3.  Review of Partial Differential Operations
1.  Partial Derivatives


Given a certain multidimensional function, A, a partial derivative at a specific point defines the local rate of change of that function in a particular direction.  If A is a 4-dimensional variable (i.e. 
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  = slope of A in the x direction
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The subscripts on the brackets indicate that those dimensions are held fixed.  

Notice that the definition of a partial derivative of a multi-variable function is the same as derivatives of functions of a single variable, but with the other variables of the function being held constant.  Whenever you see the “backward-six” notation for the derivative, you should think about what variable you are operating on, as indicated in the denominator of the expression, while holding the other variables constant.   

It is common convention that the directions being held constant are implied and not explicitely written as above.
2. Higher order partial derivatives


We can apply the partial derivative multiple times on a scalar function or vector.  For example, given a  multivariable function, 
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 The last two partial derivatives, 
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 are called “mixed derivatives.” An important theorem of multi-variable calculus is the mixed derivative theorem.  The proof is beyond the scope of this course and only the theorem is stated.
Mixed derivative Theorem:   If a function
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 is continous and smooth to second order, then the order of operation of the partial derivatives does not matter.  In other words:  
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 for a continous and smooth (to second order) function 
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Example:  For the function 
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We can see that the order of operation of the partial derivative on a continous and smooth scalar function does not matter.
3. Del operator:
The del operator is a linear combination of spatial partial derivatives. In rectangular coordinates,  it is expressed as 
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(1)

Notice the second equality above is missing the vector arrow.  The del operator is always a vector operator and thus it is common convention to just leave the vector arrow off the del operator since there is no ambiguity with a scalar operator.  


The analysis of the del operator on various object such as scalar functions or vectors can be rather complex.  In rectangular coordinates, however, the rules we learned about in chapter 2 on “multiplying” vectors  apply to the del operator as well.  It is important to notice however that order is extremely important in the use of equation (1).  The del operator acts on all objects to the right of it.  It is cruicial to note that the del operator is not commutative when applied to scalars or vectors! 
4.  Gradient Operator


Applying the gradient operator,
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, simply requires scalar multiplication.   The gradient of 
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 yields the following:
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(2)

Notice that equation (2) is a linear combination of vector components and basis vectors.  In other words the gradient of a scalar yields a vector.  You need to memorize the application leading to equation (2) as well as the fact that the result of 
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 is a vector.  Since the gradient of a scalar function is a vector, it obeys all the rules that we learned about in chapter 2.  
Example:   For scalar function 
[image: image23.wmf]xyz

=

f

 show that


[image: image24.wmf](

)

(

)

x

x

Ñ

¹

Ñ

f

f


Example – Given a velocity vector 
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 and the gradient of a scalar function,  
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 as defined in equation (2), expand out 
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Answer:   Using equation (10) from chapter 2, 
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*Notice the result is a scalar as required for the dot product of two vectors.  

**Notice that there were no parantheses given for the application of the operation above.  We took the dot product of the vector 
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 with the vector 
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.  We could have just as well taken the dot product of the vector 
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 with the operator 
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 and then applied that on the scalar function 
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In other words, 
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In this course, we will only take gradients of scalar functions. It is possible to take gradients of vectors but you obtain a 9 element matrix called the Dyadic product
 of the vector field, 
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You can see why we want to avoid operations like this.

Since equation (2) is a vector, it has a magnitude and direction.  For a function 
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(3)

The direction of 
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 is a bit more complicated.  From the previous chapter we can see that the direction of  
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 can be expressed by the unit vector,  
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, but we also can interpret the direction of 
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 in a more geometric or physical way.  First we need to use the differential of f,  which is labeled df.  A differential is an infintesimal (meaning really small) change in the value of the multivariable function f and has components:
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If we define the vector line element, 
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, then we can see by inspection that the differential takes the simple form
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Now let us apply the geometric definition of the dot product 
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 is the coplanar angle between the vector 
[image: image53.wmf]f

Ñ

 and 
[image: image54.wmf]l

d

.

