
Ad hoc continuum-atomistic thermostat for modeling heat flow
in molecular dynamics simulations

J. DAVID SCHALL, CLIFFORD W. PADGETT and DONALD W. BRENNER*

Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907, USA

(Received July 2004; in final form December 2004)

An ad hoc thermostating procedure that couples a molecular dynamics (MD) simulation and a numerical solution to the
continuum heat flow equation is presented. The method allows experimental thermal transport properties to be modeled
without explicitly including electronic degrees of freedom in a MD simulation. The method is demonstrated using two
examples, heat flow from a constant temperature silver surface into a single crystal bulk, and a tip sliding along a silver
surface. For the former it is shown that frictional forces based on the Hoover thermostat applied locally to grid regions of the
simulation are needed for effective feedback between the atomistic and continuum equations. For fast tip sliding the
thermostat results in less surface heating, and higher frictional and normal forces compared to the same simulation without
the thermostat.
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1. Introduction

Many different thermostating schemes have been devel-

oped for use in molecular dynamics (MD) simulations.

The earliest schemes used simple velocity scaling to

equilibrate to a given temperature [1]. Starting in the

1970s schemes were introduced in which “reactive

regions” were surrounded by thermostated atoms. In

methodologies developed by Tully [2], Adelman [3], Doll

[4] and others [5–7], for example, a boundary region in

which both Langevin forces and forces from an

interatomic potential are used is introduced around a

reaction region in which only forces from the potential act

on the atoms. The boundary region acts as a heat

source/sink, and in principle the Langevin forces on the

atoms in this region do not significantly alter the dynamics

of the reaction region as long as the reaction region is

sufficiently large. Langevin forces obtained from detailed

memory kernels with properties derived from phonon

spectra [2] or forces based on simplified Debye models

have been used in the boundary regions [3].

Thermostats have also been developed that utilize

constraints and driving forces on the equations of motion

[8]. These forces lead to a feedback between the

temperature of the system and the forces on the atoms.

Using the principle of least constraint, for example, Evans,

Hoover and co-workers derived a frictional force with

coefficient g given by

g ¼

2
P

j
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P
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2
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that maintains the total kinetic energy in a simulation [9].

In equation (1) Fj, Vj and mj are the total force on atom j

from the interatomic potential, the velocity of atom j and

the mass of atom j, respectively. The sum is typically over

all atoms in the simulation, and the frictional force is

applied to each atom.

Proportional control schemes have been used that lead to

frictional forces with values that depend on the difference

between the desired temperature and the temperature of a

given simulated system [10]. From the perspective of

statistical mechanics, the most rigorous coupling scheme is

that introduced by Nose’ in which an integral control

variable is introduced into the equations of motion [11,12].

This method, sometimes referred to as the Hoover-Nose’

thermostat, not only produces a given average temperature,

but also produces temperature fluctuations that are

appropriate for a “sub-system” of atoms that is part of a
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macroscopic canonical ensemble [13]. This method is also

time reversible, a feature missing from Langevin schemes

that use random forces.

There are now available a large number of many-body

analytic interatomic potential energy functions that are both

sufficiently computationally efficient to be used in large-

scale molecular simulations and that describe bonding

properties with reasonable accuracy [14]. One of the most

commonly used scheme for modeling metals is the

embedded-atom method (EAM) that was introduced by

Baskes, Daw and Foiles [15]. In this approach, which is

based on effective medium theory [14], the electron density

associated with a given atomic site is approximated by a

superposition of electron densities contributed by neigh-

boring atoms. The energy of an atom is taken as a function

of this local electron density plus a pair-additive sum of

interactions with neighboring atoms that mimic interatomic

interactions between filled electron shells and between

atomic nuclei. Electron densities are typically taken from

electronic structure calculations (e.g. Hartree-Fock calcu-

lations), and an embedding function that relates the electron

densities to the binding energy plus the pair-additive

interactions are empirically fit to solid properties. These

properties generally include the lattice constant, sublima-

tion energy, elastic constants, phonon dispersion relations

and thermal expansion coefficients. Other commonly used

schemes, e.g. the Glue model [16] and the Finnis-Sinclair

potential [17], are based on similar concepts.

The EAM and related many-body potentials have a

proven ability to describe the structure, energy and the

dynamics of a wide range of defects with reasonable

accuracy. These structures include surfaces, steps, point

defects, dislocations and stacking faults. The EAM can

even provide a reasonably good description of liquid

properties depending on the system. However, it is well

established that the thermal transport properties of metals

at room temperature are dominated by electronic degrees

of freedom. Because explicit electronic degrees of

freedom are replaced by an effective analytic interaction

in schemes like the EAM, such schemes are unable to

reproduce thermal transport properties at room tempera-

ture for metals no matter how accurately bonding and

phonon properties are reproduced.

