
ANSWERING COMPLEX QUERIES IN PEER-TO-PEER

SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Adina Nicoleta Crainiceanu

May 2006

c© 2006 Adina Nicoleta Crainiceanu

ALL RIGHTS RESERVED

ANSWERING COMPLEX QUERIES IN PEER-TO-PEER SYSTEMS

Adina Nicoleta Crainiceanu, Ph.D.

Cornell University 2006

Peer-to-peer (P2P) systems provide a robust, scalable and decentralized way to

share and publish data. However, most existing P2P systems only support equality

or keyword search queries. We believe that future P2P applications, such as digital

libraries, resource discovery on a grid, or military applications, will require more

complex query functionality, as users will publish semantically rich data.

Towards the goal of supporting complex queries in P2P systems, this disser-

tation focuses on developing index structures that allow fast access to distributed

data. We introduce first a general modular indexing framework that identifies and

separates the different functional components of a P2P index structure. One of

the benefits of such a framework is that it allows reusing the existing algorithms

for different components rather than implementing everything anew. We can thus

concentrate on creating algorithms that provide new functionality.

We introduce P-Tree, a distributed fault-tolerant index structure. P-Trees

support range queries in addition to equality queries in P2P systems in which

each user (peer) publishes a small number of data items. We describe algorithms to

maintain a P-Tree under insertions and deletions of data items/peers, and evaluate

its performance using both a simulation and a real distributed implementation.

Our results show the efficacy of our approach.

We introduce then P-Ring, a novel index structure based on our framework,

that supports both equality and range queries, is fault-tolerant, efficiently supports

large sets of data items per peer (as opposed to P-Tree), and provides guaranteed

logarithmic search performance in a stable system.

In a thorough Wide Area Network experimental study we evaluate the per-

formance of P-Ring and compare P-Ring with three other P2P index structures,

Chord, Skip Graphs, and Online Balancing, implemented in the context of our

indexing framework. Our performance results indicate that P-Ring outperforms

Skip Graphs in terms of both query and maintenance cost. P-Ring offers a better

load balance than Online Balancing, at a lower cost. P-Ring outperforms Chord

in terms of search performance and supports a larger class of queries, with a low

overhead.

BIOGRAPHICAL SKETCH

Adina Nicoleta Crainiceanu was born in Zalau, a small city in Romania. She

attended the University of Bucharest, Romania and obtained a Bachelor of Science

degree and a Master of Science degree in Computer Science before coming to

Cornell University. She obtained the Master of Science in Computer Science from

Cornell in January 2004. She expects to receive the Doctor of Philosophy degree

from Cornell in May 2006.

During the summer of 2001 she interned at Reliable Network Solutions in

Ithaca, NY. During the summer of 2002 she interned at IBM Almaden Research

Center in San Jose, CA, where she worked under the supervision of Rakesh Agrawal

and Roberto Bayardo.

In January 2006 she joined the Computer Science Department at the United

States Naval Academy in Annapolis, MD as Assistant Professor.

iii

To Ciprian, with love

iv

ACKNOWLEDGEMENTS

My special thanks to the doctoral committee members without whose help this

research would not have been possible. It was truly a privilege to work and learn

under their supervision.

I am especially grateful to my major thesis adviser, Prof. Johannes Gehrke,

who provided invaluable input during this research. Through the many ups and

especially downs inherent to the research process, he was always encouraging and

did not let me lose sight of the big picture. I particularly appreciate his patience,

the way he always pointed me in the right direction, and helped me cultivate my

strengths and overcome some of my weaknesses. I am still to master his excellent

time management skills.

Many thanks for this dissertation are due to Prof. Jayavel Shanmugasundaram

who helped me discover the beauty of finding simple solutions to complicated prob-

lems. Our meetings were an important source of ideas. I also want to thank Prof.

Shanmugasundaram and Prof. Gehrke for their detailed feedback on presentations

and papers, which helped me improve my presentation and writing skills, and for

supervising my teaching training, training that will be put to good use in my future

academic career.

I also want to recognize the knowledgeable and friendly assistance of Prof. Ken

Birman who believed in my potential and helped me with many career and research

advices.

I want to thank Prof. Jerome Hass, a very gracious minor adviser, who sug-

gested interesting courses to take as part of my minor in Managerial Economics

and helped me expand may knowledge in areas outside of Computer Science.

v

Research was much more fun due to the discussions with my colleagues, Prakash

Linga and Ashwin Machanavajjhala. Much of the research in this dissertation

took shape during our meetings. I also want to acknowledge three undergraduate

students: Hubert Sun, Tat Yeong Cheah, and Frans Adjie Effendi who helped

implementing some of the algorithms presented in this dissertation. Also, Greg

Durrett, a high school student, implemented a very nice GUI for the P-Tree index.

My life as graduate student was easier due to the helping administrative staff

in the department, especially Becky Stewart, who helped me with many petitions

and forms I had to file, and Stacy Shirk, who took care of numerous details, such

as expense reimbursement, for the conference trips so generously supported by my

adviser.

I also want to thank my mother, for her eternal optimism, even during very

difficult times, and for always believing in me and my siblings. I know that this

accomplishment will make her proud.

Last, but not least, I want to thank and dedicate this research to my wonderful

husband, Ciprian, for his love and support. I could not imagine my life without

him.

vi

TABLE OF CONTENTS

1 Introduction 1
1.1 Peer-to-Peer Systems . 1
1.2 Summary of Contributions . 2

1.2.1 Architecture . 2
1.2.2 Routing . 3
1.2.3 Load Balancing . 4
1.2.4 Implementation and Performance Evaluation 5

1.3 Dissertation Outline . 5

2 Preliminaries and Related Work 7
2.1 System Model . 7

2.1.1 Peer-to-Peer Systems . 7
2.1.2 Data Model . 8
2.1.3 An Illustrative Example . 8
2.1.4 Notations . 10

2.2 Related Work . 10
2.2.1 Distributed Databases . 10
2.2.2 P2P Systems . 17

3 An Indexing Framework for Peer-to-Peer Systems 31
3.1 Overview . 31
3.2 Peer-to-Peer Indexing Framework 32

3.2.1 Fault Tolerant Torus . 33
3.2.2 Data Store . 35
3.2.3 Replication Manager . 37
3.2.4 Content Router . 38
3.2.5 Load Balancer . 38
3.2.6 P2P Index . 39

3.3 General Applicability of the
Peer-to-Peer Indexing Framework 39

4 P-Tree 41
4.1 Overview . 41
4.2 P-Tree Index Structure . 43

4.2.1 B+-trees . 43
4.2.2 P-Tree: Intuition . 44
4.2.3 P-Tree: Structure and Properties 48
4.2.4 P-Tree: Analysis . 54

4.3 P-Tree Algorithms . 57
4.3.1 High-Level System Architecture 57
4.3.2 Search Algorithm . 60
4.3.3 Peer Insertions . 62

vii

4.3.4 Peer Deletions and Failures 63
4.3.5 The Ping Process . 63
4.3.6 The Stabilization Process 64
4.3.7 Correctness and Performance of Algorithms 67
4.3.8 Examples of Peer Insertion and Failure/Deletion 71
4.3.9 Implementation Issues . 75

4.4 Experimental Evaluation . 76
4.4.1 Experimental Setup . 79
4.4.2 Experimental Results . 80
4.4.3 Results from a Real Implementation 86

4.5 Summary . 86

5 P-Ring 88
5.1 Overview . 88
5.2 P-Ring Data Store . 89

5.2.1 Load-Balancing Algorithms 90
5.2.2 Free Peers . 94

5.3 Hierarchical Ring . 96
5.3.1 Data Structure . 97
5.3.2 Maintenance Algorithms . 101
5.3.3 Routing Algorithm . 102

5.4 Hierarchical Ring Theoretical Analysis 105
5.4.1 Eventual Stabilization . 105
5.4.2 Search . 107

5.5 Summary . 110

6 A Performance Evaluation of P2P Range Indexes 112
6.1 Overview . 112
6.2 Index Structures Evaluated . 113

6.2.1 Skip Graphs . 113
6.2.2 Online Balancing . 114
6.2.3 Chord . 115

6.3 Distributed Implementation Issues 117
6.3.1 Locks . 118
6.3.2 Timeouts . 120
6.3.3 P-Ring Storage Factor Estimation 121
6.3.4 Online Balancing Index on Load 122

6.4 Experimental Framework . 122
6.5 Experimental Setup . 125
6.6 Performance Model . 127
6.7 Content Router Evaluation . 127

6.7.1 Search Cost . 128
6.7.2 Maintenance Cost . 134

6.8 Data Store Evaluation . 135

viii

6.8.1 Stable System . 136
6.8.2 Churn System . 143

6.9 Search versus Maintenance . 146
6.10 Summary . 150

7 Conclusions and Future Directions 152

Bibliography 153

ix

LIST OF TABLES

3.1 API . 36

4.1 P-Tree Experiments Parameters . 80
4.2 P-Tree Experimental Results in Real System 87

6.1 P2P Index Structures Experiments Parameters 126

x

LIST OF FIGURES

3.1 Components of a P2P Index Structure 33
3.2 Mapping Ranges to Peers . 34
3.3 Mapping Values to Peers . 34

4.1 p1’s B+-tree . 43
4.2 p5’s B+-tree . 43
4.3 P-Tree . 46
4.4 Full P-Tree . 48
4.5 Inconsistent P-Tree . 51
4.6 P-Tree Maintenance . 58
4.7 Insertion - Step 1 . 75
4.8 Insertion - Step 2 . 76
4.9 Insertion - Step 3 . 77
4.10 Peer Failure - Step 1 . 77
4.11 Peer Failure - Step 2 . 78
4.12 Peer Failure - Step 3 . 78
4.13 Cost vs. System Size . 81
4.14 Cost vs. P-Tree Order . 81
4.15 Cost vs. P-Tree Fill Factor . 82
4.16 Cost vs. Stabilization Process Frequency 82
4.17 Cost vs. Peer Insertions to Deletions Ratio 83
4.18 Cost vs. Data Skew . 83

5.1 Data Store . 91
5.2 Data Store After Split . 91
5.3 Data Store After Merge . 92
5.4 Hierarchical Ring Level 1 . 97
5.5 Hierarchical Ring Levels 1 and 2 98
5.6 Hierarchical Ring Levels 1, 2, and 3 99

6.1 Distributed Deployment Architecture 123
6.2 Search Cost for Hierarchical Ring 129
6.3 Search Cost for Skip Graphs . 130
6.4 Search Cost for Hierarchical Ring, Skip Graphs and Chord 131
6.5 Hierarchical Ring Message Cost . 132
6.6 Hierarchical Ring Bandwidth Cost 133
6.7 Message Cost for Hierarchical Ring, Skip Graphs and Chord 135
6.8 Bandwidth Cost for Hierarchical Ring, Skip Graphs and Chord . . 136
6.9 Imbalance Ratio . 137
6.10 Balancing Operations . 138
6.11 Message Cost for Data Store . 139
6.12 Bandwidth Cost for Data Store . 140
6.13 Message Cost for Item Insert and Delete Operations 141

xi

6.14 P-Ring Imbalance Ratio . 142
6.15 Online Balancing Imbalance Ratio 143
6.16 Chord Imbalance Ratio . 144
6.17 P-Ring, Online Balancing Imbalance Ratio - Churn System 145
6.18 Data Store Message Cost - Churn System 146
6.19 Data Store Message Cost Details - Churn System 147
6.20 Data Store Bandwidth Cost - Churn System 148
6.21 Data Store Bandwidth Cost Details - Churn System 149
6.22 Search Cost vs. Maintenance Cost - Churn System 150
6.23 Search Cost vs. Content Router Maintenance Cost - Churn System 151

xii

Chapter 1

Introduction

1.1 Peer-to-Peer Systems

Data availability, collection and storage have increased dramatically in recent years,

raising new technological and algorithmic challenges for database design and data

management. Moreover, the expansion of the Internet made possible the collabo-

ration between large numbers of computers sharing data from around the globe.

There is a need for a new way of organizing such systems. The Peer-to-Peer (P2P)

paradigm emerged as a new model for organizing large scale distributed computer

systems, in which each computer is seen as a peer. The key advantages of P2P sys-

tems are their scalability, due to resource-sharing among cooperating peers, their

fault-tolerance, due to the symmetrical nature of peers, and their robustness, due

to self-reorganization after failures. Due to these advantages, P2P systems have

made inroads as content distribution networks. The key question in these large,

decentralized systems becomes: how does one efficiently finds the data one needs?

Even if many commercial and academic content distribution networks exist, the

functionality provided by these systems is quite simple: location of data items

based on key values or keyword searches.

In the PEPPER project, we want to construct a database management system

for the peer-to-peer environment. We envision a future where users will publish

semantically rich, semi-structured data. They could also participate with stor-

age and computational power in the distributed data management system. Users

should be able to query the data in this ”P2P data warehouse” as if the data was

stored in a huge centralized database system.

1

2

A first step in designing such a system is the creation of index structures that

allow fast access to the distributed data. Hash index structures have been already

designed for the P2P environment [SMK+01], [KK03], [RFH+01], [ZKJ01]. While

these structures can be used to efficiently answer equality queries, efficiently an-

swering range queries was considered an open issue [HHH+02]. The main focus of

this dissertation research is designing efficient, scalable, fault-tolerant, distributed

index structures that can be used in answering range queries. There are two main

areas that need to be addressed in order to support range queries in P2P systems

and both of them are challenging due to the data skew: first of them is designing

data structures and routing algorithms that adapt to skewed data distributions

without using hashing; the second one is finding a way to distribute data items to

peers such that peers store roughly the same number of items, while still ensuring

the range queries can be answered efficiently. This dissertation made contributions

to both these areas. The next section summarizes our contributions.

1.2 Summary of Contributions

The main contributions of this dissertation are outlined below:

1.2.1 Architecture

Many applications benefit from cooperation between peers. Event if these appli-

cations can be very different, they usually have some common requirements. One

solution to this problem is to devise a special-purpose P2P infrastructure for each

application. Clearly, this is quite wasteful, and does not leverage the common capa-

bilities required across many applications. In Chapter 3 we propose a modularized

P2P indexing framework that cleanly separates different functional components.

3

The modularized P2P indexing framework we devised has the following compo-

nents:

• Fault-tolerant Torus: Provides fault-tolerant connectivity among peers.

• Data Store: Stores actual data items, and provides methods for reliably

exchanging data items between peers.

• Replication Manager: Ensures that data items are stored reliably in the

system even in the face of peer failures.

• Content Router: Allows efficient location of data items.

• Load Balancer: Allows load-balancing based on query and update workloads.

The framework allows the reuse of the same component(s) between applications,

as well as tailoring the index structure to the requirements of each application.

We used these properties of the indexing framework to develop and implement

different index structures, as part of this dissertation.

1.2.2 Routing

Hash based indexes assume that values are almost uniformly distributed in a given

key space and use this assumption to design efficient ways to reach the target peers.

However, in designing an index that supports range queries, the challenge is to de-

vise a query router that is robust to failures while providing logarithmic search

performance even in the presence of highly skewed data distributions. Chapter 4

presents the P-Tree, and Chapter 5 presents Hierarchical Ring, two fault-tolerant

routing structures that provide support for range queries. A P-Tree or Hierarchi-

cal Ring router of order d provides guaranteed O(logdP + m) range search cost

4

performance in a stable system of P peers, where m is the number of peers with

data in the required range. Even in the presence of highly skewed insertions, For

Hierarchical Ring we can guarantee a worst-case search cost of O(x · d · logd(P)),

where x is the number of insertions per stabilization unit of the router (we will

formally define all terms later in the dissertation).

1.2.3 Load Balancing

In a P2P index, data items (or information about the location of data items) are

assigned to peers so that they can be later found by the users by using the query

routing algorithms. The challenge is to distribute data items among peers in a

such a way that range queries could be answered efficiently, while still ensuring

that all peers have roughly the same number of data items (for storage balance).

Traditional techniques developed for equality queries are not applicable in this

case because they distribute data items based on their hash value; since hashing

destroys the order of the data items, range queries cannot be answered efficiently.

Chapter 5 introduces the P-Ring, a novel P2P index structure that reuses the Fault-

Tolerant Torus and Replication components from existing systems, and introduces

new implementations for the Data Store and Content Router components. P-Ring

Data Store clusters data items by their data value, and balances the number of

data items per peer even in the presence of highly skewed insertions and deletions.

The main idea is to dynamically partition the indexing domain, in our case the

domain of all possible data values, into contiguous and non-overlapping ranges and

assign at most one range to each peer. Each peer then stores the data items with a

data value in the peer’s assigned range. The ranges are maintained dynamically in

order to adapt to the possible skewed distribution of the data values. The resulting

5

scheme provably maintains an imbalance factor of two between any two non-free

peers in the system.

1.2.4 Implementation and Performance Evaluation

All the algorithms presented in this dissertation were implemented and tested both

using simulations and in a real distributed environment. P-Tree was implemented

in C# and tested on a network of computers connected through LAN. P-Ring was

implemented in C++ in the context of our indexing framework and evaluated on

PlanetLab, a network of computers distributed around the world. Our modular

indexing framework allows the instantiation of most existing P2P index structures.

In Chapter 6 we present the results of evaluating P-Ring, Skip Graphs [AS03a],

Online Balancing [GBGM04] and Chord [SMK+01] on PlanetLab. The perfor-

mance results indicate that P-Ring outperforms other approaches in terms of both

query and update cost.

1.3 Dissertation Outline

The rest of this dissertation is structured as follows. In Chapter 2 we present our

system model and survey the related work, from both distributed databases and

P2P systems literature. Chapter 3 introduces a modularized indexing framework

that cleanly separates the functional components of a P2P index. This framework

allows us to develop new index structures (see Chapters 4 and 5) while leveraging

parts of existing structures. The framework also allows for a principled way of

comparing different indexing structures (see Chapter 6). We present the P-Tree,

a new content router that can be used to efficiently answer range queries in P2P

environments, in Chapter 4. The P-Tree is the instantiation of just one component

6

of the indexing framework, the routing component. In the case of multiple data

items per peer, we need a new algorithm for distributing items to peers while main-

taining the order in the key space. In Chapter 5 we present P-Ring, a new P2P

index structure that reuses existing algorithms for some of the index components,

but introduces new algorithms to handle data load balancing, and also introduces

a new content router, Hierarchical Rings, evolved from P-Tree. In recent years,

multiple index structures have been proposed to support range queries in P2P envi-

ronment. However, these structures were not tested in a distributed environment,

and a direct comparison between them was difficult due to the different assump-

tions and guarantees made by each structure. In Chapter 6 we present the results

of a distributed study of four index structures implemented in the unifying frame-

work introduced in Chapter 3: P-Ring, Chord [SMK+01], Skip Graphs [AS03a]

and Online Balancing [GBGM04]. Chapter 7 summarizes the results obtained in

this dissertation and shows directions for future work.

