Chapter 12 – Barotropic and Baroclinic instability
The common approach for analyzing the instability of linear geophysical flow requires examining the long term time dependence of the solution.  In particular, for a stream function 
[image: image1.wmf](

)

t

y

x

,

,

y

 of a linear system, the normal mode solution can be represented as 


[image: image2.wmf](

)

(

)

(

)

(

)

ct

x

ik

t

kx

i

e

y

e

y

-

-

=

=

^

^

y

y

y

w


where we have the used phase speed relationship 
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 in the second equality.  We can assess the stability of the solution based on form phase speed.  If we consider a complex phase speed and break up c into real and imaginary components, 
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, then we can deduce the time dependent nature of the solution based on the magnitude and sign of 
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.  The three possibilities are
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Let us use the above analysis for some basic barotropic and baroclinic geophysical systems.

1.  Barotropic instability: Rayleigh’s inflection point criteria

Recall the general equation for conservation of vorticity from the previous chapter
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(1)
Let us simplify equation (1) by assuming the system is 2-D, inviscid, barotropic, incompressible and a apply a background shear flow of the form
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Background flows of this form are representative of those found in a boundary layer. We will consider our flow to be in a horizontal medium with boundaries at 
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 and 
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.  Equation 1 then simplifies to the form:
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Where 
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Now let us consider a perturbation to this background current:
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(3)

Since the system is incompressible and 2-D, we can represent the perturbed velocity field as a stream function so the total vertical vorticity is then of the form:
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The linear form of equation (1) then simplifies to
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(4)

Substitute a normal mode solution into equation (4): 
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Where in this case, 
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 may be complex.  The resulting equation is
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Dividing through by 
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Multiplying by the complex conjugate of the stream function amplitude, 
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, and integrating over the boundaries 
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(5)

Integration by parts has been used for the first term with the no slip condition, 
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.  The first term in equation (5) is always real but the second term can be either real or complex based on  
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.  If there is a complex component of the phase speed, then we know the flow is unstable.  The imaginary portion of equation (5) gives the equation 
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(6)
There are two possibilities of equation (6) being equal to 0.  The first is that the flow is periodic with  
[image: image28.wmf]0

=

i

c

.  The other possibility is that the flow is unstable with 
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.  The only way this integral can equal zero is if the term 
[image: image30.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

2

2

dy

U

d

b

 changes sign somewhere within the fluid column or boundary layer.  Thus a necessary requirement for instability is that 
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 changes sign somewhere within the fluid column.  This result is called the Rayleigh’s inflection point criterion for instability.  

Recall that one major assumption for the above analysis is that the flow is barotropic.  For atmospheric flows, this result is applicable for the tropic regions as well as fully mature frontal systems.  To examine the instability of evolving frontal systems, we must consider Baroclinic instability.

2.  A first glance at baroclinic instability


Due to the more complex nature of baroclinic systems, we will only examine the qualitative results.  For geophysical flows, temperature varies as a function of latitude due to the effects of solar heating.  As temperature decrease towards the poles, density will increase and lead to the formation of a baroclinic system.   The underlying point for this analysis is that, since the density field is now a function of pressure and temperature, the term 
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 in equation (1) cannot be neglected.  Further, due to the more complex stratification of the density field, we must consider vertical variations and thus requiring analysis of all three dimension of the system as opposed to the simple 2-D problem in the previous section. We will still consider the flow to be inviscid and examine perturbations of a uniform background shear flow. We will neglect the analysis of the equations of motion and look directly at the solution.


The linear solution is usually represented as waves in the pressure field of the form

[image: image33.wmf](

)

(

)

t

ly

kx

i

e

z

p

p

w

-

+

=

^








(7)

Where 
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 and 
[image: image35.wmf](

)

2

2

2

2

2

l

k

f

N

+

=

a

 with
[image: image36.wmf]z

g

N

o

¶

¶

-

=

r

r

2

.

The pressure field is related to the density through the hydrostatic approximation
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With some work, we can verify that this solution is barotropic provided that 
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.  Application of the above solution to the underlying equations and boundary condition (no normal flow to the system) leads to the following requirement on the phase speed
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(8)


Unstable solutions will occur if the radical is imaginary.  Examining the nature of the phase speed as a function of 
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.  The critical point of instability occurs when the radical is zero and
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 which leads to the result that solution are unstable for 


[image: image43.wmf]4

.

2

£

H

a









(9)
Recall that 
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 so we can relate the point of stability to the length scales of the system.  
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 where K is the magnitude of the horizontal wavenumber and 
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.    Using the definition of the wavenumber, the inequality of equation (9) can be related to the wavelength of the system leading to the result
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(10)
Equation (10) shows that instability will occur only for relatively long waves in the atmosphere or ocean.  Standard values for H,N and f indicate that 
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 in the ocean with maximum instability occurring around 
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The above criteria for instability means that longwave eastward jets in the atmosphere such as Rossby waves are prone to the spontaneous formation of disturbances.  From the initial supposition of that the system is baroclinic implies that the intensification of small perturbations is due to extracting potential energy from the sloping mean density surfaces of the atmosphere in an attempt to make these density surfaces more horizontal.  This also leads to the transport of heat from lower latitudes to higher latitudes as the lower density air is transported northward.  
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