Recently Zhigilei and co-workers developed a multi-

scale modeling scheme for treating the interaction of laser

fields with metals [18–20]. In their approach the electronic

and phonon contributions to the dynamics of the system are

decoupled and treated using a combination of continuum

and atomic dynamics. Interatomic forces were derived

from EAM potentials, and continuum equations (including

thermal transport equations) were solved step-wise on a

grid superimposed over the atomic simulation.

In this paper, we analyze a simplification of the Zhigilei

multiscale modeling approach that takes the form of an ad

hoc thermostat that couples velocities in a MD simulation

and a numerical solution of the continuum thermal

transport equation. Our results demonstrate that coupling

the continuum and atomic simulations via velocity scaling

results in a non-physical “lag” between the kinetic energy

profile of the simulation and the direct numerical solution

of the continuum heat flow equation that results from the

equipartitioning of the kinetic and potential energy in the

simulation. On the other hand, it is shown that coupling

the atomic and continuum equations via the Hoover

thermostat equation (1) applied locally to each grid region

produces kinetic energy profiles in the simulation that

match the appropriate continuum result.

This continuum-atomistic thermostat scheme has

several important advantages over other prior thermostat-

ing procedures. These advantages include the following:

(1) experimental thermal transport properties can be

incorporated into a simulation without explicitly including

electronic degrees of freedom; (2) the temperature

dependence of experimental thermal properties can be

easily incorporated into the scheme; (3) in principle the

effect of bulk defects such as dislocations and grain

boundaries on heat transfer can be incorporated into the

model by making appropriate changes in thermal proper-

ties around these defects; (4) the grid region can extend

beyond the boundaries of an atomic simulation, coupling

heat transport to macroscopic-scale boundary conditions;

(5) numerical solutions of the continuum heat equations

typically use step sizes comparable to those used in MD

simulations for convenient grid spacings; and (6) the

method is independent of the interatomic force model and

is very straight forward to implement.

Details of the coupling scheme are given in the

following section. Discussed in the subsequent two

sections is a simulation of non-steady-state heat flow

from a metal surface held at a constant temperature, and a

simulation of a model tip moving along a silver surface.

By doing the sliding simulations with and without the

thermostating scheme, it is demonstrated that for large tip

speeds the surface temperature and frictional force are

strongly dependent on the thermal transport properties of

the surface. A brief conclusion is given in the final section.

2. Ad hoc continuum-atomistic thermostat

In this thermostating scheme a MD simulation is divided

into grid regions, and the temperature of each grid region

is assigned according to the average kinetic energy of the

atoms within that region (figure 1). New temperatures for

each grid region are then calculated stepwise concurrent

with the MD simulation by numerically solving the

continuum heat equation

›T

›t
¼ D

›2T

›R2
ð2Þ

where T is the temperature derived from the MD

simulation, and D is the thermal diffusivity given by

D ¼
l

cpr
: ð3Þ
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In equation (3), l is the thermal conductivity, cp is the

heat capacity and r is the material density. The atomic

velocities of the atoms in each grid region are scaled to

match the solution of equation (2), and the atoms are then

allowed to move according to the interatomic potential

using the Hoover frictional force equation (1) applied

locally to each grid region. This procedure produces a

feedback between the kinetic energy of the simulation and

the continuum heat transfer equation.

In the simplest implementation of this scheme, a Euler’s

method solution to equation (2), the temperature T new for

each grid region is given by

T new ¼ T old þ Dt D
›2T

›R2
ð4Þ

where the partial derivative is calculated using a centered

finite divided difference formula. For this scheme, the

largest timestep Dt max for numerical stability is given by

Dt max ¼
1

2D 1
Dx 2 þ

1
Dy 2 þ

1
Dz 2

� 	 ð5Þ

where Dx, Dy and Dz are the grid spacings in the x, y and z

directions, respectively. There are well known iterative

numerical methods and better approximations for the

temperature derivative that lead to stable numerical

solutions for longer timesteps. However, the straight-

forward numerical scheme suggested here leads to

timesteps that are comparable to those typically used in

MD simulations ð10215 sÞ; making other numerical

methods largely unnecessary. For example, for gold at

300 K the experimental thermal diffusivity is

1.283 £ 10216 Å2/s. With a uniform grid size of Dx ¼

Dy ¼ Dz ¼ 10 �A the maximum time step size is about

1:2 £ 10215 s:
To incorporate temperature or defect dependent thermal

properties, either the value used for D in equation (2) can

depend on the temperature or defect density of a given grid

region, or an explicit functional dependence of thermal

properties on temperature can be included in the heat

transport equation (2). For the examples discussed below

we assume that thermal properties are temperature

independent.