Chapter 2

Preliminaries and Related Work

2.1 System Model

2.1.1 Peer-to-Peer Systems

In our model, a peer is a computer that participates with shared resources (space,

computation, network bandwidth) in a distributed system. We assume that the

peer does not have any control on the shared resources. These resources are used

to store and maintain the distributed index to speed up query processing, and the

resources are controlled by the distributed index protocol. We call these shared

resources the shared partition. Of course, a peer could also have private resources

(the private partition) on which it maintains complete control. We further assume

that peers ”publish” or insert data items into the system. Each peer has a unique

address, which can be given by its IP address.

A peer-to-peer system is a collection of peers. We assume there is some underly-

ing network protocol that can be used to send messages from one peer to another,

once the address of the destination peer is known (this protocol could be TCP for

the Internet). We assume there is an upper bound on the transmission delay of the

messages. A peer can join a P2P system at any time, by contacting some peer that

is already part of the system. A peer can leave the system at any time without

contacting any other peer; this models peer crashes and unpredictable network

failure. We assume a fail-stop model where peers have some method to detect

when another peer has failed or left the system. For example, it does not answer

to several ping messages within a given time period. We assume no Byzantine

7

8

failures in our system.

We talk in the remainder of the paper about peers maintaining “pointers” to

other peers. Our pointers should be understood as peer addresses, as we assume

that the system is completely distributed.

2.1.2 Data Model

We assume that each data item inserted into the system exposes the values of some

attributes. We call the attributes on which the distributed index is build the search

key. Without loss of generality we assume that the search key values are unique.

If the values are not unique, they can be made unique by appending the address

of the peer publishing the item, and a version number. This transformation is

transparent to the user. For ease of exposition, we assume that the search key

only consists of one attribute. The generalization to multiple attributes is similar

to B+-tree composite keys [Com79].

Peers inserting data items into the system can retain the ownership of their

items. In this case, the data items are stored in the private storage partition at

the peer and only pointers to the data items, containing the search key value of

the item and the location of the item are inserted into the system. In the rest of

the paper, we make no distinction between data items and pointers to the data

items.

2.1.3 An Illustrative Example

Consider a large-scale computing grid distributed all over the world. Each grid

node has a data item, for example an XML document that describes the node and

its available resources. Specifically, each XML document has an IPAddress, an

9

OSType, and a MainMemory attribute, each with the evident meaning. Given this

setup, a user may wish to issue a query to find suitable peers for a main-memory

intensive application - peers with a Linux operating system with at least 4GB of

main memory:

for $peer in //peer

where $peer/@OSType = ’Linux’ and

$peer/@MainMemory >= 4096

return $peer/@IPAddress

A naive way to evaluate this query is to contact every peer (grid node) in the

system, and select only the relevant peers. However, this approach has obvious

scalability problems because all peers have to be contacted for every query, even

though only a few of them may have the relevant data.

In contrast, if we have a P2P range index built on the composite search key

(OSType,MainMemory), we can answer the above query efficiently. (Note that

the distributed index structure will be stored in the shared partitions of the peers.)

In particular, only a logarithmic number of peers in addition to those that actually

contain the desired data items should be contacted.

From the above example, it is also easy to see how a P2P range index is more

efficient than P2P index structures that only support equality queries [SMK+01,

RFH+01, RD01, Abe01]. In the above example, index structures that only support

equality queries will have to contact all the grid nodes having “Linux” as the

OSType, even though a large fraction of these may only have main memory less

than 4GB.

10

2.1.4 Notations

In this dissertation, we will use P to denote the number of peers in the system and

N to denote the number of items in the system.

2.2 Related Work

2.2.1 Distributed Databases

Our goal is designing index structures that scale to thousands of peers in a dy-

namic environment where peers may join and leave at any time. In the database

community, early work in developing distributed index structures [LNS93, LNS94,

KW94, JK93, Lom96] focused on distributing the data and the index structure

among a possibly growing group of servers (usually processors in a cluster) that

were always available. Making the structures tolerate arbitrary failures was not

an issue. This is in contrast with our P2P environment, where peers can join and

more importantly leave the system at any time.

LH*: LH* [LNS93] was one of the first distributed index structures. LH*

generalizes the linear hashing scheme to a distributed environment. In this envi-

ronment, clients insert, delete or search for items in a file, and the servers store

the file and process clients’ queries. Each bucket in the file is assigned to one server.

When a bucket splits, a new server is recruited to participate in storing the file.

It is assumed that such a server can always be found. The split is coordinated by

one special site, called the split coordinator to ensure serialization of splits. The

authors mention that the split coordinator could be eliminated and several splits

could be executed in parallel. As in linear hashing, the buckets are addressable

through a pair of hashing functions, hi and hi+1. A pointer n separates the buckets

11

addressable through hi from those addressable through hi+1. In order to compute

the address of the server storing a given item, the clients maintain a possibly out-

dated view of the file: (i, n) and use this view in address computation. The server

receiving a query, checks first if it is indeed the destination. If yes, the query is

processed there, otherwise, the server performs a new address computation and

forwards the query to the new address. The authors show that a query is for-

warded at most twice until it reaches the correct server. The servers maintain the

knowledge of their own bucket level j and use this knowledge to perform address

calculation. No knowledge of n is used by the servers. The file view at the client

is updated as response to mis-navigated queries and it will converge towards the

correct view. The initial LH* structure does not support failure of any server, but

more recent papers [LS00] present new variants of LH* (LH*g, LH*RS) that can

support failures of a limited number of servers while maintaining the availability

of data. However, servers still cannot join or leave the system at will. Our goal is

to design index structures that can withstand frequent updates in the membership

to the system.

RP*: Another set of distributed structures is represented by RP*. [LNS94]

presents three structures: RP ∗
N , RP ∗

C , RP ∗
S designed for answering range queries

in a distributed setting. First of these structures, RP ∗
N , just partitions the data

items into buckets, according to the key value (the data items are sorted and each

bucket stores the data items that fall into some range). Every bucket is stored at a

different server. The clients use multicast when looking for some key(s). Only the

server(s) holding the requested data item(s) replies. RP ∗
C uses the same structure

as RP ∗
N but the clients attempt to construct an image of the file, such that not every

query needs to be multicast. The image is constructed as follows: when a query

12

is issued, the server replying to the query sends information about itself (range of

its bucket, address) with the reply. When a new query comes, the client uses the

image of the file he has to determine to which server(s) to send the query. If the

image is not accurate (it is either incomplete or out-of-date), the query will be still

multicast. The last structure, RP ∗
S , is RP ∗

C plus an index of servers. The index is

called kernel and is very similar to a B+-tree. The actual buckets are the leaves

and the intermediate nodes are distributed. The server holding the kernel-node

may be different than the ones holding the buckets. Each node in the kernel has

a backpointer to its parent (lazy updates are used for these backpointers). When

a client searches for a key, it uses its image of the file, as before. If the server

receiving the query does not hold the answer, it uses the kernel structure to find

the correct server. The range queries can be multicast or sent using point-to-point

messages (point-to-point messages are sent to all the buckets whose range in the

image overlap the requested range). As we have seen, the model considered by the

authors is that of a local network, where multicast and broadcast can be used (the

typical number of hops between any two nodes is considered to be 2 or 3!). As

in the other early distributed data structures, the servers are assumed to remain

available for the entire duration of the system. This model is very different than

our model, where thousands of peers can be in the system at any time and peers

may join or leave at will.

DRT: DRT [KW94] is a distributed binary search tree for storing and querying

data in a distributed environment. Peers can act as clients who initiate requests

or as servers, who store the data and route the requests. The structure supports

search, insert and partially delete. The communication is assumed to be error-free

and servers do not crash or leave. New peers may become involved in the system

13

when new clients come or new servers are recruited to store data and participate in

the indexing structure. In DRT, each leaf represents a block of data and is stored at

a server. A server cannot have more than one leaf and leafs are not replicated. The

interior nodes of the tree contain routing information to guide the search. Each

interior node has two children pointers. The tree nodes are distributed among the

servers as follows: assume the initial server s0 has a leaf pointing to the block

stored at s0. When the block overflows due to item insertion, a new server s1 is

recruited and half of the items are sent to that server. The leaf at s0 is transformed

into an interior node with two pointers: one of them points to the local leaf node

(having a pointer to the local block of items) and one of them to the new server s1.

Upon receiving the items, s1 initializes its index structure with a leaf pointing to

the local block. Following this procedure, each server keeps the path in the global

tree from the first node created by the server (when the server start participating

in the system) to its leaf. The root node of the global tree is stored at s0. Requests

are routed in the global virtual tree by using the information stored in the interior

nodes to the leaf(s) containing the relevant data. Each server receiving a requests

uses its local part of the index to determine the server holding the relevant data

for the request. If the relevant data is in fact local, the request is processed. If the

relevant data is not local, the request is forwarded to the server found during local

search. In this way, a request may be forwarded through multiple servers until it

gets to the destination. To minimize the number of messages required to process a

request, each client constructs its own local image of the global tree. The updates

of this tree are triggered by searches initiated by the client. Initially, local tree of

each client contains only s0. When a search is initiated, the client gets back not

only the data items it requested, but also copies of the tree nodes traversed by

14

the search request. These nodes are copied into the local tree, bringing the local

tree closer to the global tree. If the reply from the search requests is not sent back

directly to the client, but follows backward the request’s path, servers can also

construct images of the global tree.

An important property of this structure is that a server that was once respon-

sible for a range always knows how to route the requests for that range using its

subtree. This allows for lazy propagation of structure updates. Moreover, since

interior nodes of the tree never change, insertions and deletions have only local-

ized effect and the structure supports concurrent insertions, deletions and searches.

However, the global tree constructed is not balanced and in the worst case, the

hight of the tree is linear in the number of data items stored in the system. In

the worst case, the number of messages needed to answer a request is linear in the

number of servers in the system. Unless the clients construct local images of the

global tree, the initial server having the root of the tree will be overloaded since

all requests start with the root. If the clients / servers construct local images of

the tree (nodes are replicated), the space needed for the index increases. Finally,

the assumption that servers never crashes or leave, make the structure unfitted for

our purposes.

db-tree: There has been work in creating distributed B+-tree-like structures

[JC92], [JK93], [Lom96]. The db-tree [JK93] is a tree structure designed for the

following environment: there is a set of processors that can communicate through

message passing. The communication is free of errors in the sense that each mes-

sage is delivered exactly once and messages are delivered in order. The authors do

not consider processor failures or system crashes in their paper, but they mention

that a message recovery strategy could be applied. They do not consider the case

15

of permanent failure. The db-tree is a distributed B+-tree where the interior nodes

have pointers to the children as well as to the left and right siblings. The leaves of

the trees are distributed among the processors, but they are not replicated. Any

processor that stores a leaf node also stores the nodes on the path between the

root and the leaf node. The coherence of replicated nodes needs to be maintained.

Due to the existence of sibling pointers, the maintenance of replicas can be done

lazily: if a query mistakenly arrives at a node that split, the search is forwarded to

the sibling. Special algorithms are presented for the case when nodes can not only

split but also merge. The algorithms presented by the authors permit concurrent

updates of replicated nodes but the existence of a primary copy node is assumed.

The primary copy is used to ensure that all replicas converge to the same state.

All update actions are decomposed in two actions: initial action (executed at the

first of a set of copies) and relayed action (propagated to the other copies). The

existence of a primary copy that needs to be available all the time and needs to

know the location of all replicas creates a scalability and availability problems in

a highly dynamic environment with thousands of peers.

dPi-tree: The dPi-tree from [Lom96] is probably the closest in spirit to our

P-tree work. The dPi-tree is based on the Pi-tree index structure, where each

level in the tree is responsible for the entire search space. When a node is created,

it is given the responsibility for some part of the search space. This means that

the space a node is responsible for, can be reached from that node (either by

following child pointers or side pointers). The node delegates the responsibility for

part of its space to a sibling, during a node split. The initial node (the container

node) maintains a ”side index term” describing the search space associated with

the sibling and a pointer to the sibling (the extracted node). The same kind of

16

information is maintained for the child nodes. The height of the tree may grow

due to splits. However, during splits, the parent is not notified about the new node

created (or it is notified, but the message can be lost). The parent will be updated

when a search follows the side pointer and the index term is posted to the parent.

In the dPi-tree index structure, data is stored in data nodes (distributed among

the sites in the system) connected through side index terms. [There is a prime

node responsible for all the search space. A pointer to this node is maintained at

a well known location.] The authors assume that when a site wants to create a

new index replica, it knows the address of a site already having a replica (a basis

index). This assumption is similar with our assumption that a peer who wants to

join the system knows the identity of a peer already in the system. The new site

will copy the root node from the basis index. As soon as the tree root is known by

the site, searches can be processed. The searches started at the replica site traverse

the local index nodes until a remote node is referenced. At this point, the search

request is forwarded to the site storing the remote node. The search proceeds

there starting with the referenced node. The result of the search is not only the

list of satisfying data items, but the list of index nodes encountered. These nodes

will be copied at the site initiating the search, completing in this way the local

index structure. No coherence messages are sent in the system to maintain exact

replicas of the index nodes. Each site can maintain its own index nodes, and split

them in its own way. Maintenance of the replicated nodes is triggered by searches.

The existence of side pointers and the fact that sites holding shared index nodes

(referenced by multiple parents) do not leave the system, make possible the lazy

update scheme proposed in the paper. To avoid long side traversal searches due

to very inconsistent replicas, the author proposes to restart the search at the root

17

node in the basis replica, instead of continuing at the referenced node. We use

the same idea when implementing searches in an inconsistent P-Tree. Deletion of

index nodes is handled only for the case when no multiple pointers exist to the

same index node. Deletion of data nodes is handled by dropping the node and

keeping a forwarding address (a tombstone) to the container instead of the node.

The tombstones can be garbage collected when no index replica points to the

deleted node. However, it is difficult to determine when this is the case, unless the

total number of index replicas is known (in the paper, this number is estimated to

be 16-64) and each replica has been notified about the node deletion. The scheme

presented is very appealing since convergence of the replicated index nodes is not

required and lazy update of replicas is possible. However, the scheme does not

allow for sites departures, which makes it inadequate for our P2P environment.

2.2.2 P2P Systems

Commercial Systems

Napster [webd] is one of the first commercial systems that brought the peer-to-

peer paradigm to public attention in 1999. In Napster, a user having a computer

connected to the Internet can install the Napster software to share and exchange

files with others in the same situation. Napster is not a pure peer-to-peer system,

as it had a centralized index structure to keep track of the files and users in the

system. When searching for a file, the users can ask keyword queries to the system

and the centralized indexing structure is used to find users that potentially had the

required file. The file can then be directly downloaded from the end-user computer

- the peer. Gnutella [weba], KaZaA [webb], Morpheus [webc], Freenet [ICH00] are

all file sharing systems. The main functionality provided is keyword searches. A

18

file is not guaranteed to be found, even if it exists in the system. In our system,

we provide a richer query semantics and stronger search guarantees.

Distributed Hash Tables

In the academic systems community, there has been extensive work in creating in-

dex structure for P2P systems. CAN [RFH+01], Chord [SMK+01], Pastry [RD01],

Tapestry [ZKJ01], Viceroy [MNR02], Koorde [KK03], Kelips [GBL+03] all imple-

ment distributed hash tables to provide efficient lookup of a given key value. Since

a hash function as used in these structures destroys the order in the indexing

domain, they cannot be used to process range queries efficiently.

Chord: In Chord [SMK+01], peer addresses and keys are hashed into the same

identifier space. The identifier length is m such that the probability to have the

same identifier for two different keys or peers is small. Ids are ordered into an

identifier circle modulo 2m. A key is stored into the first peer having peer id equal

or following key id into the identifier space. This peer is called the successor peer

of the key. In order to implement the distributed routing protocol, each peer p

keeps a structure containing the following information:

• successor: the next peer on the identifier circle

• predecessor: the previous peer on the identifier circle

• finger table with m entries: the ith entry contains the identity of the first

peer that succeeds p by at least 2i−1 on the identifiers circle (successor((n +

2i−1)mod2m)) (an entry contains both the Chord id and the address of the

relevant peer)

19

Using this structure, the number of peers that must be contacted to find a

successor in an P -peer network is O(logP) with high probability.

When a new peer p joins the Chord network, it is assumed that it founds out

about a peer p′ in the Chord network by some external mechanism. Since in the

case of multiple concurrent joins in a large network, the finger tables are difficult

to maintain, Chord applies a lazy update mechanism to refresh the information.

When peer p first starts, it just asks p′ to find the immediate successor of p. For

the moment, only this successor will be aware of p. Periodically, each peer runs a

stabilization protocol. This protocol is responsible for making everyone aware of

the new peers and updates the information about successor, predecessor and the

entries from the finger tables. The main step in failure recovery is to maintain

correct successor pointers. To achieve this, each Chord peer keeps a ”successor-

list” of its nearest successors in the identifier space. When a peer notices that its

successor failed, it replaces it with the fist alive peer in the successor list. The

periodic stabilization protocol is used to acquire a new successor for the successor

list. On average, updates to the routing information due to peers joining or leaving

the network require O(log2P) messages. We used the idea of a ring (on a different

space than in Chord) and part of the ring stabilization protocol in our own index

structure.

CAN: CAN [RFH+01] is another hashed-based indexing structure. The ba-

sic idea is to consider a virtual d-dimensional Cartesian co-ordinate space on a

d-torus with each peer owning a region of this space. Each peer maintains infor-

mation about the peers owning the adjacent regions in the space, the neighbors.

< key, value > pairs that need to be stored in the system are first mapped into

a point P in the co-ordinate space using a hash function (hash value of the key).

20

The < key, value > pair will be stored at the peer owning the space containing

P . The insert and search requests are greedily routed along a straight path to the

destination point, using the information about the neighbors stored by each peer.

