Lesson 6 – Apparent Forces:

In Chapter 5 we derived the Navier-Stokes equation for an incompressible fluid in an inertial or fixed frame. All our physicals observations, however, are made on the surface of the earth which rotates at a constant angular velocity.  Although we observe and understand the effects of the sun rising and setting daily we are unaware of the significant speeds we all travel at on the surface of the earth. The results are that we notice some strange phenomena occur such as ocean and wind currents being deflected by no obvious surface or body forces.  These apparent forces are due to the constantly changing direction of the coordinate system we make our observations from on the earth’s surface.  Since we require all our laws to be independent of our observational standpoint, we must modify the Navier Stokes equation to take into account the effects of making our observations from a continually accelerating coordinate system.  A thorough but specific analysis of the quantitative process below was provided at the end of the SO335 course.

Consider an orthogonal coordinate system which is rotating about an arbitrary axis with constant angular velocity 
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 as seen in figure 1.
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Figure 1 – The circular trajectories mapped out by the tips of each of the unit vectors of an orthogonal coordinate system being rotated about an arbitrary constant rotation vector, 
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.  It is clear that the associated velocity of each basis vector is provided by the equation of solid body rotation provided that 
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 is constant.

If we consider a general vector 
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 that is moving relative to this rotating CS we notice that, from an external or inertial frame of reference, that it has two contributions to its change of position with respect to time: one is due to the movement of the vector relative to its defined coordinate system and another due to the movement of the coordinate system itself.  This is expressed quantitatively as:
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The first three terms in equation (1) are the standard motion of the vector in its relative frame and so we can define it as a relative rate of change of the vector 
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The second three terms require some additional physical insight to express them in a more tractable form.  We can see from figure 1 that each basis vector of the coordinate system maps out a circular trajectory in space and the velocity of rotation of each of these vectors is simply a solid body rotation with associated velocity
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for the 
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 basis vector. Substitution of equation(s) (2) into equation (1) we see that the rate of change of the vector 
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 in the inertial frame of reference is expressed as
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Notice that there was no physical significance or properties given to the vector 
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 besides that its motion was given relative to a moving CS and so the result of equation (3) is true for any vector that is defined relative to the rotating CS.  Due to this generality, we can express (3) in an operator format as 
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This is similar to what we did in SO 355 when we defined the del or gradient operator.

Our main goal with the above analysis is to represent the accelerations or apparent forces that arise due to this rotating frame of reference.  Accelerations are given by the second derivative of a position vector with respect to time.  We can square the general operator above to obtain a second order time derivative:
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Applying this second order operator on a position vector 
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 , which is defined in the rotating frame of reference, we obtain the apparent acceleration:
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Let us examine each of the terms of equation (4):

 I) 
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:  This term represents the acceleration of an object in the rotating frame of reference.    Since all of our observations are made in the rotating frame, it is normal convention to consider this term to be the only acceleration term in the equation of motion and is usually called the inertial term.  Notice that it is represented as a material derivative and not a local derivative in the final equality. The other terms of equation (4) are then described as apparent accelerations in the equation of motion.  

II) 
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- This term is called the Coriolis acceleration and measures the deflection of the fluid parcel as observed in the rotated coordinate system.  Notice that its effect is proportional to the magnitude of rotation and the speed of the object. It is this deflection that leads to most of the unique phenomena we observe in the atmosphere as well as effects in the ocean such as Ekman transport.   

III)  
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: Using the triple cross product identity we can represent this term as two components: 
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.  Without loss of generality we can assume that 
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 and that the rotation axis is in the 
[image: image23.wmf]^

3

e

 direction so 
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.  The two terms of the tripe cross product can then be expanded out as 
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 where 
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  is the horizontal vector perpendicular to the rotation axis to the point of observation.  The resulting term 
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 is the centripetal acceleration due to the earth’s rotation. It is always directed inward towards the axis of rotation and is a maximum at the equator and zero at the poles. Since the apparent force associated with the centripetal acceleration is conservative, it is common convention to couple this term with any gravitation forces in the problem and define the sum of both the gravitational and centripetal force as the effective or apparent gravitational force.


