

 1

Laboratory

3

Introduction to Programming
The MATLAB Programming Environment

Introduction

The purpose of this lab is to introduce you to an engineering tool that will help you to solve certain problems
found in the field of aerospace engineering. The tool is similar to your TI-92 calculator or an EXCEL
spreadsheet in that it crunches numbers. The tool is called MATLAB. MATLAB is not a programming
language; it is a programming environment. Like your calculator, MATLAB has more features than you will
need in the majority of your undergraduate studies. Don't let the extra features overwhelm you. Just get
comfortable using the features we cover in this lab.

By this point you should have installed MATLAB on your personal computer. You have the student version
of MATLAB. Here in the lab, you will be working with the standard version. For our purposes, there is no
difference between them. Throughout the lab, I am assuming that you have a working knowledge of the
Microsoft Windows operating system. That is the operating system installed on the computers in the CADIG
(Computer Aided Design/Interactive Graphics) labs. You will need to find some time to practice moving files
between your CADIG account and the local computer on which you are working. The lab exercises focus
on how to write MATLAB programs and interact with MATLAB from something called the command prompt.
It is left to you to explore the pull down menus and Help files. The interface is the similar to the GUI you are
used to in other Microsoft Office applications.

Start up MATLAB from the start menu. Hint: it is under Start Programs Applications MATLAB 7
on the CADIG computers in Rickover 114, 116, or 119.1 The MATLAB window may contain more than one
sub-window. For now, we will just use one of them. Find the window titled Command Window, and click the
cursor anywhere in that window. Now you are in the MATLAB workspace and the flashing bar next to the
double carrots is MATLAB's way of telling you that it is ready for you to type something. The double carrot is
termed the command prompt. MATLAB is ready to solve your problems. Type why at the command prompt
and MATLAB will give you a randomly generated generic answer.

Programming Basics

Variable Assignment
The MATLAB workspace is a little bit like the display on you calculator. You can type simple math
commands and MATLAB will crunch the numbers. For instance, type 1-2+3*4. Notice that the
multiplication sign is the * symbol. The division sign is the backslash symbol found on the same key as the
question mark symbol. When you hit enter, MATLAB should respond with ans = 11.

ans is actually a variable in the workspace. It is meant to suggest the word answer. Since you did not
assign the result of the mathematical operation to a variable, MATLAB assigned it to the default variable
ans. A variable can be any name formed using the standard 26 letters of the alphabet and the underline
symbol. MATLAB is case sensitive, so total, Total, and TOTAL are all different variables. The equals
sign, =, in MATLAB really is an assignment operator. It means assign to the variable on the left, the value
found on the right. That last sentence is worth reading again. Go ahead, read it slowly. Here are some
examples. Type them in MATLAB to get the hang of it.

NumPennies = 4

1 MATLAB is also available on the computers in Rickover 213.

 2

NumNickels = 2
NumDimes = 1
TotalCents = NumPennies*1 + NumNickels*5 + NumDimes*10

MATLAB should have answered with:

TotalCents = 24

If you create enough variables, you may not remember them all. Type who at the command prompt, and
MATLAB will list the variables in the workspace. Type the variable name at the command prompt, and
MATLAB will display its value. Try it. OK, that is enough playing with loose change. Type clear at the
command prompt and MATLAB removes all the variables from the workspace. If you don't believe it, type
who at the command prompt and check. They are all gone; the workspace is empty. As a habit, it is a good
idea to clear the workspace before you start a new problem.

MATLAB Built-In Functions
Great, so you can create and remove variables from the workspace and perform simple arithmetic on them.
To do more, you need to use the built in functions in MATLAB. The functions available on your calculator
are obvious because they are printed on the keys. For instance, your calculator has a key to perform the
square root. In MATLAB, you would type sqrt. Your calculator has a key to compute the sine of a number.
In MATLAB you would type sin. Let's try it. Type a = 100. Now, take the square root of 100 by typing b
= sqrt(a). There are now two variables in the workspace: a, which has a value of 100, and b, which has
a value of 10. How many functions are there in MATLAB? What is the function for the arcsine of a number?
Well, your MATLAB manual lists a lot of the available functions. Most are pretty intuitive. For instance,
round is a function that rounds a variable to the nearest integer value. Generally, you will want to use the
MATLAB help menu to find a function that you have not used before.

