1. Properties of solids liquids and gases
:

Fluid – A material such that relative positions of the elements of the material change significantly when suitable chosen forces are applied.

- Resistance properties of the fluid cannot prevent deformation from occurring.

-  Resistance properties are related to intermolecular forces.

Difference between Fluid and solids - Solid deformation is linearly proportional to applied forces.
i.e  stress (force) is linearly related to strain (linear deformation).

Difference between liquids and gasses – Both are fluids.  The main difference is in the amount of force needed to compress the fluid (change the density of the fluid).

-Liquids are usually assumed to be incompressible.

Many substances contain properties of both solids and fluids – 

Jelly or Jello, Paint, Glass, tar

For air and water, however, the distinction is clear.
2. Continuum Hypothesis:

Continuum Hypothesis – Assumes that the macroscopic behavior of a fluid is the same as if it was perfectly continuous in structure

- Properties within a given small volume are spread uniformly (locally homogeneous) versus being concentrated in discrete areas. 
Recall the definition of continuity – 
For a function 
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A  “discrete” function would not be continuous since 
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If we considered volume elements on the scale of molecular forces and size, then density functions would be discrete in nature so we must assume that we will examine materials over a certain volume size such that discrete variations do not arise (see figure 1).  Actual volume elements sizes where this is applicable are 
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Figure 1. –  Density variations as compared to size of volume being measured
.

The continuum hypothesis allows us to:

1. Treat all our physical properties as continuous variables and thus allows us to have a clear understanding of a physical property “at a point”

2. Establish equations that are independent of the particle structure of the fluid

3. Derive the Navier-Stokes equation (equations of motion).  
The continuum hypothesis falls apart when:

1. We examine quantum mechanical scales of materials.
2.  Consider fluids with significant concentrations of particles or sediment

3.  When we consider extremely low density environements or rapidly spatial variations such as shocks.

3. Behavior of fluids to Volume or Surface forces:
Two types of forces act on Fluids:

1.  Volume forces – Long rage forces capable of penetrating into the interior of the fluid and act on all elements.  


- Contact of source of force with material is not necessary.


- Also called body forces


Examples of body forces in fluid systems:
a. Gravity

b.  Electromagnetic Radiation

c.  Apparent forces due to coordinate system motion

2.  Surface forces – Short range forces that act only on a thin layer adjacent to the boundary of a fluid element.  

· Surface forces are negligible unless there is direct mechanical contact between the interacting elements.
Examples of surface forces in fluids:

a.  Pressure Fields

b.  Friction

Provided the penetration depth of the short-range forces is small compared with the linear dimensions of the plane surface elements, the total force exerted across the surface element will be proportional to its area, 
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3. Notation – vector versus index notation:


Throughout this course I will be using the a bar underneath the variable of interest when discussing vectors, 
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 instead of an arrow over the top of the variable, 
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.  Mostly this is due to convenience and personal preference.  It does have added benefit when dealing with more complex mathematical expressions. For example, many times in this course we will use a special set of matrices called tensors.  One can consider tensors to be a type of vector that has a magnitude and multiple directions. For example, when we take the direct product of the gradient with the velocity field, it is given in vector notation as 
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 indicating that it has 
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components.  Notice that if we take the divergence of this object, 
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, it us unclear which “direction” one is supposed to contract under.  An alternate form of notation that avoids this confusion is the indicial notation.  

Our standard form for the notation of a vector is 
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, If we designate the components of this vector with a set of numerical indices: 
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and a similar notation for the basis vectors, 
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Then the above vector can be represented in index notation as
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In the above notation i is called the dummy index since it shows up twice in the same term.  In index notation, anytime an index appears twice in the result, it is equivalent to a dot product and is always going to be summed over.  As a consequence of this, we will drop the summation sign knowing that it is always implied over repeated indices.  The vector above can then be represented in the nice compact form
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The convention of dropping the summation symbol over indices that occur multiple times is called the Einstein summation convention or summation convention for short.  Differential operators also can be described in this notation. If we specify the individual components of the gradient operator as the following
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Or in an even more compact form as:
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Then the gradient operator takes the index form
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It is best to think about this type of notation in taking the gradient or divergence.  In index notation, the divergence of the vector 
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 is expressed as
 
[image: image32.wmf]i

i

a

A

¶

=

×

Ñ


The gradient of a scalar function 
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 is expressed as
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Kronecker Delta function:

A function often used in index notation is the Kronecker delta function, 
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The Kronecker delta function is an, isotropic tensor, that allows us to convert or contract indices.
Conversion of indices
For a vector 
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, application of the Kronecker delta allows us to convert from the i to the j index:
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In the above equation, i is a dummy index and j is the free index.

