

(100 pts)
Lab 3- Use of loops in MATLAB and Stability
A. Introduction – Loop structures in MATLAB

Often it is the case in MATLAB that we wish to do an operation multiple times over an index. For example, one might wish to perform the following summation:

[image: image1.wmf]å

=

+

+

+

+

+

=

21

1

21

...

4

3

2

1

i

i

Now, we might derive the fact that the above expression is equal to
[image: image2.wmf]11

21

2

22

21

×

=

÷

ø

ö

ç

è

æ

, but we wish to use MATLAB to find a quick means to directly calculate the above expression. One method to quickly perform this sum is by means of loops as follows

sum=0

for i=1:21

sum=i+sum

end

Confirm that the above code in MATLAB equals the same as
[image: image3.wmf]11

21

×

In the above program:

sum=0 initializes the variable, sum, to the value 0.
for i=1:21 specifies that we are going to execute a loop over the index i from values from i=1 to i = 21 with increments of 1.
sum=i+sum is an equation that represents the equation
[image: image4.wmf]å

=

21

1

i

i

end specifies the end of the loop

B. Derivatives using loops
Now that we understand the basics of how to create loops, let us use them to create an array based on the derivative of a function. But before doing that, let us review the equation of finite differences for a two point derivative.

Recall the standard Taylor series out to first order to a nearby point,
[image: image5.wmf]1

x

D

 is

[image: image6.wmf](

)

(

)

(

)

2

1

1

x

O

x

dx

df

x

f

x

x

f

o

o

D

+

D

+

=

D

+

(1)

We can also reference the Taylor series to an adjacent point,
[image: image7.wmf]x

D

-

, as follows

[image: image8.wmf](

)

(

)

(

)

2

2

2

x

O

x

dx

df

x

f

x

x

f

o

o

D

+

D

-

=

D

-

(2)

Notice that
[image: image9.wmf]1

x

D

 does not have to equal
[image: image10.wmf]2

x

D

.

Subtracting equation (1) from equation (2) only considering terms of first order in
[image: image11.wmf]x

D

, we obtain

[image: image12.wmf](

)

(

)

(

)

2

1

2

1

x

x

dx

df

x

x

f

x

x

f

o

o

D

+

D

=

D

-

-

D

+

Solving for
[image: image13.wmf]dx

df

, we obtain,

[image: image14.wmf](

)

(

)

(

)

2

1

2

1

x

x

x

x

f

x

x

f

dx

df

o

o

D

+

D

D

-

-

D

+

=

Now, as a matter of notation, if we specify

[image: image15.wmf](

)

o

x

f

 as
[image: image16.wmf]i

f

[image: image17.wmf](

)

1

x

x

f

o

D

+

 as
[image: image18.wmf]1

+

i

f

[image: image19.wmf](

)

2

x

x

f

o

D

-

 as
[image: image20.wmf]1

-

i

f

Further, in this notation, we can see from the following figure that
[image: image21.wmf](

)

1

1

2

1

-

+

-

=

D

+

D

i

i

x

x

x

x

[image: image22]
Using the index formulation, we can create a program in MATLAB for calculating derivatives.
Let us now create an m-file program for calculating the derivative of
[image: image23.wmf](

)

x

p

2

sin

 over the domain
[image: image24.wmf]1

0

£

£

x

. This is a nice continuous function and we know the answer is
[image: image25.wmf](

)

x

p

p

2

cos

2

. A graph of the original function and its derivative are shown in figure 1.
[image: image26.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-8

-6

-4

-2

0

2

4

6

8

x

f(x)

sin(2*pi*x) and its derivative

sin(2*pi*x)

d/dx(sin(2*pi*x)

We are interested in creating a code that will reproduce the above graph. The code is now shown and will be demonstrated in class. Follow along with the instructor and be sure you understand the individual steps.
del_x=0.01;
x_o=0;
x_f = 1;
n=(x_f-x_o)/del_x;
for i=1:n
 x(i)=(i-1)/n;
 f(i)=sin(2*pi*x(i));
end
plot(x,f)
hold on
df_dx(1)=2*pi
df_dx(n)=2*pi
for j=2:n-1
 dx(j)=(x(j+1)-x(j-1));
 df_dx(j)=(f(j+1)-f(j-1))/(dx(j));
end
plot (x,df_dx)
Notice that the above code is fairly general. All we need to do to find the derivative of another function over the domain is to input in the line f(i)=sin(2*pi*x(i));
We just need to also be careful about the value of the derivative at i=1 and i=n.
C. Use of finite differences and loops to calculate stability in the ocean

We will now utilize the above code to calculate the stability parameter in the ocean for a given density profile.

