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Quantitative Methods in Oceanography & Meteorology – SO335        

Lab 6 
Vectors in rotating frames
1. (5 pts)  Recall, from the rotation worksheet, the relationship between someone in a fixed frame in space and someone on earth observing a vector in the earth frame of reference is determined by the a superposition of the relative motion on the surface of the earth, 
[image: image1.wmf]earth

u

,  combined with the solid body rotation of the earth, 
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Let us now examine the effects of earth’s rotation on a car moving down the capital beltway as perceived by both an observer on earth and an observer in a fixed frame in outer space. Assume the vehicle is moving with the flow of traffic at 5:00pm (rush hour) with an average velocity of 
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 meters per second (Approximately 4 mph) where the subscript is used to denote the measurement was take by our observer on earth.  Now the observer in space assumes an unmoving CS with the same origin as our rotating earth CS with 
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 in our rotation matrix.  The position vector of the car at this time is 
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 miles and the angular velocity of the earth is 
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Using equation (1), calculate the velocity of the car in meters per second as represented by the external observer in space. 
Geostrophic flow preliminaries – f-Plane Coordinate system

2.  Unless we consider weather systems to be located at the northern or south pole, we need to assume a local Cartesian CS that is centered on the surface of the earth at a specific latitude.   This type of CS is normally called the f-plane CS and is represented in figure 1 at the latitude 
[image: image8.wmf]q

 with the y’ axis pointed north, the x’ axis pointed eastward and the z’ axis pointed upward or vertically.
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Figure 1 – Diagram showing the f-plane CS.

a. (10 pts) Given figure 1, find 
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 and 
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in terms of 
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 and 
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b. (5 pts) Notice that your result above shows that the components of the Coriolis vector vary with latitude. Given that 
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, find numerical values for 
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 in units of s-1 at a latitude of 
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 north.

Geostrophic flow
3.  At the end of the chapter on apparent forces, we derived the acceleration of an object as perceived by an observer in a rotating frame.  We then relate this acceleration to forces applied on a given parcel by the use of Newton’s second law

The resulting equation was: 
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Some of the forces that will impact the acceleration of the fluid parcel are the pressure gradient force, gravity, and friction

Considering these forces, we arrive at the equation of motion in a rotating frame (neglecting the subscripts for relative motion):
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Now let us consider the geostrophic case where we assume a steady state flow and neglect friction, centrifugal acceleration of the earth and advection. For the geostrophic case, we assume a hydrostatic balance in the vertical direction so the governing equation of motion lies entirely in the horizontal f-plane with the form:
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(2)

In rectangular coordinates, the components are,
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(2a)
In the above equations, 
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.  We will also represent the Coriolis vector in the 
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 as shown in figure 1.
a)  (10 pts) From equations (2) and/or (2a), solve for the northerly (v) and easterly wind flow (u) in terms of the easterly and northerly pressure gradients, density (
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 ) and the components of the Coriolis vector 
b.  (15 pts) We wish to examine an idealized low pressure system represented as the following pressure field 
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Where pressure is in units of millibars and x and y are in units of kilometers. 
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 is a length scale for the pressure field and has the constant value of 200 kilometers as represented in the f-plane CS.

 Assuming we are at a latitude 
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 and that the local density of the atmosphere is 
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,  we will now use MATLAB to graph the flow field in the  f-plane CS as follows –

i.  Input the pressure field  over the domain 
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 with increments of 
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25 km.  
ii) Create a graph of a contour of the isobars and then type hold on since we are about to overlay additional graphs on this figure.

iii). Use the gradient function in MATLAB to define 
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iv). Given your results for part (3a) create the flow field components u and v
from the equations you derived at the end of step (3a)
v.  Use quiver to make a graph of the vector flow field in step (iv) superimposed over the pressure isobars.. 
Print out the resulting graph

vi. Trace a couple apparent streamlines of the flow field on the graph you printed out.  

Notice that the flow is parallel to the isobars which we expect for a geostrophic flow.

d.  (5 pts) If we used the ideal high pressure system,  
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How would the flow differ from the graph you created in part iv?
4. Tropical model –   A geostrophic flow is a good approximation to model some of the large scale features in the atmosphere.  Recall that one of the main results of the geostrophic wind is that it is steady-state and parallel to the associated isobars driving the wind.  As you can see from your graph in section 3, the idealized isobars of a low pressure system have significant curvature associated with it so the fluid parcels in the above example are constantly changing direction while following the closed isobars of the system.   We know from classical physics that a change of direction is an acceleration and thus subject to a force as per Newton’s second law.  Just like a car racing around an oval track, the fluid parcels will feel a force due to this continual change in direction.  Equations (2) do not account for this acceleration effect so the results we obtained in section 3 are suspect.   In this section, we will account for Coriolis and pressure forces as before but also take into account the effects of curvature by including a centripetal acceleration term.  To examine this additional contribution, let us consider a new physical example where the effects of curvature are prominent; a mature hurricane.  It has been empirically
 shown that a mature steady state hurricane’s pressure field can be approximated by 
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(3)