Contraction of indices

For the vectors 
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 and 
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, the direct product of these two vector is a second order tensor but application of the Kronecker delta function leads to a direct product:
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Example:  

In chapter 5 we will learn about the stress tensor which is defined as 
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Currently, indices i and j are free indices in that they do not repeat in any of the terms.  Now take the dot product of the above equation with the unit vector, 
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Now the j index is a dummy index and i is a free index.  Application of the definition of the Kronecker delta function allows us to simplify the first term in the above expression:
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4. Eulerian framework:


It should be briefly noted that for all future analysis in this course, we will assume an Eularian framework and represent our physical properties as a function of curves in space and a separate time parameter. For example, the pressure field is represented as 
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This also means that when we consider the rate of change of any of these variables that we need to consider the explicit time dependence as well as the spatial time dependence of the curve.  Thus application of the chain rule on the pressure field above, we see that the  time derivative consists of two terms.
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The first term is the local time derivative of pressure with respect to time.  The rest of the terms are the advection of the pressure field.  The combination of local time derivative with the associated advection of a quantity is called a material or substantial derivative and it represents the change of quantities of a fluid parcel as it travels throughout the fluid domain.  The material derivative is often indicated with a capital letters in order to distinguish it from local derivatives. For example the material derivative of the pressure field above is expressed as 
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5.  Relative motion near a point:

The deformation characteristics stated at the beginning of this chapter of a fluid can analyzed quantitatively by considering  the difference in the flow field at two “adjacent” points. Let 
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 be the velocity measured at a specific point, 
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. We can represent the relative velocity between the two points as 
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If we assume that 
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 is small, we can expand the above expression in terms of a Taylor series:
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Using index notation, the above expression is represented as 
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(2)
Splitting equation (2) into symmetric and anti-symmetric parts, we obtain

[image: image58.wmf](

)

(

)

j

ij

j

ij

j

j

i

i

j

j

j

i

i

j

i

dx

r

dx

e

dx

u

u

dx

u

u

du

+

=

¶

-

¶

+

¶

+

¶

=

2

1

2

1



(3)
Where the symmetric term, 
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 is called the strain rate tensor and the anti-symmetric term 
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 is called the rotational tensor.  

Strain Rate tensor – It is possible to orient our coordinate system such that the strain rate tensor has only diagonal components.  This particular representation is considering along  the principal axes of the strain rate tensor.  In this orientation, the symmetric contribution to the relative motion is expressed as 
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And thus the relative motion in the principal axes orientation (
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 for example) is given at a rate proportional to the distance 
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. The strain rate can thus be seen to be associated with a rate of compression or expansion of a fluid element along a principal set of axes. 
Rotation tensor – By definition, the rotation tensor has no diagonal elements and thus exhibits no deformational properties like the strain rate tensor.  It can also be shown that the second term of equation (3) can be written in terms of the vorticity vector, 
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If we consider the vorticity in the above expression to be locally uniform, then the above expression indicates that the second term of equation (3) is a local solid body rotation.  Thus the rotation tensor is a measure of the non-deformational, rotational aspects of the fluid.

The results of the above analysis are significant.  We have shown by considering the relative motion between two nearby points in a fluid medium that all fluid motion is a combination of rotation and deformation.  It will be shown in a chapter 5 that the deformational characteristics of the fluid also are intrinsically related to its frictional forces. 






























































� Many of these initial notes on the fundamentals of fluid dynamics are inspired by or based on chapters in:

Batchelor, G. K. (1967) Introduction to Fluid Mechanics, Cambridge University Press, Cambridge, UK

and

Pijush Kundu and Ira Cohen, (2004) Fluid Mechanics, Elsevier Academic Press, San Diego, CA 

� Image taken from – M. E. McIntyre’s lecture notes on fluid dynamics located at:

http://www.atm.damtp.cam.ac.uk/people/mem/FLUIDS-IB/
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