First we need to import a vertical Temperature and salinity profile. Select

File-> Import Data. . .

And select the spreadsheet, TSprofile.xls in on the share drive under

J:\d10class\Bruch\SO 414\Lab problems\Lab 3
A window will open called the import wizard. Just select Finish on this window. In performing this action, we have created a 32x3 matrix titled “data” where the first column contains the Temperature in units of degrees Celsius, The second Column is the Salinity in PSU and the final column is water depth (negative values) in units of meters.

Create three individual column arrays for this data matrix by typing the following in the command window (This should be review from last semester)

T=data(:,1)

S=data(:,2)
z=data(:,3)
p=-0.1*data(:,3)
The last command converts negative values of depth in units of meters to positive values of pressure in units of bars. Be sure to explain in your write up the details of this conversion.
Now that we have inputted the observational data into MATLAB we wish to create an M-file to calculate the stability of this vertical column. In the share drive you will find an m-file titled stable.m that contains an incomplete code for calculating the stability parameter for the given values of T,S,Z and p you inputted above.
Below is the incomplete code and explanation in italics of the various lines of code. Instructions of where you need to add more code are underlined.
 g=9.8 – This defines the gravitational acceleration
nn=size(ctd)
n=n(1)
for i=1:n - This is a loop to initialize any variables used in the program
dens(i)=0;
sigma(i)=0;
dp(i)=0;
E(i)=0;
N(i)=0;
end
The loop below creates a density array so that density is defined as a function of depth. Notice that it contains the rho(S,T,p) function you developed last week. In order for this program to work, be sure that your rho.m function M-file is contained in the MATLAB working directory.

for i=1:n
dens(i)=rho(S(i),T(i),p(i));
sigma(i)=dens(i)-1000;

end
The four lines below are essentially the boundary conditions of the problem. They specify the values of the stability parameter and Buoyancy frequency at z=0 and at max depth
E(1)=-(1/dens(1))*(sigma(2)-sigma(1))/z(2);
E(n)=-(1/dens(n))*(sigma(n)-sigma(n-1))/(z(n)-z(n-1));
N(1)=sqrt(g*E(1));
N(n)=sqrt(g*E(n));
for k=2:n-1
Utilize what you learned in section B to write a finite difference code to calculate stability parameter as a function of depth (as an array). Also calculate the Buoyancy frequency as a function of depth

end
D – Results and guidance for the computational portion of your write-up

Once you have completed and verified your code, email a copy to your professor or instructor.

For the computational portion of your lab write-up, at a minimum, you need
1. An explanation of how you verified that your code works.

2. A plot of the stability parameter and buoyancy frequency as a function of depth. Be sure to think of the proper orientation and labeling of the axes (Think of how density or salinity profiles are normally plotted).
3. From your plot of the stability parameter, describe the features of the curve as a function of depth.
� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

[image: image27.wmf]i

x

[image: image28.wmf]1

+

i

x

[image: image29.wmf]1

-

i

x

[image: image30.wmf]2

x

D

[image: image31.wmf]1

x

D

[image: image32.wmf]1

1

2

1

-

+

-

=

D

+

D

i

i

x

x

x

x

_1262596539.unknown

_1262596830.unknown

_1262598471.unknown

_1262666478.unknown

_1262666484.unknown

_1262598500.unknown

_1262598552.unknown

_1262597737.unknown

_1262597790.unknown

_1262597846.unknown

_1262597770.unknown

_1262597678.unknown

_1262597731.unknown

_1262597648.unknown

_1262596693.unknown

_1262596760.unknown

_1262596779.unknown

_1262596719.unknown

_1262596671.unknown

_1262596685.unknown

_1262596560.unknown

_1262587034.unknown

_1262596321.unknown

_1262596342.unknown

_1262596257.unknown

_1262596289.unknown

_1262596205.unknown

_1262586852.unknown

_1262587017.unknown

_1262586802.unknown