Now that we have an appreciation for each of apparent acceleration contributions we can represent the equation of motion for a Boussinesq fluid frame (recall that this means a system with small variations in density) in a rotating frame as:
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(5)

where we have lumped the conservative body forces into one term, 
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Notice that, if we consider the rotation and length scales of the earth, 
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 and we can safely neglect both components of the centripetal force in the above equation and just consider an approximate gravitational acceleration directed radially inward.  The other option is to include these small spatial variations and specify gravity as an apparent gravity.  For simplicity of the analysis, we will just neglect these small centripetal terms.  
2.  Coordinate systems centered on the earth’s surface
Unless we consider physical systems located at the northern or southern pole, we need to assume a local Cartesian CS that is centered on the surface of the earth at a specific latitude.   This type of CS is normally called the 
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-plane CS and is represented in figure 1 at the latitude 
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 with the y’ axis pointed north, the x’ axis pointed eastward and the z’ axis pointed upward or vertically.
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Figure 2 – Diagram showing the 
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-plane CS.

We can see from figure 2 that the rotational vector can be broken up into two components in this new frame of reference as 
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Given that the earth has an angular rotational velocity of 
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 we can see that the components of the rotational velocity at our latitude of 
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 we can see that the rotational coordinates for “our” 
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-plane are 
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And 
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3.  Equation of motion in the
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-plane 
We now wish to consider the equation of motion given by equation (5) in the 
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-plane CS developed in the previous section. Description of the first and last terms of equation (5) is simply a matter of describing the components of the velocity vector in terms of an east-west component, u, north-south component, v, and a vertical component, w.  

One of the assumptions in the equation of motion that we know from chapter 5 is that density variations are small (Boussinesq approximation) and so
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. Simple dimensional analysis shows us that for a shallow system, the vertical component of velocity is significantly smaller than the horizontal velocity components.  This is a consequence of the much larger horizontal scales in the atmosphere and ocean as compared to the vertical.  The end result is that it is safe for us to assume 
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 in our derivations of the Coriolis term in the
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-plane CS.

The gravitation term of equation (5) is a simple adjustment of the basis vectors due to the change of CS.  In the case of the 
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-plane CS, the radial direction of the previous section is now just a vertical coordinate and we have 
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Expanding the Coriolis term in the 
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-plane CS we have the following vector:
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As we stated in the previous paragraph, if we make the Boussinesq approximation than we can neglect all vertical velocity terms in the above expression and obtain the result
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where 
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.   Finally, a simple analysis of the scales of the vertical component with gravitation acceleration shows us that for velocity scales less than
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 and thus we can neglect the vertical component of the Coriolis acceleration.  And we obtain the simple equation for the Coriolis vector in our local CS:
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We are now in a position to express the equations of motion in the 
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-plane CS.
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(6)

[image: image58.wmf]w

g

z

P

Dt

Dw

o

o

2

1

Ñ

+

-

¶

¶

-

=

n

r

r

r


� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���








[image: image59.wmf]1

^

e

[image: image60.wmf]^

2

e

[image: image61.wmf]^

3

e

[image: image62.wmf]W

r

[image: image63.wmf]a

[image: image64.wmf]q

[image: image65.wmf]W

[image: image66.wmf]q

[image: image67.wmf]W

[image: image68.wmf]'

3

^

e

[image: image69.wmf]'

2

^

e

[image: image70.wmf]3

^

e

[image: image71.wmf]y

W

[image: image72.wmf]z

W

[image: image73.wmf]1

^

e

_1328434625.unknown

_1328434853.unknown

_1328435444.unknown

_1328435478.unknown

_1328435529.unknown

_1360667085.unknown

_1328435628.unknown

_1328435518.unknown

_1328435464.unknown

_1328434901.unknown

_1328435345.unknown

_1328435360.unknown

_1328435404.unknown

_1328435309.unknown

_1328434863.unknown

_1328434731.unknown

_1328434825.unknown

_1328434841.unknown

_1328434805.unknown

_1328434811.unknown

_1328434750.unknown

_1328434647.unknown

_1328434658.unknown

_1328434637.unknown

_1246962056.unknown

_1252390916.unknown

_1328434534.unknown

_1328434560.unknown

_1328434569.unknown

_1328434603.unknown

_1328434545.unknown

_1328434490.unknown

_1328434517.unknown

_1328434524.unknown

_1328434505.unknown

_1252391132.unknown

_1261227802.unknown

_1252391020.unknown

_1252391031.unknown

_1252390980.unknown

_1252322906.unknown

_1252328835.unknown

_1252390823.unknown

_1252390831.unknown

_1252390376.unknown

_1252390393.unknown

_1252390403.unknown

_1252328849.unknown

_1252324845.unknown

_1252325140.unknown

_1252324324.unknown

_1252321316.unknown

_1252321338.unknown

_1252320468.unknown

_1252321299.unknown

_1252313633.unknown

_1246960943.unknown

_1246961778.unknown

_1246961813.unknown

_1246961020.unknown

_1246960733.unknown

