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Quantitative Methods in Oceanography & Meteorology – SO335        

Lab 5
Taylor series review
1.  Recall from the worksheet that a Taylor’s series approximates a function 
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Let us briefly examine some simple applications of the Taylor series in MATLAB. 

a.  (10 pts) Using equation (1),  expand the function 
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 about the point 
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 out to 3 non-zero  terms 
Write the resulting coefficients here:

b. Now create an array, x, in MATAB from -1 to 1 with 0.05 increments.
c. (10 pts)  Examine the properties of the accuracy of the Taylor series by plotting out

the expanded function over the domain  -1 to 1 to two terms and then superimpose another graph  with all three terms.  Superimpose these two graphs over the original function 
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. Print out the resulting graph.  
i.  Notice how the one term expansion represents 
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 only out to about 
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. The three term expansion however maintains its accuracy of representing 
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out to approximately 
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ii.  These observations show us that the accuracy of the expansion depend on two factors:  
(1.) The number of terms used in the expansion 

(2) The distance from the central point of the expansion. 
3.  Mass Conservation –
Recall from our worksheet that Gauss’ Theorem allows us to express surface area integrals in terms of volumetric integrals.  For a general vector, 
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, this relationship is expressed as: 
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We will now see the usefulness of equation (2) by using it to derive the conservation of mass.  For a fluid with density field, 
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,  defined over a fixed volume, V,  the change in mass, M,  with respect to time is represented as 
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Now conservation of mass states that matter can neither be created or destroyed so any increase or decrease in mass must be due to the flux of matter through the surface bounding the volume V.  The density flux through the surface A bounding the volume V is defined as  
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.  Now there is an ambiguity about whether the flux integral represents the outflow or inflow of mass through the surface.  Utilizing the standard convention that the normal vector, 
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, points outward on the closed surface A,  we can see that 
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 represents the outflow of mass through the surface and therefore a decrease in total mass over time.  Thus conservation of mass shows us that 
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(3)
a.  (5 pts) Use Gauss’ Theorem on equation (3) to derive the continuity equation
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Write your work here:

b. (5 pts)  Express the conservation law of equation (4) in terms of the material derivative of the density field, 
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, and the divergence of the velocity field.
c.  (10 pts) Incompressible flow application: If density is constant, the fluid is said to be incompressible.  Equation (4) then takes the simple form: 
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Given an incompressible fluid with flow 
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traveling through a straight pipe whose cross-sectional area at point 
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  is 
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 and 
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 at point 
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as indicated in figure 2,  use Gauss’ Theorem to find a relationship between the fluid velocity 
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 and areas 
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 . (Disregard any turbulent or direction-changing effects at the interface where the pipe changes area so that the velocity is always strictly in the 
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direction throughout the pipe.)
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Figure 2 – Idealized diagram of straight pipe
d) (5 pts) For constant inlet speed 
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 and a pipe with inlet cross sectional area  
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 and outlet area 
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, find the outlet speed 
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4.  Streamline representation of the above pipe flow
The  stream function for the above flow can be approximated analytically by the following function (Note however that this stream function does not account for the location of the pipe boundaries)

[image: image37.wmf](

)

(

)

(

)

þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

+

-

+

=

-

-

x

m

e

x

u

x

u

x

u

y

1

20

1

2

1

1

y





(5)
Consider a sub-section of the above pipe flow domain 
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 with increments 
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a.  (5 pts) What are the units of 
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 in equation (5)?

b.  (15 pts) Use your results from section 3 (d) for 
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 and 
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 in equation (5) to graph contours of the stream function over the specified domain.  Explain how the density of streamlines in your result is representative of change of fluid speed through the pipe.
5.  Examination of conservation laws for salinity. 
As discussed in section 3, the flux of a scalar quantity
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is defined as
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 and represents the amount of the quantity 
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 that travels into the closed surface area A due to the effects of the flow field 
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.  Using Gauss theorem in the exact same manner that we did for mass conservation, we can derive a relationship between the time dependence of quantity 
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 to spatial variations of the flux.  Assuming the quantity Q represents the salinity concentration in a river and 
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 is a measure of its current, we will use MATLAB to evaluate the salinity distribution.  
a.  (5 pts) Given a salinity concentration of Q and the fact that total salinity, 
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,is conserved, derive an equation relating the time rate of change of salinity concentration, 
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 , to the net salinity concentration flux through a general surface area.  
b. (10 pts) Consider a well-mixed river which opens to the ocean; representing a salt water source as shown in figure 1. 
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Figure 1 – Simplified representation of ocean flow into a river with constant flow 
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The fact that the river is well-mixed means we can neglect any vertical variations and consider a simplified local flow field into the river at a constant rate 
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 is a constant of proportionality
.  Assume the salt water concentration, in the river has the function form 
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 are constants. Since all proportionalities are spatially invariant, we can scale the flow and concentration fields as:
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Given that equations (6) satisfy the salinity conservation equation derived in part (a) to within a constant of proportionality, find the spatial dependence of the salinity concentration.  In other words, solve for
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{If you wish to resolve the constant of proportionality you may assume that 
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c.  (15 pts) Use contourf in MATLAB to create a contour graph of the salinity concentration distribution from the river inlet to x=1 (i.e. from 
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) at t=12 hours.  Be sure to label the contours.  Print out the graph.
d. (5 pts)  Explain what happens to the salinity concentration as we move farther away from the mouth of the river ( for increasing values of x).
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Open ocean = salt water source
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1 scaled units wide





� We will also assume the flux is solely due to advection and neglect any diffusion effects.
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