Under the Help menu in the main window, select MATLAB Help. Then select the hyperlink, MATLAB
Functions Listed by Category. Remember the part earlier about not getting overwhelmed. This would be
a good time to re-read that sentence. Many of the functions will not make sense to you until you are further
along in the curriculum. For now, you will need to use less than a dozen of the MATLAB functions. The
most commonly used functions are listed under Mathematics: Elementary Math Functions. Go ahead
and browse though them. They are basically like the keys on your calculator. The absolute value function is
the first one listed. Its function name is abs. Close the help window and go back to the command window.
Type c = -5 at the command prompt. Suppose we want to find the absolute value of c. Type d = abs
(c) at the command prompt. If you can't remember what the abs function did, type help abs at the
command prompt. MATLAB explains the absolute value function. All MATLAB functions have quick help
available from the command prompt. Type help log to find out about the logarithm function. For instance,
does it compute the base-10 logarithm or the natural logarithm of a number? Unfortunately, you have to
know the name of the function to get help on it from the MATLAB command prompt. If you don't know the
abbreviated name of the function, you will have to take an educated guess, or go through the help menu to
find it.

Working With the Command Prompt
We are going to calculate the temperature in the standard atmosphere from sea level to 10,000 feet at
increments of 1000 feet. The formula for temperature as a function of altitude is given on page 98 of
Anderson's Introduction to Flight as:

 () ()1 1T h T a h h= + − (3.1)

where a = -0.003565 °R per foot, and 1T and 1h are the reference temperature and altitude, respectively.
These are usually set to sea-level standard conditions.

Of course, this equation is written in a language called mathematics and we need to translate it into another
language called programming. This process is not unlike studying a foreign language, with the exception
that the vocabulary is limited to a few dozen words. However, a small translation error results in potentially
huge consequences. Remember the 1999 debacle of the Mars Climate Orbiter and the Mars Polar Lander?

 3

On 23 SEP 1999, the Orbiter burned up in the Martian atmosphere because propulsion engineers failed to
convert English and metric units in their computer calculations. Then, a few months later on 03 DEC, the
Lander augered in because a “software glitch” shut off the descent engines prematurely. “Software glitch” is
a euphemism for programming error. These two massive failures were the result of small, correctible
programming errors. The cost to NASA was $328 million in lost spacecraft.

If we translate the equation properly, we’ll type it in as the following statement:

t = t1 + a*(h-h1)

To begin with, enter the initial altitude at sea-level, the temperature of the standard atmosphere at the initial
altitude, and the temperature lapse rate into the MATLAB workspace:

h1 = 0
t1 = 518.69
a = -0.003565

Suppose we are interested in the temperature at 1000 feet. Specify:

h = 1000

Next, calculate the temperature at 1000 feet using the above statement:

t = t1 + a*(h-h1)

Next, change the variable h to 2000 feet and calculate the temperature at 2000 feet.2 Finally, repeat the
process for the rest of the altitudes up to 10,000 feet. At each altitude, you will want to record the
corresponding temperature on a sheet of paper.

Sure it works, but it is tedious. Basically, you keep repeating the same commands in the MATLAB
workspace with some small changes to the variable h. This is about as time consuming as solving the
problem on your calculator.

The MATLAB Editor
Under the File menu, select New, M-file. MATLAB will open the MATLAB editor. The MATLAB editor is a
bit like Notepad in that it is a basic text editor with some additional features. To begin with, type the following
text into the new document:

h1 = 0
t1 = 518.69
a = -0.003565
h = 1000
t = t1 + a*(h-h1)

These are just the commands that we would like to have executed in the workspace in succession.

To have these commands executed in the workspace in order, go under the debug menu, and select save
and run. The first thing MATLAB asks is for you to save the file. Notice that the file is saved in a folder
called MATLAB71\work. That’s fine for now if you’re working in your room. If you’re on one of the CADIG
computers and you have an account, then change the directory to the N drive (you’ll notice it’s labeled with
your account ID). Choose a name for the file; I am calling mine temperature.m. MATLAB is written to
work with a wide range of operating systems, so stay away from file names containing blank spaces and
odd characters, like the “@,” “$,” or “-” characters. Use only letters, numbers, or the “_” character. The file
name needs to end in .m or it would not make any sense to call it an M-file. For now, choose XXXX.m
where the X's are simply letters. Go back to the workspace, and you will see that MATLAB has executed
each command in order. If you made a typing mistake, you may get an error message.

2 Power user tip: Use the up arrow key to quickly cycle through previous commands in the MATLAB workspace. You can save time typing by
quickly editing a previous command.

