Chapter 2: Properties of fluids: density

Recall that a fluid is a material such that relative positions of the elements of the material change significantly when suitable chosen forces are applied.  As a consequence of the constantly changing shape and volume of a fluid, we prefer to measure the density of a fluid instead of its mass.
Density (
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) is defined as the mass per unit volume:
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And is usually represented with units of 
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Density is related to the specific volume, 
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, which is the volume per unit mass, as follows:
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Specific volume has units of   
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Equation of state: The functional relationship between the absolute pressure, specific volume and temperature for a homogenous substance.  The general equation of state is represented as 
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Notice that an equation of state in this form is just a surface.  Approximations and empirical observations allow us to establish various analytic forms of the equation of state for liquids and gasses.  The important point to note about equation (1) is that the state of the system is completely determined by any two of the three independent variables shown in equation (1).  Further there is nothing special about the choice of pressure, specific volume and temperature as our thermodynamic state variables.  There are many other variables we could have chosen to define the state of the system such as entropy, Gibbs free energy, internal energy and so on.  The decision of what thermodynamic state variables to choose for the physical problem can make a significant difference on the nature and complexity of the problem.  It is up to the scientist to use his expertise of the physical nature of the problem to justify his or her choice of the state variables.  
Equation of state for Gasses:
Under the limit that 
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, all gasses have been shown to exhibit the same analytic relationship.
It is under these circumstances that one obtains the most commonly recognized equation of state; the ideal gas law:
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Temperature is measured in 
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Pressure is measured in Pascals
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 is the universal gas constant.

Volume, V, is measure in 
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The number of molecules, n,  is measure in moles

Notice that equation (2) is applicable for any gas and is applicable only under the limit 
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. It can be shown theoretically that this limit is the same as requiring that:
1.  Molecules exhibit no potential forces between each other. They only interact through elastics collisions like billiard balls.

2.  Molecules occupy no volume.  They are all treated as “point” masses

Each gas also exhibits its own unique equation of state based on its molecular mass as
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Where all values are defined as before but we replace the universal gas constant, 
[image: image17.wmf]*

R

, with the specific gas constant R which is related to 
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 by the molecular weight of the gas, m as:
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Where m has units of grams/mole and R has units of 
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Equation of state for the atmosphere (moist air):

The atmosphere is a bit more complicated than an ideal gas in that it is composed of multiple gasses and water vapor.  Fortunately due to Dalton’s law of partial pressures, little modification from equation (3) is necessary.  Instead we use a modified form of temperature that accounts for the effects for water vapor called the Virtual temperature.  Thus the gas law for moist air is of the form:
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Where

P is pressure in Pascals
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 is density measured in 
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 is the specific gas constant for dry air 
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 is the virtual temperature in units of 
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 and is defined as the temperature a parcel of dry air would have if its pressure and density were those of the parcel of moist air.  

It is more easily remembered mathematically in the following approximate form:
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Where W is the mixing ratio with units of gm/kg.
Ocean Density
:

We can see from equation (4) that the state of the atmosphere is uniquely determined by finding the pressure, temperature, density and moisture content of a parcel of air. Further, we have a nice analytic representation to use for our calculations.  Liquids clearly do not allow us to use as simple a relationship due to the fact that molecular forces are unavoidable.  One approach in applying the state of a liquid is to create empirical surface charts called 
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 surfaces or tables for the substance.  We have an added difficulty for the ocean in that the salinity content has a major impact on density as well as temperature.  We can however use a Taylor series to represent small changes in density from a reference state, 
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, in terms of small changes in salinity and temperature. This leads to the following expression for the equation of state:
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(5)
where 
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 is the thermal expansion coefficient
 , 
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is the haline contraction coefficient for seawater and 
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is the isothermal compressibility coefficient.  Typical values for the reference state are 
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.  Standard values for the Thermal expansion and haline contraction coefficients are 
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Equation (5) is a linear representation of a non-linear function and so one must use this approximation with care.  As with any linear estimate, the results are only valid for small changes in state variables.  This means that we should apply equation (5) only when considering local variations in the domain of interest.  


To obtain a more accurate representation of the equation of state that accounts for some of the non-linear features, we can use empirical estimates of the secant bulk modulus 
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.  The secant bulk modulus is an estimate of the compressibility of the equation of state.  It is obtained by taking the graph of pressure versus fractional change in volume and quantifying the slope of a segment extending from the reference point, 
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, to some arbitrary value of pressure as shown in figure 1.    
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Figure 1 – Representation showing the secant bulk modulus for the non-linear graph of pressure versus specific volume.
From figure 1, we can see the linear relationship between the bulk modulus and pressure can be expressed as
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Solving equation (6)  for the density at point 1 we obtain
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For various values of temperature and salinity, the secant bulk modulus has also been empirically fit to a quadratic function of pressure 
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Where 
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 can be empirically fit to data.  Substitution of equation (8) into equation (7) with proper values for the coefficients leads to the International  equation of state for sea water.  
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and
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Laboratory versus in-situ measurement of density:


In experimental work, measurements are based on some reference condition.  If measurements are taken at depth, such as with a CTD or rawindosnde, then the point of reference is at the depth or altitude of the measurement.  If we take a sample and bring it to the surface then the point of reference is at the surface or in the Laboratory.  We must account for variations in density due to the transport to the surface when considering the laboratory point of reference.   One often uses potential density in such circumstances where variations of density with depth are accounted for due to changes in potential temperature, 
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.  Recall 
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 measure changes in temperature as a result of adiabatic expansion or contraction. The equation for potential density is generally expressed as
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We must be careful in using potential density when examining the environmental conditions in the ocean or atmosphere.  For example, North Atlantic deep water has a larger potential density than Antarctic Bottom water but observation show that the former is above the latter.   The cause for this discrepancy is that our point of reference is at the surface but non-linear variations of density at such large depths actually indicate the ocean environment is neutrally stable.
Appendix:

Table of density values – the following are some values of density given by the International equation of state for seawater 
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� The background of most of the notes from this section are from:

Pond, S. and Pickard, G. L. Introductory Dynamical Oceanography, 2nd ed, Pergamon press, Oxford, UK. 1983.



� Notice the limitation in notation here:  do not confuse the � EMBED Equation.3  ��� for the thermal expansion coefficient with the  used to represent specific volume.

� From:

Pond, S. and Pickard, G. L. Introductory Dynamical Oceanography, 2nd ed, Pergamon press, Oxford, UK. 1983, 311.
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