10 – Modeling the Gulf Stream current
:

In the previous section, we obtained a solution for the horizontal currents in the ocean as a function of depth due to a balance between turbulent and Coriolis forces.  By integrating over the water column, we were then able to deduce some basic properties of the horizontal transport of the ocean at the surface.   Assume the ocean is incompressible in this case with density
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.  The turbulent equations of motion for an incompressible medium are:
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I.  Physical assumptions:  Let us systematically examine the physical assumptions needed to obtain a simple model of the horizontal current flow at the surface near a continental boundary.
1. Neglect inertial terms:

As in the previous chapter, we will assume a steady state solution and neglect the non linear advection terms.   This is the same as assuming that the Coriolis and frictional forces are much greater than any inertial effects in the equations of motion.
2. Shallow water assumption:

Examine a vertical profile of the ocean domain as shown in figure 1.  We assume a flat ocean bottom at a depth, H, from the free surface. In addition we superimpose a small displacement, 
[image: image6.wmf](

)

y

x

t

,

,

h

, to the free surface so total ocean depth =
[image: image7.wmf]h

+

H

 where 
[image: image8.wmf]1

<<

H

h

.  

[image: image9]
Figure 1 – Vertical profile of the ocean domain showing a small displacement surface superimposed over a constant depth.   

The overall volumetric domain of our fluid is then defined as an approximate rectangular basin: 
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We assume that the domain is shallow so
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.  From the incompressible continuity equation, we know that the vertical currents are much smaller than the horizontal currents under the shallow water assumption and therefore the vertical component of the equation of motion is in approximate hydrostatic balance:
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We can derive the pressure dependence with ocean depth in equation (2) by integrating from the ocean surface at 
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 to an arbitrary ocean depth z:
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The horizontal pressure gradients are then related to the surface displacements by the following relationship:
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3.  
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-plane model approximation:
Given that we are interested in oceanic flows along the entire coastline of the continent, it is important to include the Coriolis vector’s dependence on latitude in equations (1).   Recall under the 
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-plane CS that 
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 is the latitude from the equator.  We can expand the Coriolis vector about a central latitude value 
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 using a Taylor series.  To first order, 
[image: image21.wmf](

)

(

)

(

)

q

q

q

q

q

d

d

k

f

o

o

o

cos

2

sin

2

sin

2

^

W

+

W

»

+

W

=

×

.  But from spherical geometry we know that 
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 where Rearth is the radius of the earth.  Therefore we can approximate the Coriolis vector as a linear function of y:
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where 
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.   The approximate linear dependence of the Coriolis vector on y is called a 
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 and therefore we will not be able to assume that velocity field can be split into Geostrophic and frictional components as we did last chapter.  
4.  Frictional forces are proportional to the velocity field:

We will also continue to assume that the mixed layer is horizontally homogeneous so that 
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 is spatially constant in equations (1).   Further, we will assume that the vertical friction components depend linearly on the velocity field in the following form
  Therefore:
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Where 
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is a constant proportional to our eddy viscoscity and H is ocean depth as defined in assumption (2). Although this assumption is questionable, we can appreciate its simple form.  Further, its physical justification is clear as it is of a similar form as that of Hooke’s law where the resistance of the system increases as the velocity increases.

5.  Horizontal current is independent with depth (2-D case):

Our interests are in the horizontal dependence of the surface currents in an idealized ocean basin.  Therefore we should not confuse matters by considering the dependence of our horizontal ocean currents on depth for now.  Therefore we can  assume that the fluid medium is homogeneous in the vertical and that 
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.  The equations of motion are now a 2-D problem where the currents on the ocean surface specify the whole fluid domain of the problem. This provides some interesting consequences to the equations of motion as we will see with our next physical assumption. 

A more acceptable approach that leads to this assumption is by examining mass transport instead of horizontal currents.  Recall that at the end of the last chapter, that the horizontal mass transport is defined by integrating the horizontal current over the vertical fluid column.  

[image: image34.wmf](

)

(

)

ò

-

=

0

,

,

,

h

H

H

dz

z

y

x

u

y

x

M

r


The above integration eliminates the vertical dependence of the problem.  Thus if we consider mass transport instead of current flows, we only have a 2-D problem.  This approach is actually more commonly accepted as can be seen by the literature. For the sake of consistency with our derived equations of motion at the beginning of the chapter, however, we will examine current flows instead of mass transport and just assume the flow is 2-D. 

6.   Wind stress on ocean surface:

Last chapter, we assumed that the wind stress was constant in the east-west direction.  In this case, we will assume a latitude-dependent wind stress, 
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 direction on the free surface of the ocean.  This positional dependence accounts for the shift from easterly winds at low latitudes in the northern hemisphere, 
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Notice that in section 4 we approximated the flow as 2-D, therefore the above wind stress boundary condition now acts over the whole domain of the problem.  This means that it is no longer a boundary condition but a stress term in the equation of motion.  We must modify the equations of motion to account for this additional stress term over the fluid domain.  
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(5)
7.  No slip conditions at the basin boundary:
This is just the boundary condition requirement that ocean currents must be 0 at the basin boundaries of our problem.  This means that for horizontal ocean currents,  
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II.  Derivation of the equations of motion in scalar form:

This again is a set of coupled equations.  Taking 
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 of the north-south component and subtracting it from 
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 of the east-west component of equation (5) we can eliminate the dependence on the ocean surface displacement:
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By the continuity equation and shallow water assumption, the first term is zero, 
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 and the resultant equation of motion is
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(6)
We can simplify the above expression even further by noticing that the flow is solenoidal (due to incompressibility) and approximately 2-D due to the shallow water assumption.  Therefore we can express the horizontal currents as a function of a stream function , 
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We can then eliminate the first term in the above equation due to the commutability of the differential operator:
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or