 4

MATLAB will tell you in the workspace what line number in your M-file caused the error. The line numbers
are on the left-hand side of the MATLAB editor. Fix the typos and run the script again.

Congratulations, you have just written your first self-contained program in MATLAB. You can change the
value of h in your program and re-run it to calculate the temperature at the new altitude.3

If I want to run my program,4 and have MATLAB display only the final result, my code would look like this:

h1 = 0;
t1 = 518.69;
a = -0.003565;
h = 1000;
t = t1 + a*(h-h1)

The MATLAB Directory
The MATLAB71\work folder is the default directory for all user-written programs. If you have been working
on a program in your room, and want to continue working on it in the lab, you should copy it to the
MATLAB71\work folder on the local computer. The Current Directory window should show
MATLAB71\work, and show you all of the files in the work folder. As it matter of policy, all programs left in
the MATLAB71\work directory on a local computer are fair game to be deleted once you log off the
machine. Be sure to move a copy of your program to a floppy, zip disk, or network account at the end of a
computer lab. If you sit down to work on a program in a CADIG computer lab and the work directory is
clobbered with old files, feel free to delete them.

Lab Assignment: Part 1

The standard atmosphere begins by defining a set of standard atmospheric conditions at sea level. We’ve
already written a command-line program to compute the temperature profile up to 10,000 feet given the
standard temperature lapse rate below 10,000 feet. If we assume that the gravitational constant is, in fact, a
constant between zero and 10.000 feet, we can relate pressure to temperature via the hydrostatic equation.
Follow Anderson's development on pages 94-98 in Introduction to Flight.

The resulting relationship is shown in Equation 3.12 as:

0

1 1

g
aRp T

p T

⎛ ⎞−⎜ ⎟
⎝ ⎠⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 or
0

1
1

g
aRTp p

T

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3.2)

Once the pressure and temperature are known, the density comes from the equation of state:

 p
RT

ρ = (3.3)

Write a MATLAB program that computes the pressure, temperature and density in the standard
atmosphere anywhere from 0 to 10,000 feet. Start by defining standard sea level conditions. Next, compute
the temperature at a specified altitude using the standard lapse rate for low altitudes (i.e. the troposphere).
Then, compute the pressure at the specified altitude via Anderson's Introduction to Flight equation 3.12.
Next, compute the density at that altitude via the equation of state. Finally, use your program to compute the
standard atmosphere from 0 to 10,000 feet in increments of 1000 feet. Compare your results with
Andersons' in Appendix B of Introduction to Flight. Save your program. You'll need it later in the lab.

3 Power user tip: Each time a line of code is executed, MATLAB shows its result in the workspace. To suppress the display of the result in
the workspace, put a semi-colon after the line of code in the M-file.
4 Power user tip: To start your program from the workspace, simply type the file name without the .m extension at the command prompt. For
example, I would type temperature to run my program. But be careful, because MATLAB will run the last SAVED file. Save your M-file after
you make a change. Try it.

 5

If you have been following along carefully, then you’ve worked the bugs out of your code and have a useful
program for computing properties in the standard atmosphere. You probably ran the program 10 times,
once at, each altitude. Each time you ran the program, it was basically the same code, just the altitude of
interest changed. There is a way tell MATLAB to repeat the same program 10 times, or however many
times you like. It is a powerful tool and it is surprisingly simple to use. It is called a loop. But, before we
modify your code to cover how to make use of a loop, we need to look at something called an array in
MATLAB.

Arrays: Vectors and Matrices
Consider the array of four numbers [2, 5, 7, 9]. It has four elements and each element has a certain value.
For instance, the third element has the value 7. I could assign this row of four numbers a variable name in
MATLAB by typing RowVec = [2, 5, 7, 9]. Notice that the elements are separated by a comma and
that the row is contained within square brackets. Those little particulars, 'separated by commas,’ 'contained
within square brackets,' are called rules of syntax. Syntax is to programming what spelling is to writing a
composition. When you spell a word wrong, you leave it to the reader to infer what word you had in mind.
Perhaps you were close to the correct spelling, and it is easy to tell what you meant. Perhaps not. The
computer has very little ability to infer what you had in mind when you use the wrong syntax. Syntax errors
are often frustrating when you first learn a programming language, and they are the most common source
of error in your code. Pay close attention in this lab to not only the meaning of what I write, but the syntax of
how I write it. There is a big difference in a programming language between the use of a comma, a
semi-colon; or a colon: really.