If 
[image: image55.wmf]l

d

 is perpendicular 
[image: image56.wmf]f

Ñ

 then  
[image: image57.wmf]o

90

=

q

 and 
[image: image58.wmf]0

=

df

.  In other words, 
[image: image59.wmf]l

d

 is along lines of constant 
[image: image60.wmf]f

when it is perpendicular to 
[image: image61.wmf]f

Ñ

.  Alternatively, we find that 
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 is maximum when 
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 is in the same direction as 
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and also perpendiculal to contours of constant f.  This also means that 
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 must always be in the direction that leads to the greatest 
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. The direction of 
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 is also called the asecendant of f.  Figure 1 shows you a picture of the 
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 in relation to lines of constant f.
5:  Advection: The change of a quantity in the direction of the velocity field


We can find the change of  a scalar, 
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The above relationship is seen by parametrizing the spatial curve, 
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 in the following form
:
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Then, using the chain rule, we can now derive equation (4): 
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Finding variations in a specific direction often occurs in trying to find that variation in a physical quantity in the direction of the flow field, 
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.  For example, the spatial variation of the scalar quantity, 
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The term on the right side of the equality is called the advective term and is one of two contributions to the total or material derivative that we will learn more about later in the course. We are often interested in assessing if there actually is any variation in the direction of flow. If one obtain’s the result:  
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We say that the function, f, is spatially constant along the flow field, 
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.  For example, if our scalar quantity is a time-independent pressure field, 
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Summary:
1 – Find the gradient of the multivariable function 
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2 - The direction of the gradient of f is always in the direction of the greatest increase in f and perpendicular to the contours of constant f.  The direction of 
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 is also called the ascendant of f. 3 - We can find the spatial rate of change of a function in a specific direction 
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Example: Find the gradient of the function 
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A graph of the surface 
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 is shown in figure 1.

The vector field of the gradient  is shown in figure 2.
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Figure 1 – Graph of the function 
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 in 3-D and from an overhead view.  
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Figure 2 – Overhead view of the vector field, 
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6.  Divergence of a Vector Quantity


There are two possible ways to apply the del operator to a vector.  The first, called the divergence, results in a scalar function.  The second operation, the curl, results in a vector field.   For a vector field, 
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(5)
* Notice that the divergence of a vector is a scalar quantity, just like the dot product.
Physically, the divergence is a measure of the addition or removal of a vector quantity. Imagine a sink full of water.  If we examine the flow of the water near the drain of the sink we will notice it is directed radially inward indicating a net loss of the fluid.  This would result in a negative divergence.  If we attached a hose to the drain, so we are adding water to the system instead of removing it, then the flow would be radially outward, indicating a net outflow and a positive divergence.  If the divergence is zero, 
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, then there is no net inflow or outflow.  A fluid field where 
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 is called solenoidal or divergenceless.

[image: image115]
Figure 3 – (left) Vector field near a sink drain indicating a negative divergence  
[image: image116.wmf]0

<

×

Ñ

u

.

(right) Vector field near a jet indicating a positive divergence  
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Example:  For the flow field 
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 as seen in figure 4
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 Figure 4 – Vector flow field 
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a)  Find 
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b)  Find 
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6.  The Curl of a Vector Quantity


The other way to apply the del operator on a vector field is the curl.  For a vector field, 
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 is defined as 
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(6)
The curl is a measure of the rotational properties of a vector field about a point.  For a velocity field, 
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, the curl is a measure of the rotation of a fluid parcel about its center of mass and is called the vorticity. The vorticity is usually denoted by the vector omega,
[image: image127.wmf]w

.  One way to imagine the vorticity is to place a small compass arrow in a fluid and to see how the arrow rotates about its center as it travels throughout the medium.  If the vorticity of a fluid is zero, it is called irrotational.   