When a new peer p wants to join the CAN network, it is again assumed that it

knows someone already in the network. The new peer p picks a random point P

which it decides to cover and asks the known peer to route a split request to the

peer owning the zone P . The peer owning that zone splits the zone between him

and the new peer p. The neighbors of the split zone are notified so that routing

can include the new peer. Departure of a peer p is detected by its neighbors (there

are periodic ping messages sent to the neighbors). One of these neighbors will

take over the space p owned and the rest of the neighbors are informed about it.

The authors presented simulation results showing that the system is scalable and

fault-tolerant. The average number of messages sent for a search is O(P 1/d). This

structure is more flexible than the Chord structure because it allows a tradeoff

between search speed and maintenance cost, by changing d.

Tapestry and Pastry: Tapestry [ZKJ01] and Pastry [RD01] use similar al-

gorithms for routing, so we’ll discuss only about Pastry. Each peer in a Pastry

network has a unique 128-bit peer id. For the purpose of routing, the peer ids

and the keys are treated as sequence of digits with base 2b, for some constant b,

usually 4. Given a key and a message, Pastry routes the message to the peer with

the peer ID closest to the key. At each routing step, the peer who has the message

forwards it to a peer whose peer id shares a prefix with the key that is at least one

digit longer than the prefix the current peer shares with the key. If such a peer is

not known, the message is forwarded to a peer whose peer id shares a prefix with

the key as long as the current peer, but is numerically closer to the key than the

21

present’s peer identifier. On average, the number of messages required to find the

destination is O(log P), where P is the number of peers in the Pastry network.

In order to support the described algorithm, each Pastry peer p maintains the

following data structures:

• a routing table organized in approximately log2bP rows with 2b − 1 entries

each. The jth entry in row i refers to a peer whose peer id shares with p’s id

the first i digits and has j in the (i + 1)th position.

• a neighborhood set M: the peer ids and addresses of the |M | peers that are

closest (according to the proximity metric) to the local peer

• a leaf set L: the set of peers with the |L|/2 numerically closest larger peer ids

and the |L|/2 numerically closest smaller peer ids relative to the p’s identifier.

|M | and |L| are another configuration parameters

When a new peer with peer id X joins the network, it is assumed that it founds

out about a nearby peer A in the Pastry network by some external mechanism.

Then, peer X asks A to route a special ”join” message with key X. In response,

the Pastry network will return a peer Z whose peer id is closest to X. When a peer

receives a ”join” message with key X, it will send all its tables to X. Based on

the information it receives, X initialize its structures and it sends them to all the

peers in its leaf set, neighboring set and routing table. Those peers update their

own state based on the information received. Peers in Pastry may fail or leave

without warning. When a peer discovers a failure, it contacts a live peer and asks

for information needed to replace the failed peer. The functionality provided by

Pastry, Chord and CAN is similar. As a difference from CAN and Chord, Pastry

takes into account the network locality and tries to minimize the distance traveled

22

by messages according to a given scalar metric.

Kelips: Kelips [GBL+03] is another DHT implementation, where gossip proto-

cols are used to propagate membership information and to replicate files informa-

tion. Kelips uses O(
√

P) (where P is the number of peers in the system) storage

space at each peer, more than other systems [SMK+01], in order to achieve O(1)

lookup cost. In Kelips, each peer is part of an affinity group, given by hashing

the peer identifier to 0, ..., k space, where k is approximately
√

P . Names of the

files inserted into the system are also hashed into the same space. Files are stored

at some peer in the affinity group given by hashing the file name. Each peer main-

tains membership information about peers in the same group and peers in other

groups (a small set of peers in each other affinity group). Each peer also replicates

to others in the same group the file information (file name and peer storing the

file) for the files stored by peers in the same affinity group. Maintenance of these

information is done by using a gossip protocol.

A somewhat similar approach as in Kelips [GBL+03] is used in [IRF02], but

the groups are not given by a hash function but dictated by shared interests of

peers. The main idea of the paper is that a peer-to-peer scientific collaboration

network will exhibit small-world topology and this topology should be exploited

when developing protocols for locating data. The authors are also interested in

translating the dynamics of scientific collaborations into self-configuring network

protocols. The characteristics that distinguish a small-world network are small

average path length and a large clustering coefficient that is independent of net-

work size (the clustering coefficient captures how many of a node’s neighbors are

connected to each other). The paper presents the result of monitoring the activity

of a group of physicists that share large amounts the data. The graphs generated

23

(nodes in graph are users and edges connect users that shared at least one file in a

given interval) exhibit small-world characteristics and the authors expect similar

behavior on large graphs. The characteristics of uses of shared data in scientific

collaborations are considered to be group locality (users tend to work in groups and

use the same files) and time locality (the same user is likely to request the same file

multiple times within short time intervals). These characteristics are exploited to

locate files in small-world networks. The nodes (nodes store files) are grouped in

clusters linked together in a connected network, where a cluster represents a com-

munity with overlapping data interests (independent of physical locality). All the

nodes in a cluster know everything about each other (both membership and stored

files information), so any node in a cluster can answer any query about the cluster.

Information (compressed using bloom filters) is gossiped between the nodes in a

cluster. Requests that cannot be answered by the local node are forwarded to

other clusters by unicast, multicast or flooding, but this solution doesn’t seem too

well developed.

Trie-Based Structures

Trie: Another approaches to the lookup problem, based on prefix matching or trie

[Abe01, FV02], exists. However, they cannot be used to answer range queries on

indexing domains such as floating point numbers domain.

In the paper ”Efficient Peer-to-Peer Lookup Based on a Distributed Trie”

[FV02], the authors present a key-based lookup protocol in p2p systems, with-

out using object placement (Chord, CAN and potentially Pastry all used object

placement, in the sense that objects are placed at some particular peer, where they

later can be found by using the routing protocol). The index structure (called dis-

24

tributed trie) is constructed based on the information piggyback on the response

messages to the issued queries. The authors assume loose clock synchronization.

It is possible that a query will be broadcasted, in order to be answered. No strong

guarantees are offered that all existing keys can be found.

Each key is seen as a k-bit identifier (the leftmost bit is referred as bit 1). Each

level in the trie structure corresponds to m bits from the key: level i in the trie

corresponds to fixed values for the first i ·m bits. Each internal node in the trie

consist of 2m routing tables, one for each combination of the next m bits of the key

(bits i ·m + 1 to (i + 1) ·m). Each routing tables has l entries (an entry is a peer

address and a timestamp). For the leaf nodes, an entry (a, t) indicates that at time

t, node with address a was known to hold the value corresponding to the routing

table. For non-leaf nodes, an entry in the ith routing table indicates the peer a was

known at time t to hold a replica of the ith child of the node. All peers maintain the

invariant that if they hold a trie node, they also hold all ancestors of the node. The

trie is maintained by using the information piggyback on the response to lookup

messages. The speed of convergence of peers’ tries depends on the amount the

information piggybacks. The paper also considers two different modes of updates

(update of the local trie based on the received information): conservative (when

only the entries proved useful are included into the local trie) and liberal (when all

entries received are included into the local trie, if their timestamp is more recent

than those of the existing entries). Using the conservative mode, some types

of malicious attacks (when some nodes advertise keys and then drop the lookup

requests) can be prevented.

P-grid: The P-grid [Abe01, Abe02] is essentially a binary search tree. Each

edge in the tree has associated a 0 or 1. The leafs of the tree correspond to peers

25

in the system. The identifier of each peer corresponds to the path in the binary

tree, from the root to the leaf corresponding to the peer. The data items have

themselves a binary key and each peer is responsible for the items having keys

with the same prefix as their own ID. Each peer stores only the path in the tree

corresponding to its leaf: at each level i, the peer stores a set of references to peers

having the first i−1 digits in the id identic with its own and the ith digit different

than its own. The queries are routed by prefix matching. Each peer receiving a

query for an item with a given key either has the item and in this case sends back

the requested item, or it forwards the query to a known peer with the id having

the longest common prefix with the requested key.

The way the P-grid is constructed is very different than the indexing structures

already described. At the beginning, each peer has some data items and no id. To

construct the tree, the peers meet randomly and execute the following protocol:

• exchange references at the level of the longest common id prefix

• if they have the same id, try to extend the id with one more bit (different

for the two peers)

if the number of known items corresponding to the new ids is above a

threshold, the old peer ids are changes to the new ones

else, keep the old ids and all data items are replicated between the two

peers

• if they have different ids and there is at least one noncommon bit in their ids,

an exchange of items takes place so each peer has the items corresponding

to his id

26

• if they have different ids but one is a prefix of the other, the peer with the

shorter id tries to extend its id in a different direction than the other

if not enough data for the new id is available, the peer will keep its old

id

The described protocol is simple and a proof was given that under some uni-

formity assumption the expected search cost is logarithmic in the number of peers,

even if the resulting tree is not balanced. However, it is not clear how long it takes

for the peers to construct a stable tree and how are the queries handled during

the tree construction. (probably most of the items will not be found, even if they

exist in the system)

Techniques for improving efficiency of keyword searches without using object

placement were presented in [CGM02], [YGM02], [GSGM03], but these systems

do not support efficient processing of range queries.

Order-preserving Structures

Skip Graphs: A distributed structure that provides the same functionality

as our P-tree and Hierarchical Rings has been concurrently developed at Yale.

[AS03a] presents a probabilistic index structure called skip graphs, based on the

skip lists. As described, the structure can be used only under the ”one item per

peer” assumption. However, our solution to multiple items per peer, presented in

Chapter 5 can be applied and the skip graphs can be used as a Content Router

even if there are multiple items per peer. The main idea in skip graphs is to arrange

first the peers in a list based on the indexing value of the tuple stored at the peer.

This is considered to be level 0 in the skip graph structure. Then, for each peer

p, generate at random a letter from a finite alphabet. Peers who generated the

27

same letter will be part of the same list at level 1 (the order in the basic list is

preserved in these lists) and each peer maintains the identity information of its

two neighbors in this list (left and right neighbor). Peers in each list repeat the

process of generating letters and constructing higher level lists, until each peer is

alone in the list at some level. The collection of all the lists generated is called

a skip graph. Search in the skip graph starts at the highest level and follows the

neighbor links unless they overshoot. In this case, the search continues at a lower

level. The search stops at level 0, when the required tuple has been found, or it

can be determined that it not exists. It can be shown that on average, there are

O(log P) levels in the skip graph and an equality search also requires O(log P)

messages. The structure supports efficient processing of range queries, in a similar

way with our P-trees. However, even if the system is in a stable state, logarithmic

performance for searches is not guaranteed, due to the probabilistic nature of the

structure.

Plug-and-Play: An interesting approach to answering prefix queries in P2P

systems, which can also be used to answering range queries is presented in [AS03b].

The authors propose a plug and play paradigm that allows different existing in-

dexing structure to be combined in order to achieve the desired functionality. The

main idea is to use different structures to organize data and peers and then have

a way to assign data to peers. For example, the skip graph [AS03a] structure can

be used to organize the data, providing range query functionality, while the Chord

[SMK+01] structure can be used to organize the peers, providing load balance. To

find a way of assigning data to peers, the authors propose to find a ”middle ground”

between the two. Peer identifiers and data items come from different name spaces.

A new name space, [0,1) is used as ”middle ground”. Each data items is considered

28

to have a name, which is the indexing value, and a reference in the [0,1) space. For

each peer, a name is chosen in [0,1) space and a reference in the peer name space

(which is the IPs space, so the reference is the IP address). A data item k is stored

at the first peer p such that p.name ≥ k.ref . This is similar with how Chord

assigns keys to peers, when both the peer identifiers and the keys are mapped to

the same hash space. However, in this case, the keys maintain their own indexing

structure. The disadvantages of this structure are similar with the ones posed by

our virtual peers solution. Since each data item maintains its own part of the

indexing structure, the space requirements in the shared partition of the peers are

proportional with the number of items they store. The search performance is given

by the number of items in the system, not by the number of peers. Moreover, if

no caching is used for the mapping between item references and IP addresses, each

message sent in the items indexing structure, might generate multiple messages in

the peers overlay structure. The advantages of this plug and play paradigm are

its flexibility, the fact that prefix and range queries are made possible by reusing

existing indexing structures and the fact that data load balance can be achieved

by using a consistent has function to map the peer ids and the data items to [0,1).

No split or merge, as described in our dynamic ranges solution in Chapter 5 is

needed to achieve load balance.

Online Balancing: Online Balancing [GBGM04] proposed by Ganesan et al.

is a load balancing scheme for distributing data items to peers, with a provable

bound of 4.24 for load imbalance, with constant amortized insertion and deletion

cost. The P-Ring data store presented in Chapter 5 achieves a better load balance

with a factor of 2 + ε with the same amortized insertion and deletions cost. Addi-

tionally, we also propose a two new content routers, the P-Tree and Hierarchical

29

Rings.

Mercury: Bharambe et al. propose Mercury [BAS04], a randomized index

structure that uses a sampling mechanism to estimate the distribution of peers in

the value space, and then choose long links based on the harmonic distribution. It

also uses the sampling algorithm to estimate the average load in the system and to

decide if it needs to do load balancing. Unlike P-Ring, MERCURY only provides

probabilistic guarantees even when the index is fully consistent.

BATON: Jagadish et al. propose BATON [JOV05], a binary balanced tree

with nodes distributed to peers in a P2P network. The P-Ring content router is

more flexible, by allowing the application to choose higher values for d, the order

of the Hierarchical Rings, and thus to decrease the search cost, and the P-Ring

data store provides provable guarantees on the load balance.

Approximate Ranges: Another approach to answering range queries in P2P

system is to use order-preserving hash functions. This is used by Gupta et al

in [GAE03]. However, since the hash function does scramble the ordering in the

value space, their system can provide only approximate answers to range queries,

as opposed to the exact answers provided by P-trees.

Data Management

Data management: There is some previous work on different aspects of a data

management system for P2P environments. An 2001 workshop paper [GHIS01]

discusses some of the issues raised by such a system. Their main focus is on stor-

age issues: which are the factors that might determine the data placement, how

can information about views be disseminated, how can query optimization be done.

They did not propose any new indexing structure that can scale to the size of a P2P

30

system. Distributed query processing is considered in [PM02] and [VPT03] where

mutant query plans are proposed as a flexible way to create a query plan and evalu-

ate queries when only partial information about existing relations is known at every

peer. Schema mediation issues are discussed in [BGK+02, WSNZ03, JSHL02]. We

consider these issues interesting, but our main focus is on designing indexing struc-

tures for P2P systems. Evaluation of complex queries, such as joins, is the focus

of [HHH+02] and [HHB+03]. The authors of these papers believe that DHT-based

systems largely solve the problem of scaling in P2P systems design, but the query

capabilities are very limited (only exact match queries). Their goal is to design and

implement complex query facilities over DHTs. Operators like selection, projec-

tion, join, grouping, aggregation, and sorting are considered. The authors propose

a three-layer architecture, with data storage as the first layer, an enhanced DHT

layer next (DHT is used not only as index but also as network routing mechanism)

and the query processor on top. The query executor is to be implemented in the

”pull-based” iterator style, with parallel ”push-based” communication encapsu-

lated in exchange operators. However, none of these approaches address the issue

of supporting range queries efficiently, but the issue is considered interesting as

part of future work.

Chapter 3

An Indexing Framework for Peer-to-Peer

Systems

3.1 Overview

On the Internet, there are many applications that benefit from the cooperation of

multiple peers. These applications range from simple file sharing applications, to

robust Internet-based storage management, to digital library applications. Each

of these applications impose different requirements on the underlying P2P in-

frastructure. For example, file-sharing applications require equality search and

keyword search capabilities, but do not need sophisticated fault-tolerance. On the

other hand, storage management requires only simple querying, but requires ro-

bust fault-tolerant properties. Digital library applications require both complex

queries, including equality, keyword search, and range queries, and sophisticated

fault-tolerance. Other applications such as service discovery on the Grid and data

management applications impose their own requirements on the underlying P2P

infrastructure.

One solution to this problem is to devise a special-purpose P2P infrastructure

for each application. Clearly, this is quite wasteful, and does not leverage the com-

mon capabilities required across many (but not all) applications. We thus propose

a modularized P2P indexing framework that cleanly separates different functional

components. We believe that such an indexing framework has three main benefits.

The first benefit is that it allows tailoring the system to the requirements of differ-

ent P2P applications that might need different components, as exemplified above.

31

32

The second benefit is that it allows reusing existing algorithms for different compo-

nents rather than implementing everything anew. Finally, such a framework allows

experimenting with different implementations for the same component so that the

benefits of a particular implementation can be clearly evaluated and quantified.

This is especially important in an emerging field like P2P databases, where there

is no universally agreed upon requirements or data structures.

The modularized P2P indexing framework we devised has the following com-

ponents:

• Fault-tolerant Torus: Provides fault-tolerant connectivity among peers.

• Data Store: Stores actual data items, and provides methods for reliably

exchanging data items between peers.

• Replication Manager: Ensures that data items are stored reliably in the

system even in the face of peer failures.

• Content Router: Allows efficient location of data items.

• Load Balancer: Allows load-balancing based on query and update workloads.

3.2 Peer-to-Peer Indexing Framework

A P2P index structure needs to reliably support the following operations: search,

data item insertion, data item deletion, peer joining and peer leaving the system.

We now introduce our modularized indexing framework. The main challenges

in designing this framework are defining the relevant functional components and

defining a simple API for each component such that the overall system is flexible

enough to capture most of the existing P2P index structures, while extensible

33

Content Router Replication Manager

Data Store

Fault Tolerant Torus

Load Balancer

P2P Index

Figure 3.1: Components of a P2P Index Structure

enough so new P2P index structures can be developed based on this framework.

Figure 3.1 shows the components of our framework. These components and the

interaction between them are described next.

3.2.1 Fault Tolerant Torus

The primary goal of the Fault Tolerant Torus (FTT) is to provide reliable connec-

tivity among peers. This is important in a P2P setting where peer and network

failures can occur at any time. Conceptually, the FTT implements a mapping of

convex regions in a torus of search key values to peers in the P2P system. We say

that a peer is responsible for the region(s) assigned to it. Regions are selected such

that intersection of any two regions is empty and that the union of all regions is the

domain of the search key. Thus regions are contiguous and non-overlapping, so any

point on the torus is mapped to a single peer. The exact method of implementing

such a mapping depends on the particular implementation of the FTT.

