Lesson 5: Derivation of the Navier-Stokes equation in a non-rotating frame.
1. Review from chapter 1 - Behavior of fluids to Volume or Surface forces:

Two types of forces act on Fluids:

1.  Volume forces – Long rage forces capable of penetrating into the interior of the fluid and act on all elements.  


- Contact of source of force with material is not necessary.


- Also called body forces


Examples of body forces in fluid systems:

a. Gravity

b.  Electromagnetic Radiation

c.  Apparent forces due to coordinate system motion

Surface forces – Short range forces that act only on a thin layer adjacent to the boundary of a fluid element.  

· Surface forces are negligible unless there is direct mechanical between the interacting elements.

Examples of surface forces in fluids:

a.  Pressure Fields

b.  Friction

Provided the penetration depth of the short-range forces is small compared with the linear dimensions of the plane surface elements, the total force exerted across the surface element will be proportional to its area, 
[image: image133.wmf].  

2. Newton’s second law of motion – conservation of momentum


Newton’s second law is expressed as the time derivative of momentum, 
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 (Momentum is not to be confused with the scalar pressure field, p)  . 
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Momentum is equal to the product of mass and velocity, 
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.  For the case of fluids, we prefer to deal with densities instead of volumes and the associated momentum density is 
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 and total momentum  is  
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 and Newton’s second law then takes the form:
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(1)
The net force in the above expression can be due to external forces such as those discussed in section (1) but also due to spatial variations of momentum across the fixed volume. These spatial variations lead to a momentum flux through the volume surface,  
[image: image8.wmf](
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.  To get an idea of the effects of the momentum flux, imagine a solid box in space and think of all the molecules bombarding the surface of this box at a point in time.  If there the molecules on one surface have a larger net momentum on one side of the box than the other than this will lead to a resulting force.  Of course, our hypothetical fixed volume in fluid dynamics is not a solid but the principle remains the same in that the net momentum of the fluid along the surface of leads to a net force. Using Gauss theorem, the momentum flux can be expressed as  
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 and equation (1), in index form, is expressed as:
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We now drop the external subscript for the force term and rearrange the above expression to isolate the external forces:
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Applying the product rule on both terms of the integrand and rearranging, we obtain:
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The two terms on the left comprise the conservation of mass and are therefore equal to zero and so we obtain Newton’s second law for a fixed volume in the fluid:
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(2)
Deriving the Navier-stokes equation is now a matter of mathematically expressing the various external forces that are applied to this arbitrary fixed volume in space. 

The most formidable of these forces to describe are the net surface forces or stress fields.

3. The stress vector and the stress tensor:

Defining the Stress field as the total external force per unit area over a body, 
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 the total force on an element is represented as
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Thus the total external force due to the stress field is found by integrating over the surface:
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In defining stress notice that it is a function of position, 
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, the unit normal, the normal unit vector, 
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, of the body the force is being applied to (the object’s geometry), and time. We adopt the convention that the stress is exerted by the fluid on the side of which the 
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 points away from See figure 2 for a visual diagram.


[image: image20]
Figure 2 – Diagram showing the hypothetical stress at two different points on an object.

Notice from figure 2, that if we swap what we assume to be fluid and what we assume to be solid, we can conclude that 
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indicating that the stress vector is asymmetric with respect to the unit normal. The stress vector is essentially a generalization of our notion of pressure but has a direction so that it applies to both normal and shear forces.

3. The stress tensor – General properties:
To further examine the properties of the stress vector, consider a small volume element in the shape of a tetrahedron as shown in figure 3. We will disregard any time dependence and assume the volume element is small enough that the stress vector is approximately constant and is uniquely determined solely by the object geometry and
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[image: image24]
Figure 3.  Volume element in the shape of a tetrahedron showing the projection of the face area, 
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 with unit normal, 
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, on each of the Cartesian planes.

The outer face of the tetrahedron has area 
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 and unit normal 
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.  This sides of the tetrahedron consist of planar projections where each face is calculated by examining the projection of 
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 on the associated vertical plane  so 
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.  The total surface force is equal to the sum of the forces on each face so:

Total surface forces =
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Substituting the surface area projections established above and using the asymmetric nature of the stress vector;

 Total surface forces =
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Or

Total surface forces =
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(3)

For convenience, we switched to index notation in equation (3) where we are summing over the “dummy index” j .  Recall that this is the summation convention discussed in chapter 1.  

