Assignment #5 (50 pts)  

Name: ___________________________
______________________________


___________________________
______________________________

1.  (10 pts) For the hyperbolic flow, 
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 where 
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 is a constant 
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 are wave number constants with dimensions 
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, use the relationship 
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  to find the streamlines of the velocity field.
2a.   (10 pts) For a river with uniform width of length, L, where the flow at the inlet is a constant current speed 
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, the following stream function satisfies Laplace’s equation, 
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Where 
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 is a constant.  

Verify that the above stream function satisfies Laplace’s equation

2b.  (5 pts) What restrictions are placed on the flow field to ensure that Laplace’s equation ,
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, is satisfied for the stream function, 
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2c (5 pts) What are the units of the stream function, 
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Just for your information, the streamlines in 2(a) look like the following graph: 
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3. (10 pts)  Use the Taylor series to expand the function 
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  out to three non-zero terms about the value 
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4.  (10 pts) Using Gauss theorem, prove that vortex tubes cannot end within a fluid.  In other words, prove that
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where
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The above equation tells us that any vorticity entering the closed surface must also leave the closed surface. 

(Hint – The fifth vector calculus identity in Appendix A at the end of chapter 3 may be helpful)
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