34

5

15

p1

10

18

20

p2

p3
p4

p5

5

15

p1

10

18

20

p2

p3
p4

p5

(6,t1)

Figure 3.2: Mapping Ranges to

Peers

Figure 3.3: Mapping Values to

Peers

An Example. Figure 3.2 shows an example of a ring and a mapping of

ranges (regions) to peers. On the ring, for a peer p, we can define the successor

succ(p) (respectively, predecessor pred(p)) of p as the peer adjacent to p in a

clockwise (resp., counter-clockwise) traversal of the ring. In addition, each peer is

responsible for a contiguous range of values of the search key, and we denote by

rangeMin(p) the left border of the range. Peer p1 is responsible for the range (5, 10]

and rangeMin(p1) = 5, peer p2 is responsible for (10, 15] and rangeMin(p2) = 10,

peer p3 is responsible for (15, 18] and so on. As can be seen, each region of domain

of the search key is mapped to one (and only one) peer. Now, assume that peer p1

fails or leaves the system. In this case, the Fault Tolerant Torus needs to reassign

the range (5, 10] to another peer. If a peer can be responsible for only one region,

then p2 or p5 need to take over p1’s range.

The API for a ring (a FTT of dimension one) is shown in Table 3.1. The ring

provides a getSuccessor method that can be used by higher levels to send mes-

sages to peers in the system by forwarding them along the ring. This provides basic

35

connectivity among peers. The joinRing(knownPeer) inserts the new peer into

an existing ring, by contacting the knownPeer (or creates a new ring if knownPeer

is null). leaveRing allows a peer to gracefully leave the ring structure. Of course,

a peer can leave the ring structure without calling the leaveRing method, due to

failures, for example. The changeValue(newRange) method allows higher layers

to change the range a peer is responsible for. In addition, the range could change

due to peer failures, as seen in the example, or due to peer insertions. If higher

levels are interested in the changes in the ring structure, they can register for the

newSuccessorEvent and newPredecessorEvent.

3.2.2 Data Store

The Data Store component is responsible for distributing the data items to peers.

Ideally, each peer should store about the same number of items, achieving storage

balance. The Data Store maps each data item t to a point in the ring space (from

now on called the iValue of the data item) and stores the pair (t.iV alue, t) at

the peer responsible for the range containing that point. We call a pair (t.iV alue,

t) a data entry or simply an entry. If some peer stores much more entries than

others, the Data Store could try to re-balance the storage by splitting the range

(and the entries) of the heavily loaded peer and assigning part of the range (and

the corresponding entries) to another peer.

Example Looking again at Figure 3.2, let us assume that a data item t1

mapped to iV alue 6 is inserted into the system. In this case, the pair (6,t1) will

be stored at peer p1, as shown in Figure 3.3.

The API provided by the Data Store is shown in Table 1. getLocalItems

returns the items with iV alues in the required range stored in the local Data Store.

36

Table 3.1: API

Ring getSuccessor()

joinRing(knownPeer)

leaveRing()

changeValue(newRange)

newSuccessorEvent

newPredecessorEvent

DataStore getLocalItems(range)

insertLocalItem(itemsList)

insertItemsIntoSystem(itemsList)

deleteItemsFromSystem(itemsList)

rangeChangeEvent

newItemInsertedEvent

joinRingEvent

leaveRingEvent

splitEvent

mergeEvent

redistributeEvent

ContentRouter broadcastReceive(msg,range)

sendReceive(msg,range)

P2P Index findItems(predicate)

insertItem(item)

deleteItem(item)

37

insertItemsIntoSystem inserts the new items at the appropriate peers into the

system and deleteItemsFromSystem deletes the specified items from the system.

Like the Fault Tolerant Torus, the Data Store generates events and the higher levels

can register to be notified about these events. The rangeChangeEvent is generated

every time the range this peer is responsible for changes (due to operations such as

re-balancing). The newItemInsertedEvent is generated when a new item is stored

into the local Data Store. The joinRingEvent and leaveRingEvent are generated

by the Data Store in the obvious circumstances. The splitEvent, mergeEvent and

redistributeEvent are generated during the storage balancing operations executed

by the Data Store. More details about these operations, as implemented by our

algorithms, are given in Chapter 5.

3.2.3 Replication Manager

The Fault Tolerant Torus component is responsible for ensuring that each point

on the ring is assigned to some peer and the Data Store component is responsible

for actually storing the data items at peers. However, if a peer fails, the items it

stored would be lost, even if another peer takes over the ”failed” range. The role of

the Replication Manager is to ensure that all the data items inserted into the P2P

system are reliably (under reasonable failure assumptions) stored at some peer in

the system until the items are explicitly deleted.

Example In Figure 3.3 peer p1 stores the item t1 with iV alue 6. If peer p1 fails,

peer p2 or p5 will take over the (5, 10] range (as ensured by the Fault Tolerant Ring

component). However, without replication, the data item t1 is lost. Nevertheless,

if the pair (6,t1) is replicated at another peer(s) in the system, the data item could

be ”revived”, even if peer p1 failed.

38

The Replication Manager does not provide an explicit API, as there are no

components above it to use it. However, the Replication Manager interacts with

the other components of the framework by registering for the events in the Data

Store and handling these events. The Replication Manager could register for the

newItemInsertedEvent and start the replication of the new items as soon as the

event is generated. Also, it could register for the rangeChangeEvent and provide

to the Data Store the new items the Data Store should become responsible for,

due to peer failures.

3.2.4 Content Router

The Content Router is responsible for efficiently routing messages to their desti-

nation in the P2P system. As shown in the API in Table 3.1, the destination is

specified by its content, the range of items a peer is responsible for, not by the

peer address. The broadcastReceive primitive allows for a message to be sent

to all peers in the system that are responsible for items in the specified range.

A list of the replies send by such peers is returned by the broadcastReceive.

sendReceive routes a message to any one of the peers responsible for some item

in the specified range. As in the case of broadcastReceive, the peer receiving the

message processes that message and returns the answer.

3.2.5 Load Balancer

The Load Balancer component allows for load balancing in the system, based on

the query and update workload. It interacts with the Data Store and the Content

Router to get the peers that are available for sharing the load with heavily loaded

peers. We do not focus on the Load Balancer component in this dissertation.

39

3.2.6 P2P Index

The P2P Index supports the API described in Table 3.1. findItems(predicate)

provides the basic search functionality of the index by returning all the items that

satisfy the predicate. The predicate is usually an equality or range predicate.

findItems is implemented by using the functionality of the Content Router. The

index structure maps the predicate to a point or range in the torus and uses

the broadcastReceive primitive of the Content Router to route a Search message

to all the peers that could have the desired items. insertItem and deleteItem

insert respectively delete an item from the system. This is implemented by a call

to the corresponding method in the Data Store.

3.3 General Applicability of the

Peer-to-Peer Indexing Framework

We believe that our indexing framework offers three primary benefits. First, it

provides a principled way to implement and compare against existing indexing

structures. For instance, Chord [SMK+01], which is a fault-tolerant P2P index

structure that supports equality queries, can be implemented in our framework

as follows. The Fault-Tolerant Torus is implemented using Chord’s fault-tolerant

ring, and each peer is assigned a range on the ring using consistent hashing. The

Data Store is implemented using a hash based scheme that hashes each search

key value to a value on the ring, and assigns the corresponding data entry to the

peer responsible for the range containing that value. The Replication Manager

is instantiated using the techniques proposed in CFS [DKK+01]. The Content

Router is implemented using Chord’s finger tables. We use this instantiation of

40

Chord for our experimental evaluation. Other structures proposed in the literature

(CAN [RFH+01], Pastry [RD01]) can also be instantiated in our framework, but

we do not explore these structures here.

The second benefit of our framework is that it allows us to develop new P2P

indexes by leveraging parts of existing structures. In particular, we devise a new

P2P index structure called P-Ring, for equality and range queries, that reuses the

Chord Fault Tolerant Ring and Replication Manager, but develops a new Data

Store and Content Router.

Finally, our framework allows extending the functionality of existing systems.

For example, Skip Graph [AS03a] is a P2P index structure that supports range

queries but only supports one item per peer. We implemented the Skip Graph

Content Router on the P-Ring Data Store, thereby allowing it to handle multiple

items per peer.

Chapter 4

P-Tree

4.1 Overview

As a first step towards the goal of supporting complex queries in a P2P system,

we propose a new distributed fault-tolerant P2P content router called the P-Tree

(for P2P-Tree). The P-Tree is a novel implementation of the Content Router

component in the indexing framework introduced in Chapter 3. The P-Tree is the

P2P equivalent of a B+-tree, and can efficiently support range queries in addition

to equality queries. The P-Tree does not provide a way of distributing the data

items to peers. That functionality is provided by the Data Store component, and

we will introduce a novel algorithm for implementing the Data Store component

in the next chapter. Even without a sophisticated Data Store to distribute data

items to the peers in the system, the P-Tree can directly be used in application

scenarios where there is one or a few data items per peer. One such application

is resource discovery in a large grid. In such an application, each participating

grid node (peer) has a data item that describes its available resources. Users can

then issue queries against these data items to find the grid nodes that satisfy their

resource demands. Another application of the P-Tree is resource discovery for web

services, where the capability of executing range queries efficiently can result in

significant performance improvements. For the rest of this chapter, we thus assume

that there is a single data item stored at each peer. The P-Tree algorithms are

unchanged if we use a sophisticated Data Store component and each peer stores

multiple data items. The Content Router only needs one value associated with the

peer, and that value can be determined by the range containing all the data items

41

42

stored at that peer (for example, the low or high end of the range).

The main challenge in designing a Content Router for range queries is to handle

skewed distributions. Since the search key values distribution can be skewed, index

structures that assume uniform data distribution in the indexing domain such as

Chord [SMK+01] and Pastry [RD01] cannot be applied in this case. The P-Tree

can handle highly skewed data distributions while providing deterministic search

performance in a stable system.

In a stable system without insertions or deletions, a P-Tree of order d provides

O(logdP) search cost for equality queries, where P is the number of peers in the

system. For range queries, the search cost is O(m+ logdP), where m is the number

of peers with data in the selected range. The P-Tree only requires O(d · logdP)

space at each peer, but is still very resilient to failures of even large parts of the

network. In particular, our experimental results show that even in the presence of

many insertions, deletions and failures, the performance of queries degrades only

slightly. The rest of this chapter is organized as follows:

• We introduce P-Tree, a new index for evaluating equality and range queries

in a P2P system (Section 4.2).

• We describe algorithms for maintaining P-Tree in a dynamic P2P environ-

ment, where data items/peers may be inserted and deleted frequently (Sec-

tion 4.3).

• We show the results of a simulation study of P-Tree in a large-scale P2P

network. Our results indicate that P-Tree can handle frequent data item/peer

insertions and deletions with low maintenance overhead and a small impact

on search performance. We also present some experimental results from a

43

 5| 7|13|23

 5|29|31

29|30 31|42 29|30|31

29|42| 7

42| 5 7|13|23

Figure 4.1: p1’s B+-tree Figure 4.2: p5’s B+-tree

real distributed implementation (Section 4.4).

4.2 P-Tree Index Structure

In this section we introduce the P-Tree. We first describe B+-trees, and argue

why prior work on distributed B+-trees cannot be used in a P2P environment.

We then present the P-Tree index structure. We will refer to the search key value

of the data item stored at a peer as the index value of the peer.

4.2.1 B+-trees

The B+-tree index [Com79] is widely used for efficiently evaluating equality and

range queries in centralized database systems. A B+-tree of order d is a balanced

search tree in which the root node of the tree has between 2 and 2d entries. All

non-root nodes of the tree have between d and 2d entries. This property ensures

that the height of a B+-tree is at most dlogdNe, where N is the number of data

items being indexed. Figure 4.1 shows an example B+-tree of order 2.

Equality search operations in a B+-tree proceed from the root to the leaf, by

choosing the sub-tree that contains the desired value at each step of the search. The

search cost is thus O(logdN), which is the same as the height of the tree. Range

queries are evaluated by first determining the smallest value in the range (using

equality search), and then sequentially scanning the B+-tree leaf nodes until the

44

end of the range. The search performance of range queries is thus O(m + logdN),

where m is the number of data items selected in the query range.

Unfortunately, existing work on distributed B+-trees is not directly applica-

ble in a P2P environment. To the best of our knowledge, all such index structures

[JK93, KJ94] try to maintain a globally consistent B+-tree by replicating the nodes

of the tree across different processors. The consistency of the replicated nodes is

then maintained using primary copy replication. Relying on primary copy repli-

cation creates both scalability (load/resource requirements on primary copy) and

availability (failure of primary copy) problems, and is clearly not a solution for

a large-scale P2P systems with thousands of peers. We thus need to relax these

stringent requirements of existing work, and P-Tree represents a first attempt at

a specific relaxation.

4.2.2 P-Tree: Intuition

The key idea behind the P-Tree is to give up the notion of maintaining a globally

consistent B+-tree, and instead maintain semi-independent B+-trees at each peer.

Maintaining semi-independent B+-trees allows for fully distributed index mainte-

nance, without any need for inherently centralized and unscalable techniques such

as primary copy replication.

To motivate the discussion of semi-independent B+-trees, we first introduce

fully independent B+-trees in a P2P setting. Fully independent trees have excessive

space cost and high maintenance overhead, but serve as a useful stepping stone in

our discussion.

45

Fully Independent B+-trees

Each peer maintains its own independent B+-tree, and each B+-tree is periodi-

cally updated as peers/data items are inserted/deleted from the system. As an

illustration, let us assume that the data items with search key values 5, 7, 13, 23,

29, 30, 31, 42 are stored in peers p1, p2, p3, p4, p5, p6, p7, p8, respectively. An

independent B+-tree maintained at p1 is shown in Figure 4.1. In this tree, only

the data item corresponding to the left-most leaf value (5) is actually stored at p1;

the other leaf entries are “pointers” to the peers that have the corresponding data

items.

As another illustration, the B+-tree stored in p5 is shown in Figure 4.2. Here,

p5 views the search key values as being organized on a ring, with the highest value

wrapping around to the lowest value. In this ring organization, p5 views the search

key value of its locally stored data item (29) as the smallest value in the ring (note

that in a ring, any value can be viewed as the smallest value). As before, only the

data item corresponding to the left-most leaf value is actually stored at p5, and

the other leaf entries are pointers to peers that have the corresponding data items.

Note that the B+-trees stored at the peers p1 and p5 are completely independent,

and have no relationship to each other except that they all index the same values.

Since peers have independent B+-trees, they can maintain their consistency

in a fully distributed fashion. However, this approach suffers from the following

drawbacks. First, since each peer indexes all data values, every peer has to be

notified after every insertion/deletion - which is clearly not a scalable solution.

Second, the space requirement at each peer is large - O(N), where N is the number

of data items, or equivalently O(P), where P is the number of peers, since each

peer stores one data item.

46

29|30|31 31|42| 5 5| 7|13|23

 5|29|31

5 7 13 23 29 30 31 42

31| 7|2929|42| 7

p
1

p
2

p
3

p
4 p

5
p

6
p

7 p
8

Figure 4.3: P-Tree

P-Tree = Semi-Independent B+-trees

We now introduce the P-Tree as a set of semi-independent B+-trees. Even though

the B+-trees in a P-Tree are only semi-independent (as opposed to fully indepen-

dent), they allow the index to be maintained in a fully distributed fashion. They

also avoid the problems associated with fully independent B+-tree.

The key idea is the following. At each peer, only the left-most root-to-leaf path

of its corresponding independent B+-tree is stored. Each peer then relies on a

selected sub-set of other peers to complete the remaining (non root-to-leaf parts)

of its tree.

As an illustration, consider Figure 4.3. The peer p1, which stores the data item

with search key value 5, only stores the root-to-leaf path of its independent B+-

tree (see Figure 4.1 for p1’s full independent B+-tree). To complete the remaining

parts of its tree - i.e., the sub-trees corresponding to the search key values 29 and

31 at the root node - p1 simply points to the corresponding B+-tree nodes in the

peers p5 and p7 (which store the data items corresponding to the search key values

29 and 31, respectively). Note that p5 and p7 also store the root-to-leaf paths

of their independent B+-trees (see Figure 4.2 for p5’s full independent B+-tree).

47

Consequently, p1 just points to the appropriate B+-tree nodes in p5 and p7 to

complete its own B+-tree.

It is instructive to note the structure of P-Tree in relation to regular B+-trees.

Consider the semi-independent B+-tree at the peer p1. The root node of this tree

has three subtrees stored at the peers with values 5, 29, and 31, respectively. The

first sub-tree covers values in the range 5-23, the second sub-tree covers values in

the range 29-31, and the third sub-tree covers values in the range 31-5. Note that

these sub-trees have overlapping ranges, and the same search key values (31 and

5) are indexed by multiple sub-trees. This is in contrast to a regular B+-tree (see

Figure 4.1), where the sub-trees have non-overlapping ranges. We allow for such

overlap in a P-Tree because this allows each peer to independently grow or shrink

its tree in the face of insertions and deletions; this in turn eliminates the need for

excessive coordination and communication between peers.

The above structure of P-Tree has the following advantages. First, since each

peer only stores tree nodes on the leftmost root-to-leaf path, it stores O(logdP)

nodes, where P is the number of peers or data items and d is the order of the

P-Tree. Since each node has at most 2d entries, the total storage requirement

per node is O(d · logdP) entries. Second, since each peer is solely responsible for

maintaining the consistency of its leftmost root-to-leaf path nodes, it does not

require global coordination among all the peers and does not need to be notified

for every insertion/deletion.

For ease of exposition, in Figure 4.3, we have only shown (parts of) the semi-

independent B+-trees in some of the peers. In a full P-Tree, each peer has its

own root-to-leaf path nodes, which in turn point to nodes in other peers. The full

P-Tree for our example is shown in Figure 4.4. Note that the values are organized

48

5

13

30

p
3

p
2

p
1

p
4p

6

p
7

p
8 7

23

29

31

42

 5| 7|13|23

p
2
p

3

 5|29|31

p
5
p

7

 7|13|23|29

p
2

p
3

p
4

 7|29|31|5

p
5

p
7

p
5

42| 5

p
8 p

1

42| 7|23|30

p
2

p
4

31|42| 5

p
7 p

8

31| 7|29

p
2

p
5

13|23|29|30

p
3 p

4

13|29|42| 7

p
5

p
8

p
5

23|29|30

p
4

p
5

p
7

p
1

p
6

23|31| 5p
5

29|30|31

p
5

p
6

29|42| 7

p
8

p
2

p
7

30|31

p
6 p

7

p
8

p
2

30|42| 7

p
4

p
1

p
1

p
6

p
6 1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

p
1

p
2

Figure 4.4: Full P-Tree

as a ring because each peer views its locally stored value as the smallest value

when maintaining its semi-independent B+-tree.