3. Simulated heat flow into bulk metals

To test the numerical stability of this coupled continuum-

atomistic scheme, and to illustrate its application, a series

of atomistic and continuum-atomistic MD simulations

were carried out that model non-steady-state heat flow

from a ð111Þ surface kept at a constant temperature into

the bulk of simulated silver, aluminum, nickel, copper and

gold single crystals. The MD part of the simulation was

carried out with EAM potentials using the Paradyn

simulation code [21]. The system size was approximately

60 £ 60 £ 200 �A for the x, y, and z dimensions,

respectively, with periodic boundaries applied in the x

and y directions. The number of atoms in each system

varied between 47,000 and 66,000 atoms depending the

material’s lattice constant. The system for each metal was

first equilibrated to 300 K for 5 ps using a Langevin

thermostat and a time step size of 10215 s. To create a

temperature gradient the kinetic energy of the atoms

within 10 Å of one end of the bar was maintained at 400 K

by rescaling the atomic velocities at each time step using a

Gaussian velocity distribution. This procedure produced

heat flow along the k111l direction normal to the surface.

For the simulation using the continuum-atomistic

thermostat, the simulation space was divided up into 6 £

6 £ 20 grid cells in the x, y and z directions, respectively,

producing grid spacings of about 10 Å per side in each

direction. The experimental values used for the thermal

diffusivities for each metal are given in the table.

Plotted in the top panel of figure 2 as the squares is the

average kinetic energy (reported as a temperature) as a

function of depth from the surface for a MD simulation of

EAM silver with the continuum-atomistic thermostat

turned off. Data for two different times are shown. The

solid lines in this plot correspond to the temperature

profile from a numerical solution of the heat flow equation

with no feedback from the MD simulation. The thermal

diffusivity D for the numerical solution to the heat flow

equation was determined by a least squares fit to the

simulation data. The thermal diffusivity calculated using

this method for each of the metals studied are given in the

table along with the corresponding experimental values.

As anticipated, the thermal diffusivities calculated from

the atomistic simulations using strictly the EAM are much

smaller than the experimental values.

Plotted in the middle panel of figure 2 are the simulated

average atomic kinetic energy profiles for silver using the

same conditions as those for the top panel except that

the continuum-atomistic thermostat is turned on using the

experimental thermal diffusivity. In this case the coupling

is achieved by simply scaling the atomic velocities to match

the temperature in each grid region as given by

the numerical solution to the continuum heat equation.

Figure 1. Illustration of the finite difference grid superimposed over an
atomic simulation.
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The lines in the plot correspond to the temperature profile

from a numerical solution of the heat flow equation using

the same experimental value of thermal diffusivity but

without feedback from the MD simulation. While the

kinetic energy profile with the thermostat on matches more

closely the expected profile from the continuum equations

than the profile with the thermostat off, the profile “lags

behind” the continuum solution calculated without feed-

back from the atoms. This result is because some of the

kinetic energy after scaling the atomic velocities flows into

potential energy as required by the equipartition of energy.

Apparently when fed back into the numerical solutions of

the continuum equation this slight transfer of kinetic energy

is not sufficiently fast to keep up with heat flow, resulting in

the “lag” of the temperature profile.

Plotted in the bottom panel of figure 2 are data from the

same simulation conditions as those used to generate the

data in the middle panel except that a local Hoover

frictional force equation (1) is applied to each atom. In this

case the sum in equation (1) is over each atom in a given

grid region, and therefore the friction coefficient is

different for different grid regions. In this case the kinetic

energy profile matches the analytic solution to the

continuum heat flow equations very well. Essentially

identical results, namely a profile lag with simple velocity

scaling and excellent agreement with the continuum

profile with the Hoover thermostat, were obtained for each

of the metals listed in Table 1.

4. Model tip sliding across a gold substrate

As a second test case for the thermostat, the frictional

force for a tip moving along a silver surface was calculated

with and without the continuum-atomistic thermostat

turned on. The simulated system is illustrated in figure 3.

The system contains 300,000 atoms and has dimensions of

288 £ 248 £ 71 �A in the x, y and z directions. The system

was oriented such that the z direction was normal to a

ð111Þ plane. Periodic boundaries where maintained in the

x and y directions while the bottom surface was held rigid.

The system was then divided into 29 £ 25 £ 7 grid

regions. The tip is treated as a large single “atom” that

Figure 3. Illustration of the tip-surface simulation.