Let us consider the above relationship in the context of Newton’s second law
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Body forces and mass are proportional to volume whereas surface forces are proportional to surface area.  As we take the limit that the length scales approach zero, it is apparent that the volume-dependent terms will converge to zero much more rapidly than the surface force contributions. In other words:
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The only way that Newton’s law can be satisfied in the limit 
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is that the argument in equation (3) is equal to 0.  So we find the following relationship for the stress vector:
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(4)

Where 
[image: image40.wmf]ij
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 is called the stress tensor.  Equation (4) shows that the stress vector is linearly dependent on the surface geometry of the object.  The coefficient of proportionality in this linear relationship is the stress tensor and has nine components.  The visual representation of all all nine components on an infinitesimal cube are shown in figure 3.  Notice that the i-th component of the tensor represents the direction of the force of the fluid and the j-th component represents the adjacent surface element normal vector direction.  
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[image: image41]
Figure 3: Diagram showing the various components of the stress tensor on an infinitesimal cube.


Although there are nine components to the stress tensor.  It can be shown by examining conservation of angular momentum that the tensor is also symmetric
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(5)

 and thus there are only six independent components to the stress tensor.  
4. Physical meaning of the stress tensor:

In a hydrostatic fluid, the only surface force acting in the medium is pressure.  The resultant stress field and stress tensor are isotropic since the force acts equally in all directions.  Quantitatively, the requirement of isotropy means that the components of the tensor do not change when the coordinate system is rotated. It can be shown that any isotropic second order tensor must be proportional to the Kroenecker delta tensor which is defined as
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The stress tensor then has the following simple relationship with the pressure field:
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(6)
The negative sign is introduced by convention.  In other words, we assume that normal forces are positive under tension and negative under compression.

The extension of the stress tensor to the non-hydrostatic case is simply a matter of superimposing a non-isotropic or deviatoric tensor, 
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, to the above.  The general stress tensor then takes the form
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(7)

We will assume a constitutive relationship between the deviatoric stress tensor and the gradients of the flow field.  In other words we make the hypothesis that the deviatoric stress tensor is linearly related to the “velocity gradient”.  
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(8)
The “velocity gradient” in this case is the direct product of 
[image: image48.wmf]Ñ

with the velocity field and is a second order tensor with 9 separate components.  The fourth order tensor coefficient 
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 linearly relates the deviatoric stress tensor with the velocity gradient and depends on the local fluid medium.  As an example, we can see that the deviatoric stress component 
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 linearly depends on the velocity gradient as:
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In general we can see that 
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has 81 components and any further analysis can be quite tedious.   Fortunately, we can assume that the molecular structure of the fluid is statistically isotropic and thus 
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 must be isotropic as well.  It can be shown that any isotropic fourth order tensor must be of the form 
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Even further, we know from the symmetry of deviatoric stress tensor that 
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(9)
Substitution of equation (9) into (8) gives us the following form for the stress tensor:
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Substitution of the above expression into equation (7), we obtain
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(10)
Notice that 
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.  If the fluid medium is incompressible, the last term in equation (10) is equal to zero and the stress tensor for an incompressible fluid has the form:
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(11)
We can see that the surface forces consist of two contributions in an isotropic incompressible medium: 
1. An isotropic pressure field

2. A constitutive shear term that represents the frictional aspect of the fluid.
 The strain rate tensor and the rotation tensor

We can split the deviatoric stress tensor of equation (10) into both symmetric and anti-symmetric components as follows:
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The first term in the above expression is called the strain rate tensor which is a measure of the deformational properties of the fluid medium.  The second terms is called the rotation tensor and is a measure of the rotational properties of the fluid.  Note that by merit of the fact that 
[image: image63.wmf]ij
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 is anti-symmetric by definition, it must be neglected due to the fact that the stress tensor is symmetric
.    

The consequences of splitting up the stress tensor in this way is that we can now see that surface forces are directly related to the isotropic pressure field  and the deformational properties of the fluid are expressed by the strain rate tensor.
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(12)
5. Newton’s second law of motion – The Navier-Stokes equation:
Recall that the general definition of the stress vector as the force per unit area where it is related to the stress tensor by equation (4):
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The resulting surface forces are found by integrating over this stress vector:
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Using Gauss’ theorem and assuming the fluid is incompressible (exercise), we can obtain the above surfaces forces in terms of a fixed volume in space as:
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Recall at the beginning of this chapter, that we provided the following examples of possible body forces on the fluid:
1. Electromagnetic radiation: We will not consider electromagnetic forces at all in this course. The field of study that accounts for electromagnetic forces in fluid systems is called Magnetohydrodynamics (MHD) and not immediately relevant to the applications of meteorology and Oceanography.  