4.2.3 P-Tree: Structure and Properties

We now formally define the structure of the P-Tree. We also outline the key

properties that a P-Tree needs to satisfy in order to ensure the correctness and

logarithmic search performance of queries. We discuss algorithms for maintaining

these properties in a fully decentralized fashion in Section 4.3.

P-Tree: Structure

Consider the P-Tree nodes stored in a peer p with index value p.value (p stores

the data item with search key value p.value). p has possibly many index nodes

corresponding to the path from the root to the leaf of its semi-independent B+-

49

tree. We denote the height (number of levels) of p’s tree by p.numLevels, and use

p.node[i] to refer to the index node at level i in p. Each node has possibly many

entries. Each entry is a pair (value, peer), which points to the peer peer with index

value peer.value. We use p.node[i].numEntries to denote the number of entries

in the node at level i in peer p, and we use p.node[i][j] to refer to the jth entry of

this node. We use p.node[i][j].value and p.node[i][j].peer to refer to the two fields

of the entry at level i position j at peer p. For notational convenience, we define

level 0 in a P-Tree at peer p as having the d entries (p.value, p).

As an illustration, consider the P-Tree nodes of peer p1 in Figure 4.4. Since p1’s

tree has two nodes, the height of its tree is 2, and thus p1.numLevels = 2. The

node at level 1 (the lowest level) has 4 entries corresponding to the pairs (5, p1),

(7, p2), (13, p3), (23, p4). Thus p1.node[1].numEntries = 4, p1.node[1][0] = (5, p1),

p1.node[1][1] = (7, p2), etc.

For convenience, we introduce the following notions. Given a peer p, we define

succ(p) to be the peer p′ such that p′.value appears right after p.value in the

P-Tree ring. For example, in Figure 4.4, succ(p1) = p2, succ(p8) = p1, and so

on. We similarly define pred(p) to be the peer p′ such that p′.value appears right

before p.value in the P-Tree ring. For example, in Figure 4.4, pred(p1) = p8,

pred(p8) = p7, and so on.

In order to easily reason about the ordering of peers in the P-Tree ring, we

introduce the comparison operator <p, where p is a peer. Intuitively, <p is a

comparison operator that compares peers on the P-Tree ring based on their index

values, by treating p.value as the smallest value in the ring. For example, for the

comparison operator <p3 , we treat p3.value as the smallest value in the ring in

Figure 4.4. We thus have p6 <p3 p7, p8 <p3 p1, p1 <p3 p2, p3 <p3 p2, and so on. We

50

define the operator ≤p similarly.

It is also useful to define the “reach” of a node at level i at peer p, denoted

reach(p, i). Intuitively, reach(p, i) is the “last” peer that can be reach by fol-

lowing the right-most path in the sub-tree rooted at p.node[i]. For example, in

Figure 4.3, reach(p1, 1) = p4 since the last entry of p1.node[1] points to p4. Sim-

ilarly, reach(p1, 2) = p1 since the last entry of p1.node[2] points to p7.node[1],

whose last entry in turn points to p1. We now give a formal (recursive) defini-

tion of reach. Let lastEntry(p.node[i]) denote the last entry of p.node[i]. Then

reach(p, 0) = p, and reach(p, i + 1) = reach(lastEntry(p.node[i + 1]).peer, i).

P-Tree: Properties

We now define four key properties that characterize a consistent (distributed) P-

Tree index. If a P-Tree satisfies all of the four properties at every peer, then it is

called consistent; else it is called inconsistent. Consider a set of peers P , and a

P-Tree of order d.

Property 1 (Number of Entries Per Node) All non-root nodes have between

d and 2d entries, while the root node has between 2 and 2d entries. Formally, for

all peers p ∈ P , the following conditions hold:

∀i < p.numLevels (p.node[i].numEntries ∈ [d, 2d])

p.node[p.numLevels].numEntries ∈ [2, 2d]

The motivation for these conditions is similar to that in B+-trees [Com79].

Allowing the number of entries to vary from d to 2d for non-root nodes makes

them more resilient to insertions and deletions because the invariant will not be

violated for every insertion/deletion.

Property 2 (Left-Most Root-to-Leaf Path) This property captures the in-

51

29|30 5| 7

 5|23|29|30

5 7 13 23 29 30 31 42

29|31| 7

 5|42

 23|29

23|30|42| 7

30|31 42|5

42| 7|23|3030|42| 7

p
1

p
2

p
3

p
4 p

5
p

6
p

7 p
8

Figure 4.5: Inconsistent P-Tree

tuition that each peer stores the nodes in the left-most root-to-leaf path of its

semi-independent B+-tree (Section 4.2.2). In other words, the first entry of every

node in a peer p points to p. Formally, for all peers p ∈ P , and for all levels

i ∈ [0, p.numLevels], the following condition holds:

p.node[i][0] = (p.value, p)

As discussed earlier (Section 4.2.2), this condition limits the storage require-

ments at each peer to be O(logdP), and also prevents the P-Tree nodes at a peer

from having to be updated after every insertion/deletion.

Property 3 (Coverage) This property ensures that all search key values are

indeed indexed by the P-Tree; i.e., it ensures that no values are “missed” by the

index structure. In a centralized B+-tree, this is usually not a problem. However,

this becomes an issue in a distributed index structure, where different parts of the

distributed index could evolve independently during insertions and deletions.

As an illustration of the type of problem that could occur if the coverage prop-

erty is not satisfied, consider the example in Figure 4.5. Peer p1 has three levels in

its part of the P-Tree. Consider the second level node in p1 (with entries having

52

index values 5, 23, 29, and 30). The sub-tree rooted at the first entry of this node

(with index value 5) is stored in p1, and this sub-tree indexes the range 5-7. The

sub-tree rooted at the second entry of this node (with index value 23) is stored

in p4 and indexes the range 23-29. However, neither of these sub-trees index the

value 13. Therefore, if a search is issued for the value 13 in p1, the index can be

used only to reach up to p2, which stores the value 7 (7 is the largest value less

than 13 that is indexed). After reaching p2, the search will have to do a sequential

scan around the ring to reach p3 that contains the value 13. Note that although p3

is the immediate predecessor of p2 in this example, in general, there could be many

“missed” values in between p2 and p3, and the search performance can deteriorate

due to the long sequential scan along the ring (although the search will eventually

succeed).

As illustrated above, “gaps” in between adjacent sub-trees (in the above ex-

ample, the gap was the peer p3 having index value 13) implies that search cost for

certain queries can no longer be guaranteed to be logarithmic in the number of

peers. The coverage property addresses this problem by ensuring that there are

no gaps between adjacent sub-trees. A related issue is ensuring the the sub-tree

rooted at the last entry of each root node indeed wraps all the way around the

P-Tree ring. These two properties together ensure that every search key value is

indeed reachable using the index.

Formally, let p.node[i][j] = (valj, pj) and p.node[i][j+1] = (valj+1, pj+1) be two

adjacent entries in the node in level i of peer p. The coverage property is satisfied

between these two pairs of entries if and only if the following condition holds.

pj+1 ≤pj
succ(reach(pj, i− 1))

The coverage property is satisfied by the root node of a peer p if the following

53

condition holds. In the definition, we let

lastPeer = lastEntry(p.node[p.numLevels]).peer.

p ≤lastPeer succ(reach(p, p.numLevels))

The coverage property is satisfied for the entire P-Tree if and only if the above

conditions are satisfied for every pair of adjacent entries and root nodes, for every

peer in the system.

Property 4 (Separation) The coverage property discussed above deals with

the case when adjacent sub-trees are too far apart. A different concern arises

when adjacent sub-trees overlap. As mentioned in Section 4.2.2, some overlap

among the sub-trees is possible, and this is desirable because the sub-trees can

then be independently maintained. However, excessive overlap can compromise

logarithmic search performance. The separation property ensures the the overlap

between successive sub-trees is not excessive.

As an illustration of the kinds of problems that could arise if the separation

property is not enforced, consider again Figure 4.5. Consider the node at the

second level in p1’s part of the tree (the index values are 5, 23, 29, and 30). The

subtree rooted at the entries 23, 29, and 30 cover the ranges 23-29, 29-30, and 30-

31, respectively. Note that each of these sub-trees only have one non-overlapping

value with its adjacent sub-tree. Due to this excessive overlap, the height of the

corresponding P-Tree of order d (d = 2 in this case) can no longer be guaranteed

to be O(logdP). (Note that our example is too small to illustrate this increase

in height, so we have just illustrated this issue by showing the excessive overlap.)

Consequently, if there is excess overlap, search cost can no longer be guaranteed

to be logarithmic in the number of peers (although searches will still succeed).

The separation property avoids excessive overlap between adjacent sub-trees

54

by ensuring that two adjacent entries at level i have at least d non-overlapping

entries at level i − 1. This ensures that the search cost is O(logdP). Formally,

let p.node[i][j] = (valj, pj) and p.node[i][j + 1] = (valj+1, pj+1) be two adjacent

entries in the node in level i > 0 in the index of peer p. The separation property

is satisfied between these two pairs of entries if and only if the following condition

holds.

pj.node[i− 1][d− 1].peer <pj
pj+1

The separation property is satisfied for the entire P-Tree if and only if the

separation property is satisfied for every pair of adjacent entries for every peer in

the system.

4.2.4 P-Tree: Analysis

Based on the above four properties, we can prove the following statements about

P-Trees.

Lemma 1 For any peer p ∈ P, and for any level i ≥ 0 in a consistent P-Tree

index of order d, and for any two adjacent entries p.node[i][j] = (vali,j, pi,j) and

p.node[i][j + 1] = (vali,j+1, pi,j+1), denote by Pi the minimum number of peers

between pi,j and pi,j+1. Formally,

Pi = minover all possible consistent P−Trees of order d over peer set P |STi|,
where STi = {q ∈ P: pi,j ≤pi,j

q <pi,j
pi,j+1,

where p.node[i][j] = (vali,j, pi,j) and p.node[i][j + 1] = (vali,j+1, pi,j+1) for some

p ∈ P}.
Then P0 = 0 and Pi = (d− 1)Pi−1 + 1, ∀i > 0.

Proof We prove first that P0 = 0. By definition, level 0 in a P-Tree at any

peer p has d entries (p.value,p). From the definition of <p, @q ∈ P such that

55

p ≤p q <p p, so P0 = 0.

We prove by induction on i that Pi = (d− 1)Pi−1 + 1, ∀i > 0.

Base step: We show that P1 = (d − 1)P0 + 1 = 1. From Separation Prop-

erty, ∀p ∈ P , ∀j such that ∃p.node[i][j] = (vali,j, pi,j) and p.node[i][j + 1] =

(vali,j+1, pi,j+1) we have that pi,j.node[i − 1][d − 1].peer <pi,j
pi,j+1, or, for i = 1,

pi,j <pi,j
pi,j+1 (from the definition of level 0). Since pi,j ≤pi,j

pi,j <pi,j
pi,j+1,

P1 ≥ 1.

All that is left to prove, is that there is a consistent P-Tree such that |ST1|
= 1. ∀p ∈ P , ∀j such that ∃p.node[1][j] = (val1,j, p1,j) and p.node[1][j + 1] we

can define p.node[1][j +1] as being (p1,j+1.value, p1,j+1), where p1,j+1 = succ(p1,j).

This definition satisfies all the four properties of a consistent P-Tree, at level 1,

and |ST1| = 1, for such a P-Tree. This proves that P1 = 1.

Induction step: Assume that Pk = (d− 1)Pk−1 + 1, ∀0 < k < i. We prove that

Pi = (d− 1)Pi−1 + 1.

Again, from Separation Property, ∀p ∈ P , ∀j such that ∃p.node[i][j]=(vali,j,pi,j)

and p.node[i][j + 1] = (vali,j+1, pi,j+1) we have that pi,j.node[i− 1][d− 1].peer <pi,j

pi,j+1. Applying the induction hypothesis to pi,j.node[i − 1] for all the adjacent

entries up to pi,j.node[i−1][d−1] we have that there are at least Pi−1 peers between

pi,j.node[i−1][0] and pi,j.node[i−1][1], at least Pi−1 peers between pi,j.node[i−1][1]

and pi,j.node[i−1][2] and so on. Adding up, we get that there are at least (d−1)Pi−1

peers q such that pi,j.node[i− 1][0] = pi,j ≤pi,j q <pi,j
pi,j.node[i− 1][d− 1]. (1)

From the Separation Property, pi,j.node[i− 1][d− 1] <pi,j
pi,j+1. (2)

From (1) and (2), there are at least (d− 1)Pi−1 + 1 peers q such that pi,j ≤pi,j

q <pi,j
pi,j+1, so Pi ≥ (d− 1)Pi−1 + 1.

56

All that is left to prove, is that there is a consistent P-Tree such that |STi|
= (d − 1)Pi−1 + 1. Let us consider the P-Tree with levels 0 to i-1 such that

|STi−1|=Pi−1. ∀p ∈ P , ∀j such that ∃p.node[i][j] = (vali,j, pi,j) and p.node[i][j +

1], we can define p.node[i][j + 1] as being (pi,j+1.value, pi,j+1), where pi,j+1 =

succ(pi,j[i − 1][d − 1].peer). This definition satisfies all the four properties of a

consistent P-Tree, at level i, and |STi| = (d− 1)Pi−1 + 1, for such a P-Tree. This

proves that Pi = (d− 1)Pi−1 + 1.

We proved that P0 = 0 and Pi = (d− 1)Pi−1 + 1, ∀i > 0.

Theorem 1 (P-Tree logarithmic height) The number of levels in a consistent

P-Tree of order d > 2 is O(logd(P)), where P is the number of peers in the system.

Proof From Lemma 1, the minimum number of peers indexed by the subtree

rooted by two adjacent entries at level i in a consistent P-Tree is Pi, with P0 = 0

and Pi = (d− 1)Pi−1 + 1, i > 0. Let us solve the recursive relation.

Let dd := d−1. Then Pi = dd·Pi−1+1 = dd·(dd·Pi−2+1)+1 = dd2·Pi−2+dd+1 =

dd2·(dd·Pi−3+1)+dd+1 = dd3·Pi−3+dd2+dd+1= · · · = ddi·P0+ddi−1+ddi−2+d+1

= ddi−1
dd−1

, for dd > 1. So Pi = (d−1)i−1
d−2

, for i > 0, d > 2.

We computed that Pi = (d−1)i−1
d−2

, for i > 0, d > 2. It follows that the height of

a consistent P-Tree of order d > 2 for a set of P peers is O(logdP).

Corollary 1.1 (Logarithmic Space Requirement) In a consistent P-Tree of

order d with P peers, the space required at each peer to store the index structure is

O(d · logdP).

Proof From Theorem 1, the number of levels in the P-Tree is O(logdN). Since

each node in a consistent P-Tree has at most 2d entries (Property 1), the corollary

57

follows.

4.3 P-Tree Algorithms

We now describe algorithms for searching and updating P-Trees. The main chal-

lenge is to ensure that a P-Tree is consistent (i.e., satisfies Properties 1 through

4 in Section 4.2.3), even in the face of concurrent peer insertions, deletions, and

failures. Recall that centralized concurrency control algorithms, or distributed al-

gorithms based on primary copy replication, are not applicable in a P2P setting

because peers may enter and leave the system frequently and unpredictably. Con-

sequently, we need to devise fully distributed algorithms that can maintain the

consistency of a P-Tree in a large-scale P2P system.

The key idea is to allow nodes to be in a state of local inconsistency, where

for a peer p the P-Tree nodes at p do not satisfy coverage or separation. Local

inconsistency allows searches to proceed correctly, with perhaps a slight degra-

dation in performance1) even if peers are continually being inserted and deleted

from the system. Our algorithms will eventually transform a P-Tree from a state

of local inconsistency to a fully consistent state, without any need for centralized

coordination.

4.3.1 High-Level System Architecture

Figure 4.6 depicts the high-level architecture of a P-Tree component at a peer. The

underlying ring structure of the P-Tree is maintained by one of the well-known

successor-maintenance algorithms from the P2P literature; in our implementation

we use the algorithm described in Chord [SMK+01]. Thus, the P-Tree ring lever-

1We study and quantify this degradation in Section 4.4.

58

P-tree

succ &
pred

Ring Stabilization: maintains correct
successor and predecessor pointers

P-tree Stabilization: repaires the
inconsistent entries in the P-tree

Ping Process: detects if entries are
alive and consistent

Figure 4.6: P-Tree Maintenance

ages all of the fault-tolerant properties of Chord, as summarized in the following

lemma [SMK+01].

Chord Lemma: (Fault-tolerance of Ring) If we use a successor list of length

O(logP) in the ring, where P is the number of peers, and then every peer fails

with probability 1/2, then with high probability, find successor (of a peer in the

ring) returns the closest living successor.

Although the underlying ring structure provides strong fault-tolerance, it only

provides linear search performance. The logarithmic search performance of P-Trees

is provided by the actual P-Tree nodes at the higher levels.

The consistency of the P-Tree nodes is maintained by two co-operating processes,

the Ping Process and the Stabilization Process. There are independent copies of

these two processes that run at each peer. The Ping Process at peer p detects

inconsistencies in the P-Tree nodes at p and marks them for repair by the Stabi-

lization Process. The Stabilization Process at peer p periodically repairs the in-

consistencies detected by the Ping Process. Even though the Stabilization Process

runs independently at each peer, we can formally prove that the (implicit and

loose) cooperation between peers as expressed in the Stabilization Process leads

59

eventually to a globally consistent P-Tree (see Section 4.3.6).

Since a P-Tree can be locally inconsistent, we add a state variable to each node

entry to indicate whether that entry is consistent or not. We use p.node[i][j].state

to refer to the state variable of the jth entry in the ith level node in peer p. The

state variable p.node[i][j].state can take on three values, consistent, coverage,

or separation, indicating that p.node[i][j] is either in a consistent state, violates

the coverage property, or violates the separation property, respectively. The state

variable is updated by the Ping Process and the Stabilization Process, and is also

used by the latter.

We now describe how peers handle search, insertion of new peers, and deletion

of existing peers, and then we describe the Ping Process and the Stabilization

Process. When reading these sections, we ask the reader to note the beauty of the

conceptual separation of detecting changes, and repairing the P-Tree data structure.