In oceanographic and atmospheric applications, one has particular interest in the vertical vorticity component,  
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.  This is simply a measure of the horizontal shear of the fluid medium. 
Example:  Find the vorticity of the velocity field: 
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Figure 5 – Depiction of the velocity field - 
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7.  Laplacian of a scalar function:

In certain circumstances,  it is possible to relate a velocity field to a scalar function called the velocity potential, 
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.  When we examine the divergence of the velocity field, we obtain a new operation on the scalar 
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 called the Laplacian.
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The Laplacian, a scalar operation, is defined generally as 
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(7)

It consists of the divergence of the gradient and thus is a measure of the spatial rate of change of the gradient on a scalar function.  

In Calculus, we learned for 1-D functions that, by setting the first derivative of a function equal to zero we can find the extrema of the curve.  We can resolve if the extrema points are local maximums or minimums by observing the sign of the second derivative.  If the second derivative is less than 0, the local extrema is a maximum.  If the second derivative is greater than 0, the local extrema is a minimum. If the second derivative is equal to zero, then we have a turning point. 
For multivariable functions, there are similar results.  If the gradient of a scalar function, 
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,  is 0, then we have a local extrema in the surface.  We can then use the Laplacian to measure the concavity of the surface and whether the local extrema is a maximum 
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Example:   Recall from our second example, that we took the gradient of the surface, 
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.  We can see from figure 1, that we have an extrema at the point x=0,y=0.  It is easily verified by finding where the gradient of the surface is zero, 
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:  This is clearly at x=0,y=0.  We can also see from figure 1, that the extrema is a maximum.  This can be confirmed by taking the Laplacian of 
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 therefore the local extrema is a maximum on the surface.
Vector calculus examples:

1.  For 
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From equation (2),  
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2.  For 
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Apply equation (2) to the function 
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What is the magnitude of 
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3.  For the vector, 
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From equation (5) 
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For 
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Which part of the function’s domain is the divergence positive, negative or 0.
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 for x>0,y<0 and x<0,y>0 ( the second and fourth quadrant of the x,y plane for every finite value of z) 
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4.  For velocity field,  
[image: image164.wmf](

)

(

)

(

)

(

)

^

^

cos

sin

j

yz

e

x

i

yz

e

x

u

x

x

+

+

+

=

, find the vorticity.

From equation (6) :
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For the field, 
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:
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5.   For 
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From equation (7),  
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 and since we have no z or vertical dependence we only need to consider, 
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First examine 
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So 
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Where we simplified in the last step by finding a least common denominator. We can see immediately by symmetry of the problem that we can obtain the second partial with respect to y by swapping the x’s and y’s above:
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Adding the two terms together we obtain our solution:
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Appendix A:   Some useful vector calculus identities are (memorize the first five):

I.  The gradient product rule of two scalar functions:
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II. The divergence product rule with a vector and a scalar: 
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III.  The divergence of the gradient of a scalar – The Laplacian:
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f

2

Ñ

=

Ñ

×

Ñ


IV. The curl of the gradient of a scalar:
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 EMBED Equation.3  [image: image180.wmf]
Notice the solution is the vector zero, 
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, of which each component is zero.  It is common notation to imply the vector symbol of the vector zero since the curl is always a vector result.
V. The divergence of the curl of a vector:
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Notice that this is just the scalar number 0 since the divergence always results in a scalar function or number.  

VI.  The cross-product product rule with a vector and a scalar:
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VII.  The divergence of the cross product:
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VIII.  The curl of the cross product of a vector:
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IX.  the gradient of the dot product of two vectors:
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X:  The curl of the curl of a vector:
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Sink drain - � EMBED Equation.3  ���





Jet or hose outflow - � EMBED Equation.3  ���








� The operation is also related to the transpose of the Jacobian Matrix, in other words, for velocity field, � EMBED Equation.3  ���, We can represent the transpose of the gradient of the vector field as the Jacobain matrix, � EMBED Equation.3  ��� --- � EMBED Equation.3  ��� - This is useful for Larangian descriptions of fluid flow but beyond the scope of this course.


� What we have done here is to create a curve that is parameterized along the direction of differentiation.  This however, is exactly what we want; to find the change in the function f along a specific direction.
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