Back to our array of four numbers. Open MATLAB, and create the variable RowVec as defined above.
Instead of using a single row and four columns to hold the elements, I could have just as easily used a
single column and four rows. In MATLAB, I would do this by using a semi-colon between the elements
instead of a comma. This is another example of a rule of syntax in MATLAB. Type ColVec = [2; 5; 7;
9] at the command prompt. RowVec and ColVec are both variables in the MATLAB workspace. They both
have the same four elements, but they are not the same size. RowVec is said to be a row vector, and has
the dimensions of a 1 by 4 matrix. That is, its size is 1 row by 4 columns. ColVec is said to be a column
vector, and has the dimensions of a 4 by 1 matrix. That is, its size is 4 rows by 1 column. Previously, we
typed who at the prompt to see a list of our variables in the workspace. This time, type whos at the
command prompt. Notice that MATLAB now tells you the size of your variable, i.e. how many rows and
columns.

A variable that has multiple elements arranged in a single row or a single column is termed a vector.
However, when the variable has multiple rows and multiple columns, we call it a matrix. Here is an example
of a matrix with 2 rows and 3 columns. Type mat = [1, 2, 3; 4, 5, 6] into your workspace. Notice
the careful use of semi-colons, commas, and square brackets.5

Addressing Elements in Vectors and Matrices
You now have three variables in the workspace which are all arrays: a row vector, a column vector, and a
matrix. The elements in an array are addressed by referencing the row number first, and then the column
number. Type RowVec. MATLAB returns the entire array. If we want to see the value of the second element
in RowVec, we would type RowVec(1,2). Notice that I used soft parenthesis and a comma between the
row and column number. If you type mat(2,3), MATLAB should return ans = 6. Now you can change
the row 2, column 3 element in mat to 7 by typing mat(2,3) = 7 at the command prompt.

Notice that the variable, mat, could be thought of as composed of two row vectors, one stacked on top of
the other. Perhaps we are interested in just the first row of mat. MATLAB has a way to address a sub-block
of an array. In this case, we are interested in the sub-block of row 1, columns 1 through 3 of the variable
mat. At the prompt, type sub = mat (1,1:3). MATLAB should have returned with the row vector sub =
[1 2 3]. The syntax uses a comma to separate the row from the column entry, and a colon to indicate

5 Power user tip: You can separate elements in the same row with a blank space, a comma, or both. You can
separate elements on different rows with a semi-colon, a line return, or both. Thus, the following command will
fill the array with the exact same values:

mat = [1 2 3
 4 5 6]

 6

that we are assigning to the variable named sub the values in the variable mat on the first row, in the first
through third columns. Change the variable sub to the 1st and 2nd rows, and 1st and 2nd columns of mat.
Type sub = mat (1:2,1:2). The result should be a two-by-two matrix. It takes a little practice to get
used to reading the MATLAB syntax. Like any new language, proficiency comes only through practice.

Loops in MATLAB
Now that we understand arrays, we are ready to tell MATLAB to repeat a section of code a fixed number of
times. Recall in the first lab we began with sea-level (0 ft) conditions and computed the atmospheric
properties up to 10,000 feet in increments of 1000 feet. Let's begin by creating a row vector with 10 entries.
Each entry in our row vector will be an altitude of interest. Type at the prompt h = [1000, 2000, 3000,
4000, 5000, 6000, 7000, 8000, 9000 10000].6

The syntax to loop in MATLAB is written as for index = beginning value: increment: ending
value. Next, the lines of code we want repeated are listed. Finally, an end statement tells MATLAB where
to end the loop. Here is an example:

for i = 1:1:10
altitude = h(l,i)

end

The variable i is called the index. You need not choose the letter i. Any legal variable name will do. The
index starts at a value of 1. Then, the variable altitude is assigned the value of 1000, since that is the
value of the element in the 1st row, 1st column of the row vector h. This is the line of code we want repeated,
and it is inside our for loop. At the end statement, the program jumps back up to the first line. The index, i,
is incremented by 1, and MATLAB checks if this new value of the index is less than the ending value of the
for loop, 10. Of course, 2 is less than 10, so the line between the for and end statements is repeated.
The code to be repeated in the loop should be indented to visually indicate to the reader that this is the
section inside the loop.

Open a new M-file, type in the above code, and get your first loop in MATLAB to run. Notice that the M-file
editor automatically uses different colors and indenting to visually indicate the use of the for loop in the
code. Reading code is never easy, but proper formatting will help a lot.