Specifically, during insertions, deletions, and failures, P-Trees only detect changes

and record them without repairing a possibly inconsistent P-Tree data structure

— this permits us to keep the insertion and deletion algorithms very simple (i.e.,

they only affect the ring level of the P-Tree). Detection of changes is confined to

the Ping Process which periodically runs at a peer and only detects entries where

the local P-Tree data structure is inconsistent. The Stabilization Process is the

only process that actually repairs the P-Tree data structure. The Stabilization

Process investigates every entry that is not marked consistent and repairs the

entry such that Properties 1 to 4 in Section 4.2.3 are again satisfied.

60

Algorithm 1 : p.Search(int lb, int up, originator, int l)

1: // if level 0 is reached, check and send data to originator, if needed
2: //forward to successor, if successor could have data in the required range
3: //else, go down one level in the P-Tree
4: if l = 0 then
5: if lb ≤ p.value ≤ ub then
6: send p.data to originator
7: end if
8: if succ(p).value ∈ (p.value, ub] then
9: // if successor could satisfy search criterion

10: send Search(lb,ub,originator,0) to succ(p)
11: else
12: send SearchDoneMessage to originator
13: end if
14: else
15: find maximum k such that p.node[l][k].value ∈ (p.value, lb]
16: send Search(lb,ub, originator, l − 1) message to p.node[l][k].peer
17: end if

4.3.2 Search Algorithm

For search queries, we assume that each query originates at some peer p in the P2P

network. The search takes as input the lower-bound (lb) and the upper-bound (ub)

of the range query, the peer where the search was originated, and the level in the

P-Tree; the pseudo-code of the algorithm is shown in Algorithm 1. The search

procedure at each peer is similar to B+-trees, except that traversal from one level

to the next requires communication with another peer (lines 15–16). Once the

search algorithm reaches the lowest level of the P-Tree, the ring-level, it traverses

the successor list until the value of a peer exceeds ub (lines 8–13). At the end

of the range scan, a SearchDoneMessage is sent to the peer that originated the

search (line 12). Note that we ignore the state of the entries during search.

Example: Consider the range query 30 ≤ value ≤ 39 that is issued at peer

p1 in Figure 4.4. The search algorithm starts at the highest P-Tree level in p1

and determines the maximum position for an entry whose value is between 5 (the

61

index value of p1) and 30 (the lower bound of the range query). In the current

example, this corresponds to the second entry at the second level of p1’s P-Tree,

which points to node p5 with value 29. The search message is thus forwarded to p5.

p5 follows a similar protocol, starting at level 1, and forwards the search message

to p6 (which appears as the second entry in the first level of p5’s P-Tree). Since p6

stores the value 30, which falls in the desired range, this value is returned to p1;

similarly, p6’s successor (p7) returns its value to p1. The search terminates at p7

as the value of its successor does not fall within the query range.

The search procedure will go down one level of the P-Tree every time a search

message is forwarded to a different peer. This is similar to the behavior of B+-

trees, and guarantees that we need at most logd P steps, so long as all entries are

consistent. If a P-Tree is inconsistent, however, the search cost may be more than

logd P because Properties 1 through 4 in Section 4.2.3 may be violated.

Note that even if the P-Tree is inconsistent, it can still answer queries by using

the index to the maximum extent possible, and then sequentially scanning along

the ring, as illustrated in the example under Property 3 in Section 4.2.3 (note

that the fault-tolerant ring is still operational even in the presence of failures). In

Section 4.4, we experimentally show that the search performance of P-Trees does

not degrade much even when the tree is temporarily inconsistent.

It is important to note that every search query cannot always be guaranteed

to terminate in a P2P system. For example, a peer could crash in the middle of

processing a query, in which case the originator of the query would have to time

out and try the query again. This model is similar with that used in most other

P2P systems [RD01, SMK+01, RFH+01].

62

4.3.3 Peer Insertions

We now consider the case where a new peer wants to join the system. As in many

P2P systems, we assume that a new peer p indicates its desire to join the system

by contacting an existing peer. p issues a regular range query to the existing peer

in order to determine p’s predecessor, pred(p), in the P-Tree value ring. There are

now three things that need to be done to integrate the new peer p into the system.

First, p needs to be added to the virtual ring. Second, the P-Tree nodes of p need

to be initialized. Finally, some of the P-Tree nodes of existing peers may need to

be updated to take into consideration the addition of p.

In order to add a new peer to the lowest level ring, we rely on the ring-level

stabilization protocol. In order to initialize the P-Tree of a new peer p, we simply

copy the P-Tree nodes from pred(p) and replace the first entry in each node with an

entry corresponding to p. Although the P-Tree nodes copied from pred(p) are likely

to be a close approximation of p’s own P-Tree nodes, clearly some entries could

violate the coverage or separation properties for p, even though they were satisfied

for pred(p). The insertion algorithm adheres to our policy of strictly separating

responsibilities and leaves marking of entries as inconsistent to the Ping Process.

Ensuring that the P-Tree nodes of existing peers become aware of the newly in-

serted node requires no special action. Eventually, the Ping Process in the existing

nodes will detect any inconsistencies due to the newly inserted node (if any), and

will invalidate the appropriate entries. The Stabilization Process at these nodes

will then fix these inconsistencies.

63

Algorithm 2 : p.Ping()

1: for l = 1; l < p.numLevels; l = l + 1 do
2: j = 1
3: repeat
4: if p.node[l][j].peer has failed then
5: Remove(p.node[l], j)
6: else
7: p.node[l][j].state =

CheckCovSep(p.node[l][j − 1], p.node[l][j])
8: j++
9: end if

10: until j ≥ p.node[l].numEntries
11: end for

4.3.4 Peer Deletions and Failures

In a P2P system, peers can leave or fail at any time, without notifying other

peers in the system. There are two main steps involved in recovering from such

failures/deletions. The first is to update the ring, for which we rely on the standard

successor maintenance protocol. The second step is to make existing P-Tree tree

nodes aware of the deletion/failure. Again, no special action is needed for this step

because we just rely on the Ping Process to detect possible inconsistencies (which

then get repaired using the Stabilization Process).

4.3.5 The Ping Process

The Ping Process runs periodically at each peer; its pseudo-code is shown in Algo-

rithm 2. The Ping Process checks whether the entries are consistent with respect

to the coverage and separation properties (line 7) in function CheckCovSep(). If

any node entry is inconsistent with respect to either of the above two properties,

its state is set to either coverage or separation. The Ping Process also checks

to see whether a peer has been deleted/failed (line 4), and if so, it removes the

64

Algorithm 3 : p.Stabilize()

1: l = 1
2: repeat
3: root=p.StabilizeLevel(l)
4: l + +
5: until (root)
6: p.numLevels = l − 1

corresponding entry from the P-Tree node (line 5); function Remove() removes the

jth entry and decrements p.node[l].numEntries. Note that the Ping Process does

not repair any inconsistencies — it merely detects them. Detected inconsistencies

are repaired by the Stabilization Process.

4.3.6 The Stabilization Process

The Stabilization Process is the key to maintaining the consistency of P-Tree.

A separate Stabilization Process runs independently at each peer, and it repairs

any inconsistencies detected by the Ping Process. The actual algorithm for the

Stabilization Process is remarkably simple, nevertheless it guarantees that the P-

Tree structure eventually becomes fully consistent after any pattern of concurrent

insertions and deletions.

Let us give first a high-level overview of the Stabilization Process. At each

peer p, the Stabilization Process wakes up periodically and repairs the tree level

by level, from bottom to top, within each level starting at entry 0; the successor-

maintenance algorithm from the literature ensuring that the successor-pointer at

the lowest level will be corrected [SMK+01]. This bottom-to-top, left-to-right

repair of the tree ensures local consistency: the repair of any entry can rely only

on entries that have been repaired during the current period of the Stabilization

Process.

65

Algorithm 4 : p.StabilizeLevel(int l)

1: j = 1;
2: while j < p.node[l].numEntries do
3: if p.node[l][j].state 6= consistent then
4: prevPeer = p.node[l][j − 1].peer
5: newPeer = succ(prevPeer.node[l − 1][d− 1].peer)
6: if p.node[l][j].state == coverage then
7: INSERT(p.node[l],j,newPeer)
8: p.node[l].numEntries + + (max 2d)
9: else

10: REPLACE(p.node[l],j,newPeer)
11: end if
12: p.node[l][j + 1].state = CheckCovSep(p.node[l][j], p.node[l][j + 1])
13: end if
14: if COVERS(p.node[l][j], p.value) then
15: p.node[l].numEntries = j + 1
16: end if
17: j++
18: end while
19: while ¬ COVERS(p.node[l][j − 1], p.value) ∧ j < d do
20: prevPeer = p.node[l][j − 1].peer
21: newPeer = succ(prevPeer.node[l − 1][d− 1].peer)
22: INSERT(p.node[l],j,newPeer)
23: j++
24: end while
25: if COVERS(p.node[l][j − 1], p.value) then
26: return true

27: else
28: return false

29: end if

Let us now consider the outer loop of the algorithm shown in Algorithm 3.

The algorithm loops from the lowest level to the top-most level of the P-Tree until

the root level is reached (as indicated by the boolean variable root). Since the

height of the P-Tree data structure could actually change, we update the height

(p.numLevels) at the end of the function.

Algorithm 4 describes the Stabilization Process within each level of the P-

Tree data structure at a node. The first loop from lines 2 to 18 repairs existing

66

entries in the P-Tree. For each entry p.node[l][j], it checks whether p.node[l][j] is

consistent. If not, then either coverage or separation with respect to the previous

entry prevPeer (line 3) is violated, and we need to repair p.node[l][j]. We repair

p.node[l][j] by either inserting a new entry if coverage is violated (line 7), or by

replacing the current entry (line 10) in case separation is violated. In both cases, we

make a conservative decision: we pick as new entry the closest peer to prevPeer

that still satisfies the separation and coverage properties. By the definitions in

Section 4.2.2, this is precisely the peer newPeer = succ(prevPeer.node[l− 1][d−
1].peer), which can be determined using just two messages — one to prevPeer,

and another message to prevPeer.node[l − 1][d − 1].peer. (We can also reduce

this overhead to one message by caching relevant entries). Note that we could

set newPeer to any peer which satisfies the coverage and separation. After the

adjustments in lines 7 or 10, the current entry is now consistent.

After repairing the current entry p.node[l][j], we now have to check whether the

pair (p.node[l][j], p.node[l][j +1]) satisfies coverage and separation, which happens

through function CheckCovSep in line 12. Line 14 contains a sanity check: If

the current entry already wraps around the tree, i.e., its subtree covers the value

p.value, then this level is the root level, and we can stop at the current entry (line

15).

The loop in lines 19 to 24 makes sure that p.node[l] has at least d entries

(unless again its subtree covers pred(p) and thus this level is the root level — this

is checked by the call to COVERS in line 19) by filling p.node[l] up to d entries.

Lines 25 to 30 return whether this level is the root of the tree.

67

4.3.7 Correctness and Performance of Algorithms

We can prove the following properties of the search algorithm.

Theorem 2 (Correctness of Search) If we search for a value v that is in the

fault-tolerant ring for the entire duration of the search, either v will be found or

the search will timeout.

.

Proof If a peer receives a search request (Search message) but it fails before

it finishes processing the request, the search will timeout (the peer originating the

search will not receive the SearchDoneMessage message and it will timeout the

search). As this does not contradict the theorem, we assume in the following that

all peers receiving a search request will process it.

From Algorithm 1, once a search request for value v originates at some peer

originator, the search request is always forwarded to peers p with p.value in

(originator.value, v] (lines 8 and 15). This implies that a search request can-

not overshoot the target value. It also implies that every time a search request is

forwarded, the distance, in the value space, between the peer processing a search

request and the target value v decreases. As value v is in the fault-tolerant ring,

there must be peer pv such that pv.value = v. Because the number of peers in

the system is finite and we assume that the rate of peers joining the fault-tolerant

ring is lower than the rate at which a search request is processed, it follows that

peer pv will eventually receive the search request for value v. From lines 5–7 of

Algorithm 1 follows that value v is found.

Theorem 3 (Logarithmic Search Performance) In a consistent P-Tree of or-

der d > 2 with P peers, the search cost for a range query that returns m results is

68

O(m + logdP).

Proof Using the search algorithm given in Algorithm 1, a range query is

processed in two steps: first the smallest value in the range is found and then the

query is forwarded to the successor peers to find all the other values in the range

(lines 8–13). Since the order of the peers in the fault-tolerant ring is given by the

peer values, the number of messages needed to retrieve m results, once the first

result was found, is equal to m− 1. (*)

We prove now that the search cost for finding the first value in the query range

is O(logdP), if the P-Tree is consistent.

Let [lb, ub] be the search range. The search procedure given in Algorithm 1

goes one level down every time the search is forwarded to a different peer. We

show that by the time level 0 is reached, the first value in [lb, ub] is found.

We prove by induction on the level in the P-Tree that if a search request

[lb, ub] is processed at level l > 0 at peer p than the subtree rooted at level l on p

covers lb. More precisely, p.Search(lb, ub, originator, l), l > 0 ⇒ p.value ≤p lb <p

succ(reach(p, l)).value.

Base step: The search procedure starts at the highest level lmax in the P-

Tree nodes at the peer originator originating the search. Because the P-Tree is

consistent, all values are indexed by the P-Tree. From coverage property (Property

3) follows that

originator.value ≤originator lb <originator succ(reach(originator, lmax)).value.

Induction step: Assume that peer p is processing a search request at level

l, by executing p.Search(lb, ub, originator, l) with l > 0 and p.value ≤p lb <p

succ(reach(p, l)).value. We show that the search request is forwarded to a peer

p′ such that p′.value ≤p′ lb <p′ succ(reach(p
′, l − 1)).value.

69

From Algorithm 1 lines 15–16, the search request is forwarded to the peer

p.node[l][k] such that p.node[l][k].value ∈ (p.value, lb] and k is the maximum index

with this property in the node at level l at peer p. There are two cases to consider:

k is not the last index in p.node[l], or k is the last index in p.node[l].

If p.node[l][k + 1] exists, let pk be p.node[l][k].peer and pk+1 be p.node[l][k +

1].peer. We have that pk does not overshoot lb, while pk+1 overshoots lb. From the

coverage property it follows that lb is covered by the subtree rooted at level l − 1

in pk, which is what we want to prove. More formally,

pk.value ∈ (p.value, lb] ⇔ p.value <p pk.value ≤p lb and

pk+1.value 6∈ (p.value, lb] ⇔ p.value <p lb <p pk+1.value.

So, p.value <p pk.value ≤p lb <p pk+1.value.

From the coverage property between p.node[l][k] and p.node[l][k + 1] we have

that pk+1 ≤p+k succ(reach(pk, l − 1)). From the last two statements it follows

that pk.value ≤pk
lb <pk

succ(reach(pk, l − 1)).value.

If p.node[l][k] is the last entry in p.node[l], let pk = p.node[l][k].peer. By

definition of reach, reach(p, l) = reach(pk, l − 1). From the induction hypoth-

esis we have that p.value ≤p lb <p succ(reach(p, l)).value, so p.value ≤p lb <p

succ(reach(pk, l − 1).value).

We also have that pk.value ∈ (p.value, lb], or p.value <p pk.value ≤p lb. From

the last two statements if follows that pk.value ≤pk
lb <pk

succ(reach(pk, l −
1)).value.

We proved by induction on levels that every time the search request is processed

at a level l > 0, the search request is forwarded to a peer p such that lb ∈
[p.value, succ(reach(p, l − 1)).value). (**)

70

From (**) it follows that the search request reaches level 0 at a peer p such that

lb ∈ [p.value, succ(p).value), since reach(p, 0) = p. From Theorem 1, the number

of levels in a P-Tree of order d > 2 is O(logdP), where P is the number of peers in

the system. We therefore proved that the search cost for an equality query, or the

search cost to find the first value in a range is O(logdP). (***)

From (*) and (***) it follows that in a consistent P-Tree of order d > 2 with P

peers, the search cost for a range query that returns m results is O(m + logdP).

Stabilization Process Correctness

In this section we prove that the Stabilization Process eventually returns a P-Tree

to a fully consistent state after an arbitrary sequence of concurrent insertions and

deletions, as long as the underlying ring remains connected.

The key intuition is that the stabilization process works bottom-up from the

lowest level to the highest level (see Algorithm 3), and within each level, it operates

on entries in left to right order (see Algorithm 4). Also, when the stabilization

process operates on entry j at level l, it only depends on entries that (a) are at

levels l − 1 or lower, or (b) are at level l but with entry positions i < j. Thus, we

can prove by induction that the P-Tree will eventually become consistent.

Theorem 4 (P-Tree Eventual Consistency) Given that no peers enter or leave

the system after time t, and the ring is connected, there is a time t0 such that after

time t + t0 the P-Tree data structure is consistent.

Proof We prove first that after a finite time, Property 1 holds:

∀p ∈ P ∀i < p.numLevels (p.node[i].numEntries ∈ [d, 2d]) and

p.node[p.numLevels].numEntries ∈ [2, 2d].

71

Entries are inserted into the P-Tree only in lines 7 and 22 in the stabilize

level algorithm (Algorithm 4). In line 7, we make sure that every time an entry

is inserted, the maximum number of entries remains at most 2d by deleting, if

necessary, the last entry (line 8). Line 22 is executed when there are less than d

entries in a node and there are still peers to be indexed (line 19). This ensures

that each node has at least d entries, unless the reach of last entry covers the up to

the peer itself, so that is the last entry at the last level (so at least 2 entries). Line

22 does not make the number of entries in a node to increase over d. So, Property

1 becomes satisfied after running Algorithm 3 at all peers.

Property 2 is always true, by design of P-Tree.

The key intuition for proving that Properties 3 and 4 eventually become true is

that the stabilization process works bottom-up from the lowest level to the highest

level (see Algorithm 3), and within each level, it operates on entries in left to right

order (see Algorithm 4). Also, when the stabilization process operates on entry j

at level l, it only depends on entries that (a) are at levels l− 1 or lower, or (b) are

at level l but with entry positions i < j (Algorithm 4).

Thus, by induction on the level of the P-Tree and, within each level, by induc-

tion on the position of the entry it follows that Properties 3 and 4 hold after some

finite time.

We therefore proved that P-Tree data structure eventually becomes consistent.

4.3.8 Examples of Peer Insertion and Failure/Deletion

We now illustrate the working of the P-Tree algorithms using examples. In the

first example, a new peer is joining the system, while in the second example, an

72

existing peer is deleted from the system. We show how the Ping Process and

the Stabilization Process cooperate to fix the inconsistencies resulting from the

insertion/deletion. The algorithms described in Section 4.3 are designed to work

asynchronously at each peer, and can handle concurrent insertions/deletions. How-

ever, for ease of exposition in the examples, we assume that the Ping Process and

the Stabilization Process run synchronously at the different peers.