Where B is a dimensionless parameter, r represents the radial distance from the center of the hurricane in units of kilometers.  
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 represents the radial distance where maximum winds occur.  
For our example we will assume B=1.5 and
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 is the sea level pressure in the undisturbed environment which we will assume to be 1010mb.  
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is the sea level pressure at the center of the storm which we will assume to be 
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To derive the associated wind flow pattern from the pressure field in equation (3), we will approximate that the friction boundary layer is near the surface and thus disregard any friction effects in the equations of motion.  We will also assume that the vertical flow field is significantly smaller then the horizontal so we can assume hydrostatic balance in the vertical. The resulting horizontal equation of motion is
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(4)
As shown in lectures, the polar coordinate form of equation (4) is
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(4a)
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Now let us make an additional set of observations and assumptions:  

I.  Assume circular symmetry (axi-symmetry) so: 
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 another consequence is that there is no radial component to the flow so 
[image: image46.wmf]0

=

r

u


II. The flow is steady:  
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Under these assumptions, the equations from (3a) reduce to 
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(5)
By converting to polar coordinates, the two Cartesian component equations of (2) have been reduced to one equation and we now have the effects of curvature included.  The axial symmetric flow of equation (5) is called the gradient wind.  

a.  (10 pts) Solve equation (5) for 
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 in terms of 
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 (Note that equation 5 is a quadratic equation with respect to 
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b. (10 pts) Using equation (3), derive the analytic expression for 
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(Hint: using the chain rule will be helpful)
c.  (5 pts) Recall the empirical relationship for pressure versus radial distance in equation (3) is given in units of millibars with radial distance expressed in kilometers.  The Coriolis vector was found in question (2b) in units of 
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 and density is given in units of  
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Perform dimensional analysis to find an appropriate scaling factor for 
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 to ensure it has units of 
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 .  Write down the resulting scale factor and show all work.

d.  (10 pts) Given your results from parts (a) through (c). Use MATLAB to plot the azimuthal wind speed, 
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, as a function of radial distance from the eye of the hurricane. Use the positive root to ensure a cyclonic flow and assume 
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.   Be sure to use scaling factor from part (c) above when inputting your expressions in MATLAB.   Print out the resulting graph after appropriate labels have been added.

e.  (5 pts) What is the maximum azimuthal wind speed of this hypothetical hurricane in units of knots?

f) (5 pts) At what radial distance in kilometers do these maximum winds occur?  
f.  (5 pts) Can the associated velocity field printed out in part (e)  be approximated by solid body rotation?

Explain below and superimpose a hand drawn graph of solid body rotational velocity as a function of radial distance on your printed out graph in (e).

Hint -  Solid body rotation is defined as 
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 is the radial vector from the center of the hurricane and 
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 is a constant representing the angular rotational velocity of the hurricane as determined from the Coriolis vector. Note that we are using cylindrical polar coordinates which have unit vectors of 
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� Holland, G. J. 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon Wea. Rev., 108, 1212-12-18





PAGE  
5

[image: image66.wmf]z

W

[image: image67.wmf]y

W

[image: image68.wmf]z

[image: image69.wmf]'

y

[image: image70.wmf]'

z

[image: image71.wmf]W

[image: image72.wmf]q

[image: image73.wmf]W

[image: image74.wmf]q

_1251294752.unknown

_1255941115.unknown

_1286604260.unknown

_1286604553.unknown

_1286604794.unknown

_1286605953.unknown

_1288081320.unknown

_1286605898.unknown

_1286604590.unknown

_1286604379.unknown

_1286604531.unknown

_1286604267.unknown

_1257857589.unknown

_1282564584.unknown

_1286604228.unknown

_1257857591.unknown

_1257941006.unknown

_1256535252.unknown

_1257857588.unknown

_1256535202.unknown

_1255940837.unknown

_1255940873.unknown

_1255940880.unknown

_1255940890.unknown

_1255940860.unknown

_1255940369.unknown

_1255940822.unknown

_1255940826.unknown

_1251527987.unknown

_1251528449.unknown

_1251521320.unknown

_1250516937.unknown

_1251291096.unknown

_1251291600.unknown

_1251293231.unknown

_1251294743.unknown

_1251293128.unknown

_1251291318.unknown

_1251291352.unknown

_1251286358.unknown

_1251290266.unknown

_1251286310.unknown

_1251285004.unknown

_1246966199.unknown

_1250507995.unknown

_1250516849.unknown

_1250516855.unknown

_1250511545.unknown

_1250513439.unknown

_1247376496.unknown

_1247376600.unknown

_1247377035.unknown

_1247376454.unknown

_1246962227.unknown

_1246966009.unknown

_1246966020.unknown

_1246962056.unknown

_1246962181.unknown

_1246962158.unknown

_1246961623.unknown

_1246961778.unknown

_1246961813.unknown

_1246961658.unknown

_1246961610.unknown

_1246960943.unknown

_1246961020.unknown

_1246864630.unknown