[image: image52.wmf]÷

ø

ö

ç

è

æ

=

¶

¶

+

Ñ

y

b

A

x

p

y

a

y

sin

2

 where 
[image: image53.wmf]z

b

a

H

=

 and 
[image: image54.wmf]b

A

z

gp

=




(7)
III - Solution to the equations of motion:


Equation (7) is a non-homegenous Poission’s equation.  We will assume the solution consists of a linear combination of a homogenous and particular solution.  
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i) Particular solution:

The forcing term, 
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 has only y-dependence and so we can assume that the particular solution also has only y-dependence, 
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.  Substitution of the particular solution into equation (7) leads to a simple 1-D Differential equation
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Which has a solution of
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(8)
ii) Homogeneous solution:


The homogenous form of equation (7) is, 
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To solve this equation, consider a homogenous solution of separable form 
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Then equation (7) takes the form:
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Divide both sides by 
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 and notice that we can equate all terms as function of x to all values as a function of y:
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The only way to have an equality such that one side depends entirely on x and the other side depends entirely on y is for both sides to equal a constant. We will set both sides of the above equation equal to the constant 
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The above two equations are a simple set of linear second order differential equations with solutions:
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Where 
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So the general form of our homogenous solution is 
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And our total solution, including the particular contribution, is
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IV - Application of the no-slip conditions:
In order for the currents to be constant at the boundaries of the ocean basin, the stream function must be constant at these locations.  Without loss of generality, we can choose that constant to be 0 so our no slip conditions then take the form:
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Application of  
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Indicating that 
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Application of 
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The choice of setting 
[image: image80.wmf]0

4

=

c

 is trivial and will eliminate all latitude dependence in the problem so we must instead require that 
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Our solution now has the form:
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Where we have absorbed the coefficient 
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The above expression is simply a linear combination of two sin functions.  If we set 
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 the above equation then has the less tedious form:
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Differentiation of the above equation with respect to y and examination at the boundary y=0 leads to the following relationship between the two constant coefficients:
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(11)
Further differentiations leads to the following additional relationship at the boundary:
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Equations (11) and (12) are only possible if n=1 so our boundary condition takes the form:
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And our solution takes the form:
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Our final no-slip condition 
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Solving the above equation for 
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 we find that 
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And a little algebra shows us that
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And our solution is of the final form:
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(13)
Where 
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As a final note, recall that this solution has been defined over the fluid domain:


[image: image109.wmf]h

l

+

<

<

<

<

<

<

H

z

b

y

x

0

,

0

,

0

.  
Interpretation of Stommel’s solution:
In his paper, Stommel assumed the frictional proportionality constant to have a value of 
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The above physical parameters provide us with sufficient information to calculate the streamlines for an idealized ocean basin.  The result is shown in figure 1 for an assumed 
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Figure 1 – Contour lines of a stream function of an idealized ocean basin surface currents with latitude-dependent Coriolis force and wind forcing terms.

Figure 1 shows the resultant stream function as described by equation (13) with the above assumed physical parameters.  Clearly there is a longitudinal asymmetry that must be a consequence of the function form of 
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.  This asymmetry leads to a southerly flow that is significantly stronger along the western boundary of the ocean basin as observed along the Eastern Coast of the United States.  This westward intensification is related to the longitudinal dependence of the Coriolis force as derived in the 
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-plane approximation.  To verify this westward intensification is a consequence of the latitude dependence of the Corilis force, let us assume that 
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 in equation (13) and then 
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.   Figure 2 shows that the longitudinal asymmetry or westward intensification disappears when we make this simplification. 
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Figure 2 – Stream function of and idealized ocean basin surface currents with 
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As a final note to this section, the reader might be overwhelmed by all the physical assumptions needed to obtain the results given by figure 1.  In particular, the frictional assumptions given in the problem had little basis on empirical observation rather than simple additions needed to ensure a steady state form of the solution.  Stommel concludes his appear by stating “The artificial nature of this theoretical model should be emphasized, particularly the form of the dissipative term.  The writer thinks of this work as suggestive, certainly not conclusive.  The many features of actual ocean structure omitted in this model should be evident
”  Even given the weak physical basis for Stommel’s solutions, his qualitative results are impressive in that he is able to analytically show the dependence of latitude on driving the currents along merdianal coastlines.

In 1950 Walter Monk extended the work of Stommel’s westward intensification by assuming a more physically plausible form of the wind field and frictional effects in the ocean basin.  The resulting linear solutions indicate a set of similar flow patterns as seen in figure 1 but as a series of “gyres” which include not only the westward intensification effects of Stommel but also other countercurrent flows as shown in figure 3
.    
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These gyre’s are split up into regions which are defined by vanishing of the forcing term (frictional forces) in the equations of motion.  
H





� EMBED Equation.3  ���








� These set of notes were inspired from Reza-Melak Madani’s SM415 lecture notes on Stommel’s model of the gulf stream 


� The assumption that vertical friction depends linearly on the velocity field can be a simple consequence of  taking the Laplace transform of the equations of motion .  Our main goal is an even simpler case, however, as we wish for our currents to be independent of depth altogether as will be shown in assumption 5.


� Stommel, W. H. 1948. The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union, 29, 202-206


� Munk, W. H. 1950. On the wind-driven ocean circulation. J. Meteorol., 7, 79--93.
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