Insertion Example

Consider the initial consistent P-Tree shown in Figure 4.4. Let us now assume that

a new peer p9, which stores a single data item with search key value 40, wishes to

join the system. To join the system, p9 contacts some peer that is already part of

the system (say, p1), and asks that the join request be routed to the peer that will

be p9’s predecessor in the P-Tree underlying ring. The join request is routed to

the destination by using the regular search protocol. In the current example, the

predecessor is p7, which has the index value 31.

Once p9 has determined its predecessor in the ring, it does two things. First,

p9 adds itself to the P-Tree ring using the ring-level stabilization protocol. Second,

p9 copies its predecessor’s (p7’s) P-Tree nodes, and replaces the first entry of each

node in its copy with the entry (40, p9). Apart from these two steps, p9 does

nothing to notify other peers about its addition into the system; the presence of p9

will be detected (if necessary) by the Ping Process running at the different peers.

The state of the P-Tree at this point is shown in Figure 4.7.

Let us now assume that Ping Process (Algorithm 2) is run on the level 1 node

of each peer. The state of all the level 1 entries at the different peers will be set to

consistent, except for the entry (42, p8) at level 1 in p7, whose state will be set

73

to coverage. This is done because the two adjacent entries (31, p7) and (42, p8) in

p7 violate the coverage property as they “miss” indexing the newly inserted peer

with index value 40 (line 7 in Algorithm 2). The fact that the entry (42, p8) is not

consistent is shown with the ∗ in Figure 4.7.

Let us now assume that the Stabilization Process (Algorithm 4) runs at level 1

of each peer. Only the entry (42, p8) at p7 needs to be processed because it is the

only one not marked as consistent. Since the coverage property is violated, a new

entry corresponding to (40, p9) is inserted before (42, p8) (lines 6–7 in Algorithm 4).

After the insertion of the new entry, both separation and coverage are satisfied for

the entry (42, p8), and it is hence marked consistent (line 12). At this point, the

Stabilization Process for level 1 is complete. The state of the P-Tree at this point

is shown in Figure 4.8.

Let us now assume the the Ping Process runs at the level 2 (root) node of

each peer. Since every pair of adjacent entries satisfy the coverage and separation

properties, every entry remains consistent. Let us assume that the Stabilization

Process then runs on level 2 of all the peers. Since all entries are consistent,

the Stabilization Process only checks to see whether the root nodes satisfies the

coverage property; i.e., whether the root node entries cover the entire ring (line 25

in Algorithm 4). The root node in p8 is the only one that violates this condition,

which is because the tree rooted at p8 only indexes until the value 31, and does

not include the newly inserted value 40. Consequently, a new node at level 3 is

created for p8. The Stabilization Process then runs again at level 3 and adds a

new entry that covers until the newly inserted value 40 (lines 19-24). The final

consistent P-Tree with p9 incorporated into the system is shown in Figure 4.9.

74

Deletion Example

Consider the initial consistent P-Tree shown in Figure 4.4. Let us now assume that

p4 (with index value 23) fails, and thus has to be removed from the system. When

the Ping Process is run at level 1 at each peer, it detects the entries that point to

p4 and deletes them from the corresponding node (lines 4–5 in Algorithm 2). In

Figure 4.4, the entry (23, p4) is deleted from the level 1 nodes of peers p1, p2, and

p3. All entries are still marked consistent because the coverage and separation

properties are satisfied (in the figures, an entry is depicted as consistent if there

is no ∗ next to the entry, and an entry is not consistent if there is a ∗ next to the

entry). The resulting P-Tree is shown in Figure 4.10.

When the Stabilization Process is run at the level 1 node of each peer, all entries

are marked consistent, and hence no action needs to be taken. Now assume that

the Ping Process is run at the level 2 node of each peer. The Ping Process does not

detect any inconsistencies in most peers, except for the peers p8 and p3. In p8, the

Ping Process removes the entry (23, p4) because p4 no longer exists in the system

(lines 4–5 in Algorithm 2). The Ping Process then checks to see whether coverage

or separation is violated for the entry (30, p6), which is next to the deleted entry

(line 7). Since both properties are satisfied, the entry is marked as consistent.

In p3, the Ping Process marks the entry (29, p5) as separation because the sub-

trees rooted at the entries (13, p3) and (29, p5) overlap too much. This state of the

P-Tree is shown in Figure 4.11.

When the Stabilization Process runs at the level 2 node at each peer, all entries

are consistent except for (29, p5) in p3. Since the state of the entry (29, p5) is set

to separation, it is replaced with a new entry that satisfies separation (line 10 in

Algorithm 4). Since the replacement of the entry does not cause the next entry

75

5

13

30

p
3

p
2

p
1

p
4

p
6

p
7

p
8 7

23

29

31

42

 5| 7|13|23

p
2
p

3

 5|29|31

p
5
p

7

 7|13|23|29

p
2

p
3

p
4

 7|29|31|5

p
5

p
7

p
5

42| 5

p
8 p

1

42| 7|23|30

p
2 p

4

31|42| 5

p
7 p

8

31| 7|29

p
2

p
5

13|23|29|30

p
3

p
4

13|29|42| 7

p
5

p
8

p
5

23|29|30

p
4

p
5

p
7

p
1

p
6

23|31| 5p
5

29|30|31

p
5

p
6

29|42| 7

p
8

p
2

p
7

30|31

p
6 p

7

p
8

p
2

30|42| 7

p
4

p
1

p
1

p
6

p
6

p
1

p
2

40
p

9

40|42| 5

p
9 p

8

40| 7|29

p
2

p
5

p
1

*

Figure 4.7: Insertion - Step 1

(42, p8) to become inconsistent (line 12), the Stabilization Process terminates. The

final consistent P-Tree without p4 is shown in figure 4.12.

4.3.9 Implementation Issues

Since the Ping Process and the Stabilization Process test for coverage and separa-

tion frequently, we briefly discuss some optimizations to make these checks more

efficient. The separation property is easy to check by sending a single message to

p′ = p.node[l][j − 1].peer, and asking for p′.node[l − 1][d− 1].value. Checking the

coverage property is more difficult, and requires one to compute the reach of a

node (Section 4.2.3), which could require O(logdP) steps. To avoid this, we store

an additional entry at the end of each node of a P-Tree, called the edge entry. This

entry is not used during search, but estimates the reach of the node, and can be

efficiently maintained just like a regular entry.

76

5

13

30

p
3

p
2

p
1

p
4

p
6

p
7

p
8 7

23

29

31

42

 5| 7|13|23

p
2
p

3

 5|29|31

p
5

p
7

 7|13|23|29

p
2

p
3

p
4

 7|29|31|5

p
5

p
7

p
5

42| 5

p
8

p
1

42| 7|23|30

p
2 p

4

31|40|42| 5

p
7 p

8

31| 7|29

p
2

p
5

13|23|29|30

p
3

p
4

13|29|42| 7

p
5

p
8

p
5

23|29|30

p
4

p
5

p
7 p

1

p
6

23|31| 5
p

5

29|30|31

p
5 p

6

29|42| 7

p
8

p
2

p
7

30|31

p
6

p
7

p
8

p
2

30|42| 7

p
4

p
1

p
1

p
6

p
6

p
1

p
240

p
9

40|42| 5

p
9

p
8

40| 7|29

p
2

p
5

p
1

p
9

Figure 4.8: Insertion - Step 2

For the search algorithm, we implemented a slight modification of the Algo-

rithm 1. Instead of forcing the search to go down one level every time it is for-

warded to a different peer, we let each peer to find the maximum P-Tree level

containing an entry that does not overshoot lower bound lb and process the search

request starting with that level. This allows peers to use the P-Tree entries at the

maximum extent possible, even if the P-Tree is inconsistent.

4.4 Experimental Evaluation

We now evaluate the performance of the P-Tree using both a simulation study and

a real distributed implementation. In the simulation, our primary performance

metric is the message cost, which is the total number of messages exchanged be-

tween peers for a given operation. A secondary metric is the space requirement for

77

5

13

30

p
3

p
2

p
1

p
4

p
6

p
7

p
8

7

23
29

31

42

 5| 7|13|23

p
2
p

3

 5|29|31

p
5
p

7

 7|13|23|29

p
2

p
3

p
4

 7|29|31|5

p
5

p
7

p
5

42| 5

p
8

p
1

42| 7|23|30

p
2 p

4

31|40|42| 5

p
7 p

8

31| 7|29

p
2 p

5

13|23|29|30

p
3

p
4

13|29|42| 7

p
5

p
8

p
5

23|29|30

p
4

p
5

p
7

p
1

p
6

23|31| 5
p

5

29|30|31

p
5

p
6

29|42| 7

p
8

p
2

p
7

30|31

p
6 p

7

p
8

p
2

30|42| 7

p
4

p
1

p
1

p
6

p
6

p
1

p
240

p
9

40|42| 5

p
9 p

8

40| 7|29

p
2

p
5

p
1

p
9

42|13

p
3

Figure 4.9: Insertion - Step 3

5

13

30

p
3

p
2

p
1

p
6

p
7

p
8 7

29

31

42

 5| 7|13

p
2
p

3

 5|29|31

p
5
p

7

 7|13|29

p
2

p
3

 7|29|31|5

p
5

p
7

p
5

42| 5

p
8

p
1

42| 7|23|30

p
2

p
4

31|42| 5

p
7 p

8

31| 7|29

p
2 p

5

13|29|30

p
3

13|29|42| 7

p
5
p

8

p
5

p
5

29|30|31

p
5

p
6

29|42| 7

p
8

p
2

p
7

30|31

p
6 p

7

p
8 p

2

30|42| 7

p
1

p
1

p
6

p
6

p
1

p
2

Figure 4.10: Peer Failure - Step 1

78

5

13

30

p
3

p
2

p
1

p
6

p
7

p
8 7

29

31

42

 5| 7|13

p
2
p

3

 5|29|31

p
5
p

7

 7|13|29

p
2

p
3

 7|29|31|5

p
5

p
7

p
5

42| 5

p
8 p

1

42| 7|30

p
2

31|42| 5

p
7 p

8

31| 7|29

p
2 p

5

13|29|30

p
3

13|29|42| 7

p
5
p

8

p
5

p
5

29|30|31

p
5 p

6

29|42| 7

p
8

p
2

p
7

30|31

p
6 p

7

p
8

p
2

30|42| 7

p
1

p
1

p
6

p
6

p
1

*

p
2

Figure 4.11: Peer Failure - Step 2

5

13

30

p
3

p
2

p
1

p
6

p
7

p
8 7

29

31

42

 5| 7|13

p
2
p

3

 5|29|31

p
5
p

7

 7|13|29

p
2

p
3

 7|29|31|5

p
5

p
7

p
5

42| 5

p
8

p
1

42| 7|30

p
2

31|42| 5

p
7 p

8

31| 7|29

p
2

p
5

13|29|30

p
3

13|30|42| 7

p
6

p
8

p
5

p
5

29|30|31

p
5 p

6

29|42| 7

p
8

p
2

p
7

30|31

p
6

p
7

p
8

p
2

30|42| 7

p
1

p
1

p
6

p
6

p
1

p
2

Figure 4.12: Peer Failure - Step 3

79

the index structure at each peer. In our experiments using a small distributed im-

plementation, we use the elapsed time for an operation as the primary performance

metric.

4.4.1 Experimental Setup

We built a peer-to-peer simulator to evaluate the performance of P-Tree over large-

scale networks. The simulator was written in Java JDK 1.4, and all experiments

were run on a cluster of workstations, each of which has 1GB of main memory and

over 15GB of disk space.

In the simulator, each peer is associated with an index value and a unique

integer address. The peer with address 0 is used as the reference peer, and any

peer that wishes to join the system will contact this peer. We simulate the func-

tionality of the Ping Process by invalidating/deleting necessary entries before the

Stabilization Process is called.

The parameters that we vary in our experiments are shown in Table 4.1.

NumPeers is the number of peers in the system. Order is the order of the P-

Tree, and FillFactor is the fill factor of the P-Tree, which is defined as the average

number of entries in a node, similar to the fill factor of a B+-tree. SPTimePeriod is

the number of operations after which the Stabilization Process is run (on all peers

at all required levels). IDRatio is the ratio of insert to delete operations in the

workload. InsertionPattern specifies the skew in the data values inserted into the

system. If InsertionPattern is 0, values are inserted in descending order, and if it

is 1, values are inserted uniformly at random. In general, if InsertionPattern is ip,

it means that all insertions are localized within a fraction ip of the P2P network.

In the systems we also have deletions, and we set the deletion pattern to be the

80

Table 4.1: P-Tree Experiments Parameters

Parameter Range Default

NumPeers 1, 000− 250, 000 100, 000

Order 2− 16 4

FillFactor 5− 7 dOrder ∗ 1.5e

SPTimePeriod 1− 700 25

IDRatio 0.001− 1000 1

InsertionPattern 0− 1 1(random)

same with the insertion pattern.

For each set of experiments, we vary one parameter and we use the default

values for the rest. Since the main component in the cost of range queries is the

cost of finding the data item with the smallest qualifying value (the rest of the

values are retrieved by using the successor pointers), we only measure the cost of

equality searches. We calculate the cost of a search operation by averaging the cost

of performing a search for a random value starting from every peer. We calculate

the insertion/deletion message cost by averaging over 100 runs of the Stabilization

Process.

4.4.2 Experimental Results

Varying Number of Peers Figure 4.13 shows the message cost for search and

insertion/deletion operations, when the number of peers is varied. The right side

of the y-axis contains the scale for search operations, and the left side contains

the scale for insertion/deletion operations. The search message cost increases log-

81

0

50

100

150

200

250

300

350

1000 10000 100000

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

Number of Peers

0

2

4

6

8

10

12

14

250000

S
e
a
rc

h
 C

o
s
t

Insertion/Deletion
Search

Figure 4.13: Cost vs. System Size

0

100

200

300

400

500

600

700

800

2 4 6 8 10 12 14 16

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

Order

0

1

2

3

4

5

6

7

8

S
e
a
rc

h
 C

o
s
t

Insertion/Deletion
Search

Figure 4.14: Cost vs. P-Tree Order

82

0

100

200

300

400

500

600

700

5 5.5 6 6.5 7

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

Fill Factor

0

1

2

3

4

5

6

7

S
e
a
rc

h
 C

o
s
t

Insertion/Deletion
Search

Figure 4.15: Cost vs. P-Tree Fill Factor

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256 512

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

P-tree Stabilization Process Time Period

0

2

4

6

8

10

12

14

S
e
a
rc

h
 C

o
s
t

Insertion/Deletion
Search

Figure 4.16: Cost vs. Stabilization Process Frequency

83

0

50

100

150

200

250

300

350

0.001 0.01 0.1 1 10 100 1000

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

Insertions/Deletions Ratio

0

1

2

3

4

5

6

7

S
e
a
rc

h
 C

o
s
t

Insertion/Deletion
Search

Figure 4.17: Cost vs. Peer Insertions to Deletions Ratio

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

Insertion Pattern

0

1

2

3

4

5

6

7

S
e
a
rc

h
 C

o
s
t

Insertion
Deletion
Search

Figure 4.18: Cost vs. Data Skew

84

arithmically with the number of peers (note the log scale on the x-axis). The

logarithmic performance is to be expected because the height of the P-Tree in-

creases logarithmically with the number of peers. The figure also shows that the

the message cost for insertions and deletions is a small fraction of the total number

of peers in the system. This implies that the effects of insertions and deletions are

highly localized, and do not spread to a large part of the P2P system. In particular,

the message cost for insertions and deletions also increases roughly logarithmically

with the number of peers.

Varying Order and Fill Factor Figure 4.14 shows the effect of varying the

order of the P-Tree and Figure 4.15 shows the effect of varying the fill factor of a

node. In both cases, the search cost decreases with increasing order or increasing

fill factor (as in B+-trees) because each subtree is wider, which in turn reduces

the height of the entire tree. The cost for insertions/deletions, on the other hand,

increases. The cost increases because each peer has a larger number of entries

(note that the number of entries per node is bounded by 2d·logdP , which is strictly

increasing for d > 2). Thus the associated cost of maintaining the consistency of

these entries in the presence of peer insertions/deletions increases. The implication

of this result is that P-Trees having very high orders are not likely to be very

practical. This is in contrast to B+-trees, where higher orders reduce both search

and insertion/deletion cost.

Varying Stabilization Process Frequency Figure 4.16 shows the effect of vary-

ing the frequency at which the Stabilization Process is invoked. When the Stabi-

lization Process is called relatively infrequently, the search cost increases because

large parts of the trees are inconsistent. However, the cost per insertion/deletion

decreases because the overhead of calling the Stabilization Process is amortized

85

over many insertions and deletions. This illustrates a clear tradeoff in deciding

the frequency of the Stabilization Process (and similarly the Ping Process) - fre-

quent invocations of the Stabilization Process will decrease search cost, but will

increase the overhead of maintaining the P-Tree structure in the face of multiple

insertions/deletions.

Varying Insertions/Deletions Ratio Figure 4.17 shows the result of varying

the ratio of insertion operations and deletion operations. We observe that the cost

per operation is higher when there are more insertions. This is attributable to

the fact that we run our experiments after building a tree of 100,000 peers. Since

a growing tree is likely to have a high fill factor, there is a higher likelihood of

an overflow due to an insertion, as opposed to an underflow due to a deletion.

When we ran experiments on a shrinking tree (not shown), deletions had a higher

message cost.

Varying Insertion/Deletion Patterns Figure 4.18 shows the effect of varying

the skew of the values inserted and deleted (recall that 0 corresponds to highly

skewed distribution, while 1 corresponds to a uniform distribution). It is worth

noting that even in a highly skewed distribution, the performance of P-Trees de-

grades by less than a factor of two. This behavior is attributable to the fact that

the P-Tree dynamically balances its sub-trees, thereby spreading out any hotspots.

Space Requirements Our experiments showed that, as expected, the number of

entries stored at each peer is at most 2d · logdP , where d is the order of the P-Tree

and P is the number of peers in the system.