Table 1. Experimental and calculated (via the EAM) thermal
diffusivities in units of Å2/ps for various metals (experimental values

are from [22])

Metal Experiment EAM

Silver 17,386 48
Aluminum 9786 144
Gold 12,737 18
Copper 11,625 124
Nickel 2295 174

Figure 2. Kinetic energy (reported as a temperature) and temperature
profiles for single crystal silver. The symbols are from the atomistic
simulations; the lines are solutions to the continuum heat flow equation.
Top: Heat flow from a silver ð111Þ surface without the thermostat. The
squares and solid line are for 1 ps and the triangles and dotted line are for
4 ps. The solid lines are a numerical solution to the heat flow equation
with D fit to the simulation data. Middle: Using velocity scaling only in
the simulation. The squares and solid line are for 0.1 ps; the triangles and
the dotted line are for 0.5 ps. Bottom: Results using the Hoover
thermostat. The symbols and lines are the same as for the middle panel.
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interacts with the atoms in the substrate via pair-additive

repulsive forces. The force from the tip I on substrate atom

i is given as

Fi ¼ 0 for riI $ R

Fi ¼ 2kðR 2 riIÞ
n for riI , R

ð6Þ

where R defines the radius of the spherical tip, riI is the

radial distance from the center of the indenter to atom i,

and n and k are constants related to the stiffness of the tip.

For the substrate atoms the tip-atom forces are added to

the EAM forces calculated using the Paradyn code. For

convenience, values of R ¼ 40 �A; n ¼ 1 and k ¼ 1 eV= �A2

were used for equation (6). The tip was indented to a depth

of 2.5 Å and then was slid across a silver ð111Þ surface

along a ð110Þ direction at different sliding speeds ranging

between 2.5 and 25 Å/ps. The tip depth of 2.5 Å was

chosen such that significant frictional forces were

simulated but that no plastic damage occurred during the

course of the simulation.

Plotted in figure 4 is the average normal and friction

forces as a function of sliding rate for the simulation both

with and without the continuum-atomistic thermostat

(using the Hoover friction) applied to the system. Above

sliding rates of approximately 10 Å/ps, the choice of

thermostat has a very strong effect on the average normal

and friction forces, with both the normal and frictional

forces being higher with the thermostat. Plotted in figure 5

is the average surface temperature as a function of sliding

distance for simulations with and without the thermostat

for a sliding rate of 25 Å/ps. At the higher sliding rate

there is appreciable heating of the surface without the

thermostat, while with the thermostat turned on the heat

is rapidly removed from the surface, and the surface

temperature remains constant. As the temperature

increases, the bonds are softened and the atoms are

more easily pushed out of the way by the moving tip.

This results in lower normal and friction forces. When

the thermostat is applied the surface temperature does not

increase as rapidly, which results in the higher normal

and friction forces.

5. Conclusion

A new thermostat using an ad hoc coupling between

numerical solutions of the continuum heat transport

equations and a MD simulation has been characterized for

two test cases, heat flow from a silver surface held at a

constant elevated temperature, and a tip moving across a

silver substrate. For the first case, we conclude that the

thermostat procedure is numerically stable and can

maintain kinetic energy profiles that match continuum

temperature profiles using experimental thermal diffusiv-

ities provided that a Hoover frictional force is applied

locally to each grid region. This thermostat therefore can

significantly improve heat transport properties of simu-

lated systems, especially for metals where the electronic

degrees of freedom are responsible for the majority of heat

transport at room temperature. For the case of the tip

sliding across the silver substrate, non-physical heat

buildup at the surface, at high sliding rates, is apparent in

the simulations without the thermostat, and this heating

can significantly influence friction and loading forces.

With the thermostat applied, heat is more rapidly

Figure 4. Average normal force (top) and frictional force (bottom) for a
tip slid across a silver substrate as a function of sliding rate. The triangles
and squares represent sliding with and without the thermostat applied,
respectively.

Figure 5. Change in the average surface temperature as a function of
sliding distance for a tip sliding rate of 25 Å/ps. The triangles are for the
system without the thermostat; the squares are for the system with the
thermostat applied.
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dissipated from the surface, leading to greater friction and

loading forces compared to the hotter surface.

The thermostat described here will have important uses

for a number of applications, including simulations of

high-speed sliding and machining. The thermostat is

straight forward to implement and is independent of the

potential function used in the simulations. One issue that

has yet to be addressed is how latent heat associated with

phase transitions can be incorporated into the formalism.

We are currently exploring this and related issues, as well

as exploring additional applications where this type of

coupling could be valuable for molecular simulations.
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