows the streamlines for the current flow for the first three modes in a river whose width is scaled to 1 unit (
[image: image35.wmf]1
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). Figure 2 shows the vector flow field for the 1st mode of the stream function.
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[image: image36]
Figure 1 – First three modes of the streamline function in a semi-infinite river or bay scaled to a width of L=1. The first mode is on top, the mode n=2 is in the lower left.  The mode n=3 is in the low right of the figure.
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Figure 2 – Flow field for the first mode of the streamfunction in a semi-infinite river or bay scaled to a width of L=1
We can resolve the arbitrary coefficient 
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 by simply measuring the current at a point in the bay or river.  Let us assume that we found the current to be 
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 in scaled dimensions (
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We can see from the numerator and exponential term in the denominator that the amplitude of the stream function decreases as we consider higher modes of the solution.  The decrease in the coefficient term for increasing modes is necessary for a physically valid solution.  If the amplitude term 
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 did not decrease for higher modes, then the solution represented as the linear combination of all the modes,
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would diverge to an infinite value implying an infinite flow field which is not possible.  





� These notes were heavily influenced by

Malek-Madani, R.  Advanced Engineering Mathematics with Mathematica and MATLAB, Addison- Wesley Longman, Inc. Reading, MA. Pages 111-117.
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