1.  Use of a quadratic iterator to represent basic mixing
a) Mixing is a nonlinear process that has the following mathematical property
:

For given intervals, I and J (which can be arbitrarily small, but must have non-zero length) one can find initial values in I which, when iterated, will eventually lead to points in J. 

Give an example of how the above definition of mixing applies to transport in the gulf stream or in a Tropical Cyclone.

b) Without getting into all the physics of mixing of a system, we can model the basic ideas of mixing as described by the above property by using a basic nonlinear relationship: the 1-D quadratic map.  This iterative relation is represented as 
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We wish to show how use of the above map will represent mixing over a domain divided into ten evenly spaced intervals where all parcels or dye start out initially in the interval between 2 and 3 as seen in the picture below.   

[image: image2]
Use MATLAB to determine the minimum number of iterations it will to take for the parcel in the initial interval to spread out over the entire domain (so that part of the parcel is in each of the ten intervals).  Show your results.
c) Find the minimum number of iterations to spread out a parcel in 1/20 of the domain.  In other words, do the same as in part (b) but split your domain into 20 evenly spaced intervals with a parcel located between the second and third interval out of the 20. Do you expect the minimum number of iterations to increase by a factor of 2? 

d) What are the accuracies and shortcoming of the above example of the quadrative map in modeling the transport of parcels in the gulf stream or in a Tropical Cyclone?  
2. Numerical solution of Laplace’s equation using finite differences.  
Use the methods of finite difference of the Laplace’s equation to find the streamlines of an irrotational and incompressible fluid flowing through an ideal contracting nozzle with the following boundary values and shape:
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In the above figure:
- units of the stream function are in 
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-  The horizontal and vertical spacing of each grid point is 1 meter apart.
-  The constant value of 
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 at the boundaries shows a no slip condition along the pipe walls
- The inlet velocity is a constant 
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a)  Show how to obtain the finite difference (or more sophisticated numerical method) form of Laplace’s equation
b) Create an m-file in MATLAB to solve for the stream functions of the velocity field using Laplace’s equation – Notice that you will have to iterate from an initial run of values in order to converge on a correct final solution.
c)  Using MATLAB, create a graph of the stream function contours flowing through the pipe.

d) Using MATLAB or by hand, create a graph of the fluid velocity vector field through the pipe given the streamlines you created from part (c).
e) What is the velocity at the pipes outlet? – Note that this is a 2-D problem. Do not try to hypothesize a 3-d shape for the nozzle.
f)  Describe a more sophisticated numeric technique to solve for Laplace’s equation.  What are its advantages or disadvantages as compared to the technique you used in part a?

3.  Quantifying the rate of deformation of a fluid parcel using Lyapunov exponents
1.  Given the following 2-D linear velocity field
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Where 
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a) Find the eigenvalues of the Matrix 
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.  Are they time dependent or time independent?

b)  Verify that the following are both solutions of the above equation:
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Notice that these solution are time-dependent.

c) If a fluid parcel is circular at t=0, what will it look like at 
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 given both of your above solutions?  Make a plot of a unit circle and then the evolved shape at  
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for both of these solutions in MATLAB.

d) We can create the fundamental matrix of the above solutions by combining them as follows:
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The Lyapunov exponents are then found by the following equation
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Find the Lyapunov exponents for the given fundamental matrix above.

e) The Lyapunov exponents give an indication of the rate of expansion of a fluid element along its principal axes.  Use your results from part (d) and your graphs to justify how the exponents give an indication of the behavior of the fluid deformation over time.

f) Extra credit -Be able to demonstrate the proper pronunciation of the word “Lyapunov”
4.  Coutte flow – 
For a velocity field in polar coordinates, 
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, the 2-D equations of motion, in component form, are:
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Where 
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a) Given a steady state, axis-symmetric, incompressible velocity field of the form: 
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, substitute this velocity field into equation (1) to obtain a differential equation for 
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 - Show all work

b)   A fluid is confined between two infinite right cylinders of inner radius, 
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 and 
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 with motion defined by the differential equation found in part (a).    If the inner cylinder rotates at angular velocity, 
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 and the outer cylinder rotates at angular velocity 
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, Obtain an analytic solution for 
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 for the differential equation derived in part (a).  Show all work.
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c)  Given that 
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 as a function of r in MATLAB.

d) Use equation (1) and your solution for 
[image: image31.wmf](

)

r

u

q

 from part (b) to find an analytic expression of the pressure field 
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5.  Rossby waves

a)  Define the distinguishing characteristics of Rossby waves in terms of the Coriolis frequency, f, and the frequency of the Rossby waves, 
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.
b)  Consider a shallow water system of height 
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, where H is the undisturbed depth of the layer and 
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 is a small surface displacement.  The quasi-geostrophic equations of motion are obtained from the shallow-water potential vorticity equation
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Where 
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 is the vertical vorticity and f  is the Coriolis frequency.

Assuming that 
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, u,v, and 
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are small and that the Coriolis frequency is defined by the 
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-plane approximation so that
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 , the above equation can be reduced to the form 
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(1)
Since there is no horizontal dependence in the operator coefficients of equation (1), a normal modal solution can be assumed of the form
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(2)
-------  Find an analytic dispersion relation, 
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 so that equation (2) is a solution of equation (1).  In other words, substitute the above solution in equation (1) to find the functional form of 
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c)  Given a height, H, in the atmosphere of 5800m, 
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,  use MATLAB to obtain contour plots of 
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 in the k, l plane. (plot at least 5 labeled contours)   

d)  Given that the group velocity is of the form:
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Use MATLAB to graph the group velocity vector field in the wave number space (where k and l are your horizontal and vertical axes respectively)  given the parameters used in part (c).

e) Explain your results from parts (c) and (d).
6.  Fourier series representation of “aperiodic” functions over a finite domain.

 Back in differential equations, you probably learned about defining specific periodic functions as a series of sins and cosines.  This analysis, however, rarely addresses representation of aperiodic functions.  For a general function, 
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 , the Fourier series representation is
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1.  Create a MATLAB file to find the coefficients, 
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, for the following functions
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c) 
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2. Create graphs of the above functions over the domain and overlay the Fourier series representation of these functions.  Make note of the accuracy of these functions for increased values of K.
3.  What is the minimum number of K to get a reasonable Fourier series representation of each of the above functions?
4.  Define the Gibbs phenomenon and identify this effect in each of the graphs created in part 2.  Do any of the functions not exhibit Gibbs phenomenon? If so, why do you think the particular graph does not exhibit this effect?
5.  The statement that equations(1-2) represent a Fourier series for aperiodic functions is not entirely true.  How are we modifying the definition of the above functions in problem 1 in order to apply the Fourier series analysis?  

Hint: We are only identifying these aperiodic functions over a finite time domain. 
7. Jodi’s problem
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