Application: Computing Temperature in the Standard Atmosphere
Recall the formula for the temperature below 10,000 feet in the standard atmosphere as a function of
altitude: t = t1 + a * (h – h1), where t1 = 518.69, h1 = 0, and a = -0.003565. Instead of
creating a row vector of altitudes ahead of time, we will build it as we progress through the loop. Open an
M-file, and define the variables t1 and h1 and a in the first three lines of code. Since we want to take 10
steps, write the code for a for loop that counts from 1 to 10 in increments of 1. Your code should look
something like this:

h1 = 0
t1 = 518.69
a = -0.003565
for i = 1:1:10

…
end

Although there is nothing inside the loop, it is best to run your code and check for errors along the way.
Even experienced programmers rarely write error-free code. It is hard to debug large sections of code, but
much easier to debug small sections of code. Run and debug your code. Next, let's have the loop generate
the row vector h whose elements are the altitudes of interest. There are lots of ways to do this. Here is one
idea:

6 Power user tip: The same vector can be quickly generated with the syntax:
h = [1000:1000:10000]. In MATLAB-speak that reads: create a vector h, make the first element equal to 1000, add additional elements
whose values are increasing in increments of 1000 up to 10,000. It sounds complicated, but is easy to use in practice.

 7

h1 = 0
t1 = 518.69
a = -0.003565
for i = 1:1:10

h(i) = i*1000
end

Again, run and debug. Finally, at each altitude, compute the temperature. Just as h was a row vector of
altitudes, let’s build t as a row vector of temperatures at each altitude. It might look something like this:

h1 = 0
t1 = 518.69
a = -0.003565
for i = 1:1:10

h(i) = i*1000
t(i) = t1 + a*(h(i)-h1)

end

Run and debug your code. When run correctly, the variables h and t should be:

h = [1000 2000 3000 4000 5000 6000 7000 8000 9000 10000]
t = [515 512 508 504 501 497 494 490 487 483]

Note: I have rounded the values off to the nearest integer.7

Viewing the Data: Graphics
We would like to see how the temperature varies with altitude on a graph. The command in MATLAB is
simple. Type plot (h, t, 'o'), which will open a figure window and plot the elements of h versus the
elements of t using the symbol ○. The first vector in the plot command provides the x-axis values. The
second vector provides the y-axis values. Experiment with the pull-down menus in the figure window to add
labels to the axis; a title to the graph; and fit a line to the data.8

Lab Assignment: Part 2

Write a MATLAB program that uses a loop to compute the pressure, temperature, and density in the
standard atmosphere from 0 to 10,000 feet in increments of 1000 feet. Store your results in four row
vectors, one each for altitude, pressure, temperature, and density. Generate plots of altitude versus the
three atmospheric properties. Repeat the process using an increment of 100 feet.

When you hand in your program, you will want to explain what each line of code does. You will also want to
include your name, date, section number, etc. at the top of the program. However, if you simply type this
information into the M-file, MALAB will think that they are commands. In order to add this documentation to
your program without confusing MATLAB, you need to use the percent sign. The percent sign tells
MATLAB to ignore any characters that follow on that line. Properly documenting code is important. Without
documentation, your code can be difficult to read or use, even a day later.

Here is an example of a simple program with brief documentation.

% Name/Date/Section: Joe Student/04 SEP 2002/EA203.1001
% Title: A Program to count from 1 to 10
% Clear all workspace variables AND erase the workspace...
clear
clc

7 Power user tip: Suppress the display of all the intermediate results in the workspace while the program is running by placing semi-colons at
the end of each line. Add two lines of code, simply h and t, without semi-colons, at the end of your program to display all the results.
8 Power user tip: Type help plot at the command prompt to find out more about plotting in MATLAB. The demos under
HeIp:Demos:Graphics:2-D Plots are very good.

 8

% Initialize a counter at zero
counter = 0;
% Set up a loop to go from 1 to 10
for i = 1:1:10;

counter = counter + 1 %Add 1 to the previous value
end
% End of the loop

Hand in your completed program with documentation, and graphs of the output of your program for each of
the atmospheric properties.

For the Power User

We have covered how to write and run a simple program in MATLAB. MATLAB has some nice built-in
demos available under the help menu. Most are beyond the scope of the class for now. If you have a little
background in matrix math, run through the MATLAB:Desktop Environment demo. It comes in five short
parts. Feel free to use any of the built-in power user features in MATLAB that you discover.