2. Apparent forces: Apparent forces due to the rotation of the earth are important and will be considered next chapter.

3.  Gravitation forces:  These forces are important and their contribution to the equations of motions are obtained simply by considered the gravitational force equation
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G is the universal gravitational and has the value
[image: image69.wmf]2

3

11

10

67

.

6

s

kg

m

×

´

-

, 
[image: image70.wmf]earth

M

 has a constant value of approximately
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The radius of the earth, 
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, can also be assumed to be a constant value of 6371 km.  Notice that 
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 will be significantly larger than any vertical height, z,  that we consider in this course and therefore it is safe to assume that 
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.  Equation (14) can then be approximated as
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(15)

Where g is the acceleration of gravity at mean sea level and has the value 
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.  Notice in the last equality that we integrate over a density field to find the mass since we are dealing with continuous fluid mediums instead of discrete mass objects.  

We now have all the contributions necessary to consider the dynamics of an incompressible fluid in a non- rotating frame.  Recall from section (2) we derived an integral form of Newton’s Second Law in a fluid as

 
[image: image77.wmf]v

Du

FdV

Dt

r

=

ò

r

r


Using the surface and body forces defined in equations (13) and (15)  for the external force we obtain an integral form of the equation of motion,
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The equality above must be true for every point in the fluid domain and thus the integrands must obey the Navier-Stokes equation for an incompressible fluid in a non-rotating frame
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As a check of the equation of motion, consider a hydrostatic medium so that 
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  in equation (15) and we observe that the result is the hydrostatic equation, 
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,  as derived at the beginning of chapter 3.  

It is often the case that the gravitational force in equation (15) is treated as the sum of all general conservative body forces for the problem. In this case, equation (15) will take the form  
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And the gravitational contribution to the total body force is represented as 
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6. Boussinesq Approximation:

In the above analysis leading to equation (16), we have assumed that medium is incompressible and 
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.  In conservation of mass, we have already discussed relaxing this assumption and considering small density variations as compared to a uniform background density  
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The question becomes, how does this assumption modify the equations of motion?  First off, the requirement 
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 is valid under nearly all circumstances in the ocean and lower atmosphere.  In the upper atmosphere, the background density is quite small however and the Boussinesq approximation breaks down.  A more refined approximation called the analastic approximation accounts for this limitation.  For this course we will only consider the Boussinesq approximation in the following analysis and neglect unique cases such as the upper atmosphere.

For review, let us remind ourselves that velocity field is divergence free under the Boussinesq approximation.  Take the general form of the equation of continuity, 
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and perform a scaling analysis between the above two terms:
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As expected, the above analysis shows us that it is safe to assume that 
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.  We can apply this approximation to the Navier Stokes equation, equation (16), where we assume a local density and pressure field 
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The background pressure and density fields, 
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 are assumed to be in a static fluid so we find that background field obeys the hydrostatic condition
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Substitution of equations (17) into the equation of motion and application of equation (18) yields 
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If we divide the above equation by 
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, we obtain a more general form of the Navier-Stokes equation:
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Where 
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 and the primes have been dropped.
Equation (19) provides us with a more general form of equation of motion where we have relaxed the condition of constant density with one where we just assume density variations are small.  Notice the additional physical insight that density variations occur in the equation of motion only in the gravitational force term; indicating that density variations need only be considered due to the effects of buoyancy.  
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� Notice that the pressure field in equation (8) is not necessarily the same pressure as defined in thermodynamics due to the non-equilibrium nature of a moving fluid.  We can fortunately ignore any departures from thermodynamic equilibrium provided the relaxation time is small compared to the time scales of our problem which is the case in all physical applications we will consider.

� It should be noted that � EMBED Equation.3  ���is simply neglected and not equal to zero. This can be seen by the symmetry of the stress tensor by taking � EMBED Equation.3  ��� where we used the fact that � EMBED Equation.3  ��� 
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