86

4.4.3 Results from a Real Implementation

We now present some preliminary results from a real distributed implementation

of P-Tree. Our implementation was done using C#, and we implemented the

full functionality of P-Tree, including the Ping and Stabilization Processes. Our

experiments were done on six 2.8GHz Pentium IV PCs connected via a LAN; each

PC had 1GB of RAM and 40GB of disk space. We varied the number of ”virtual

peers” from 20 to 30. We mapped 5 virtual peers to each of the 4-6 physical peers.

Each virtual peer had a unique index value between 1 and 30. The virtual peers

communicated using remote-procedure calls (RPCs). We set up the Ping Process

and the Stabilization Process to run once per second at each virtual peer. We

used the elapsed (wall-clock) time as our performance metric, and each result was

averaged over 5 independent runs.

The experimental results are shown in Table 4.2. As shown, the average search

time for a single data item in a fully consistent P-Tree is about 0.044s, for 20 to

30 virtual peers. The average search time with a failure of 25% of the virtual

peers (uniformly distributed in the value space) is also relatively stable at about

3s. The time for the P-Tree to stabilize to a fully consistent state after virtual

peer failures varies from 13-19s. The search and stabilize times are of the order of

seconds because we run the Ping and Stabilization process only once per second.

4.5 Summary

We have proposed P-Tree as a distributed and fault-tolerant index structure for

P2P networks. The P-Tree is well suited for applications such as resource discovery

for web services and the grid because it extends the capability of existing P2P

systems by supporting range queries in addition to equality queries. Results from

87

Table 4.2: P-Tree Experimental Results in Real System

Real (Virtual) Peers 4 (20) 5 (25) 6 (30)

Search (stable) 0.044s 0.043s 0.043s

Search (inconsistent) 3.085s 2.976s 2.796s

Stabilization 13.25s 19s 17.25s

our simulation study and real implementation show that P-Tree supports the basic

operations of search, insertion and deletion efficiently with the average cost per

operation being approximately logarithmic in the number of peers in the system.

Chapter 5

P-Ring

5.1 Overview

In this chapter we present a novel index structure called P-Ring. P-Ring supports

equality and range queries, is fault-tolerant, gives guaranteed logarithmic search

performance in a consistent system, and, as opposed to the P-Tree introduced in

the previous chapter, supports possibly large sets of items per peer. Such an index

structure could be used by sophisticated P2P database applications such as digital

libraries [LdS01]. This is the first structure we are aware of that supports all of

the above functionality and guarantees in a dynamic P2P environment.

In devising the P-Ring structure, we were able to reuse the fault-tolerant ring

algorithms of Chord [SMK+01] and the replication mechanism of CFS [DKK+01]

because of the modular indexing framework introduced in Chapter 3. P-Ring has a

new Data Store component and a new Content Router that can provide logarithmic

search performance even under highly skewed data distributions.

In a stable system, without peers joining or leaving and without data items

insertions or deletions, the P-Ring load balancing algorithms ensure a maximum

storage imbalance factor of at most 2 between any two non-free peers in the system

(it is possible to have few peers that do not store any data items). The P-Ring

Content Router is highly fault-tolerant and, in a stable system, a router of order d

provides guaranteed O(logdP) search cost for equality queries, and O(logdP + m)

search cost for range queries, where P is the number of peers in the system and

m is the number of peers with data items in the selected range. Even in the

presence of highly skewed insertions, we can guarantee a worst-case search cost of

88

89

O(x · d · logdP) for equality queries, where x is the number of data item insertions

for stabilization unit of the router (these terms will be formally defined later in

this chapter).

The rest of this chapter is organized as follows:

• We introduce the P-Ring Data Store, a new implementation for the Data

Store component of a P2P index that distributes data items to peers such

that range queries can be answered efficiently, while still ensuring that peers

have roughly the same number of data items (Section 5.2).

• We introduce Hierarchical Ring, a novel Content Router for efficiently eval-

uating equality and range requests in a P2P system (Section 5.3).

• We analyze the theoretical properties of Hierarchical Rings both in a consis-

tent system and in a system with insertions (Section 5.4).

5.2 P-Ring Data Store

One of the main challenges in devising a Data Store for P2P range indices is

handling data skew. Ideally we would like the number of data items to be roughly

uniformly distributed among the peers so that the storage load is nearly evenly

distributed among the peers. Most existing P2P index structures achieve this goal

by hashing the search key of the data items and assigning the data items to peers

based on the hash value; the assumption is that, on average, the hash function

assigns the same number of data items to the peers [RFH+01, RD01, SMK+01,

ZKJ01]. However, hashing destroys the value ordering among the search key values,

and thus cannot be used to process range queries efficiently (for the same reason

that hash indices cannot be used to handle range queries efficiently).

90

Since the goal of P-Ring design is to support range queries, we need to assign

data items to peers based directly on their search key value. In this case, the ring

space is the same with the search key values space (wrapped around the highest

value). The problem is that now, even in a stable P2P system with no peers

joining or leaving, some peers might become highly overloaded due to skewed data

insertions and/or deletions. We need a way to dynamically reassign and maintain

the ranges associated to the peers. The next section presents our algorithms for

handling data skew.

5.2.1 Load-Balancing Algorithms

The search key space is ordered on a ring, wrapped around the highest value. The

Data Store partitions this ring space into ranges and assigns each of these ranges

to a different peer. For a peer p, we use p.range to denote the range assigned to

peer p and by p.list the list of data entries with search key values in p.range, for

which p is responsible. Remember that a data entry is a pair (value, item) where

value is the search key value exposed by the data item item. p.range is of type

(lb, ub] for some lb and ub in the ring space. p.size is the number of entries in

p.list. If a peer does not have any range assigned to it, the peer is said to be free.

p.ringNode refers to the Fault Tolerant Torus component of the P-Ring at peer p.

The ranges assigned to peers are maintained in a manner similar to the main-

tenance of leaf pages in a B+-trees. Each peer can hold between sf and 2 · sf
data entries in its range, where sf is the ”storage factor”, a parameter we will talk

more about in Section 5.2.2. Whenever the number of entries in p.range becomes

larger than 2 · sf (due to many data entries inserted into p.range), we say that an

91

5

15

p
1

10

18

20

p
2

p
3

p
4

p
5

6 8

p
6

p
7

11

1619

25

5

15

p
1

10

18

20

p
2

p
3

p
4

p
5

6 8

p
6

p
7

11

1619

25

 9

Figure 5.1: Data Store Figure 5.2: Data Store After Split

overflow occurred.1 In this case, p tries to split its assigned range (and implicitly

its entries) with a free peer. Whenever the number of entries in p’s range becomes

smaller than sf (due to deletions from the range p is responsible for), we say that

an underflow occurred. Peer p tries to acquire a larger range and more entries from

its successor in the ring. In this case, the successor either redistributes its range

or gives up its entire range and becomes free.

Example: Consider the Data Store in Figure 5.1 which shows the ranges and

entries assigned to the peers in the system (range (5, 10] with data entries (6, t1)

and (8, t4) are assigned to peer p1 etc.), as well as the free peers (p6 and p7).

Assume that sf is 1, so each peer in the ring can have 1 or 2 entries. When a

data entry (9, t10) is inserted into the system, it will be stored at p1, leading to an

overflow. As shown in Figure 5.2, the range (5, 10] is split between p1 and the free

peer p6. p6 becomes the successor of p1 on the ring and p6 is assigned the range

(6, 10] with data entries (8, t4) and (9, t10).

Split

1A factor larger than 2 could be used to reduce the number of overflows and
underflows.

92

5

15

p
1

10

18

p
2

p
3

p
4

p
5

6 8

p
6

p
7

11

16

25

Figure 5.3: Data Store After Merge

Algorithm 5 shows the pseudo-code of the split algorithm executed by a peer p

that overflows. We use the notation p::fn() when function fn() is invoked at peer

p. During a split, peer p tries to find a free peer p′ and transfer the responsibility

for half of its entries (and the corresponding range) to p′. (The details of how a free

peer is found are given in the next section.) After p′ is found (line 1), half of p’s data

entries are removed from p.list and p.range is split accordingly. A splitEvent and

rangeChangeEvent are generated, so other components of the indexing structure

become aware of the split. Since p splits its range, the Fault Tolerant Torus

component is notified by using changeValue(newRange) (line 11). After all the

local changes are made, p calls the free peer p′ to join the ring as its successor and

take responsibility for the split range. The main steps of the algorithm executed

by the free peer p′ are shown in Algorithm 6. Using the information received from

p, p′ initializes its Data Store component, the higher index components and its

Fault Tolerant Torus component.

Merge and Redistribution

93

Algorithm 5 : p.split()

1: p′ = getFreePeer();
2: if p′ == null then
3: return;
4: end if
5: //execute the split
6: splitItems = p.list.splitSecondHalf();
7: splitV alue = splitItems[0];
8: splitRange = p.range.splitLast(splitV alue);
9: generate splitEvent;

10: generate rangeChangeEvent;
11: p.ringNode.changeValue(p.range);
12: p′::joinRingMsgHandler(p,splitItems,splitRange);

Algorithm 6 : p′.joinRingMsgHandler(p, splitItems, splitRange)

1: p′.range = splitRange;
2: p′.list = splitItems;
3: generate joinRingEvent;
4: p′.ringNode.joinRing(p);

If there is an underflow at peer p, p tries to merge with its successor on the

ring, or, if possible, to redistribute by getting some entries from the successor. The

details of the procedure executed by p are given in Algorithm 7. Peer p invokes

the initiateMergeMsgHandler function in the successor peer. The successor peer

sends back the action decided, merge or redistribute, and a new range and set

of entries that are to be re-assigned to peer p (line 2). p appends the received

range to its own range and the received entries list to the list of entries for which it

is responsible for. Note that higher layers in the index structure at p are notified

when a merge happens, so they can take appropriate action. This notification can

be used by the Replication Manager component that needs to replicate the new

items.

The outline of the initiateMergeMsgHandler function is given in Algorithm

8. The invoked peer, p′ = succ(p), checks whether a redistribution of entries and

94

Algorithm 7 : p.merge()

1: //send message to successor and wait for result
2: (action, newRange, newItemsList) =

succ(p)::initiateMergeMsgHandler(p, p.size);
3: p.list.add(newItemsList);
4: p.range.add(newRange);
5: generate rangeChangeEvent

6: p.ringNode.changeValue(p.range.rightEndValue);
7: if action == merge then
8: generate mergeEvent;
9: end if

ranges between the two ”siblings” is possible (line 1). If it is, then it notifies the

other indexing layers about the redistribution (lines 7-8) and then sends some of its

entries and the corresponding range back to p. If a redistribution is not possible,

p′ gives up all its data entries and its range to p, thus becoming free. Please note

that in our algorithm, if a redistribution is not possible, peer p′ gives up its range

and data and becomes free. This is just for simplicity of algorithms. In a real

system, to save bandwidth, peer p′ would keep its data entries and peer p would

become free.

Example: Let us consider again Figure 5.1 and assume that data entry with

search key value 19 is deleted from the system. In this case, there is an underflow

at peer p4 and peer p4 calls initiateMergeMsgHandler in p5. Since p5 has only

one data entry, redistribution is not possible. Peer p5 sends its data entry to p4

and becomes free. As shown in Figure 5.3, peer p4 becomes responsible for the

whole range (18, 5].

5.2.2 Free Peers

Recall that free peers are used during splits and are generated during merge. There

are two important aspects that we need to consider with respect to free peers. First,

95

Algorithm 8 : (action, newRange, newItemsList)
p′.initiateMergeMsgHandler(p,numItems)

1: if numItems + p′.size > 2 · sf then
2: //redistribute
3: compute nbItemsToGive;
4: splitItems = p′.list.splitFirst(nbItemsToGive);
5: splitV alue = splitItems.lastValue();
6: splitRange = p′.range.splitFirst(splitV alue);
7: generate redistributeEvent;
8: generate rangeChangeEvent;
9: return (redistribute,splitRange,splitItems);

10: else
11: //merge and leave the ring
12: splitItems = p′.list;
13: splitInterval = p′.range;
14: generate leaveRingEvent;
15: p′.ringNode.leaveRing();
16: return (merge, splitRange, splitItems);
17: end if

we should have a reliable way of “storing” and finding free peers. Second, we need

to ensure that a free peer exist when it is needed during split. We store and manage

free peers as follows.

For each free peer p, we create an artificial data entry (⊥, p.address), where

⊥ is the smallest possible search key value. (Note that due to the assumption

that search keys are unique, the ⊥ value will be transparently made unique by

appending to it the address of the peer and a version number.) This artificial

entry is inserted into the system as a regular entry. Using this implementation,

storing or removing a free peer is similar with inserting or removing a data item

from the P2P system. When a free peer is needed, an equality search for ⊥ is

issued. This search is processed as a regular user query and the result is returned

to the peer issuing the request. Since free peers do not have ranges associated

with them, the free peers are not part if the underlying ring structure. However,

96

each free peer maintains a list of non-free peers so that it can forward any query

it receives to one of the non-free peers to be evaluated.

To ensure that a free peer exists when needed during split, we employ the

following scheme: let N be the number of entries in the system and P be the

number of peers in the system. If we set sf to be greater or equal to N/P , a

free peer is guaranteed to exist in the system at any time an overflow occurs. sf

can either be estimated in a very conservative way, so a free peer exists when

needed, or can be adjusted from time to time using, for example, background

gossip style aggregation [KDG03] to determine N and P . In our implementation,

we estimated the values of N and P by aggregating these numbers bottom-up,

along the Hierarchical Ring structure. More details about this implementation are

given in Chapter 6.

Although it may appear that the resources of the free peers are not fully used

by the system, the Load Balancer exploits the presence of free peers to even out the

query load in the system. The reader is referred to [?] for a complete description.

5.3 Hierarchical Ring

Using the above implementation of the Data Store, we can use the P-Tree in-

troduced in Chapter 4 as the implementation for the Content Router component

and efficiently support both range and equality queries in a P2P system used as a

content distribution network.

In this section, we introduce a new Content Router, the Hierarchical Ring, that

evolved from the P-Tree. As for the P-Tree, the goal of our Content Router is to ef-

ficiently route messages to peers in a given range. The main challenge in designing a

Content Router for range queries is to handle skewed distributions. Since the search

97

5

15

10,p2

10

18

20

p2

p3
p4

p5

p1

15,p3
1

1 15,p3
18,p4

18,p4 20,p5
1

 5,p1 10,p2
1

20,p5 5,p1
1

Figure 5.4: Hierarchical Ring Level 1

key values distribution can be skewed, the ranges assigned to the peers may not be

of equal length. Consequently, index structures that assume uniform data distrib-

ution in the indexing domain such as Chord [SMK+01] and Pastry [RD01] cannot

be applied in this case. Recently, some P2P indexing structures that can han-

dle skewed distributions have been proposed [DGA03, AS03a, HJS+03], but these

structures either provide only probabilistic search guarantees [AS03a, HJS+03], or

do not provide search guarantees [DGA03] even in a stable system. We devise a

new content router called Hierarchical Ring that can handle highly skewed data

distributions while providing deterministic search performance in a stable system,

and guaranteed worst case performance during data insertions.

5.3.1 Data Structure

The Hierarchical Ring Content Router is based on the simple idea of constructing

a hierarchy of rings.

At the lowest level, level 1, the node at peer p maintains a list of the first d

98

5

15

10,p2

10

18

20

p3
p4

p5

p1

15,p3
1

15,p3 20,p5
2

p2

15,p3 18,p4
1

18,p4 5,p1
2

18,p4 20,p5
1

20,p5 10,p2
2

20,p5 5,p1
1

 5,p1 15,p3
2

 5,p1 10,p2
1

10,p2 18,p4
2

Figure 5.5: Hierarchical Ring Levels 1 and 2

successors on the ring. Using the successors, a message could always be forwarded

to the last successor in the list that does not overshoot the target ”skipping” up to

d-1 peers at a time. Consider the ring in Figure5.4, where peer p1 is responsible for

the range (5, 10], peer p2 is responsible for range (10, 15] and so on and assume that

d=2. Each peer knows its successor on the ring: succ(p1) = p2, succ(p2) = p3,

..., succ(p5) = p1. At level 1 in the Content Router, each peer maintains a list of

2 successors, as shown. Assume that p1 needs to route a message to a peer with

value 20. In this case, p1 will route the message to p3 and p3 will forward the

message to p5, the final destination.

At level 2, we again maintain a list of d successors. However, a successor at

level 2 corresponds to the dth successor at level 1. Note that using these successors,

a message could always be routed to the last successor in the list that does not

overshoot the target, ”skipping” up to d2−1 peers at a time. Figure 5.5 shows the

content of level 2 nodes at each peer in the ring. If we assume again that p1 needs

99

5

15

10,p2

10

18

20

p3
p4

p5

p1

15,p3
1

15,p3 20,p5
2

p2

15,p3 18,p4
1

18,p4 5,p1
2

18,p4 20,p5
1

20,p5 10,p2
2

20,p5 5,p1
1

 5,p1 15,p3
2

 5,p1 10,p2
1

10,p2 18,p4
2

20,p5
3

 5,p1
3

10,p2
3

15,p3
3

18,p4
3

Figure 5.6: Hierarchical Ring Levels 1, 2, and 3

to route a message to a peer with value 20, p1 will route the message directly to

p5 (the final destination), using the list at level 2. The procedure of defining the

successor at level l + 1 and creating a list of level l + 1 successors is iterated until

no more levels can be created. In Figure 5.6, for peer p1 for example, note that

succ3(p5) = p4, which overshoots p1, so no more levels can be constructed for p1.

An important observation about this index structure is that we are conceptually

indexing ”positions” in the ring (i.e. at level l, a peer p has pointers to peers that

are dl peers away) instead of values, which allows the structure to handle skewed

data distributions.

Formally, the data structure for Hierarchical Ring of order d is a doubly indexed

array node[level][position], where 1 ≤ level ≤ numLevels and 1 ≤ position ≤ d.

100

The Hierarchical Ring is defined to be consistent if and only if at each peer p:

• p.node[1][1] = succ(p)

• p.node[1][j + 1] = succ(p.node[1][j]), 1 ≤ j < d

• p.node[l + 1][1] = p.node[l][d],

• p.node[l + 1][j + 1] = p.node[l + 1][j].node[l + 1][1], 1 ≤ l < numLevels,

1 ≤ j < d

• The successor at numLevels of the last peer in the list at numLevels level

”wraps” around, so all the peers are indeed indexed:

p.node[numLevels].lastPeer.node[numLevels][1] ∈
[p, p.node[numLevels].lastPeer)

From this definition, it is easy to see that a consistent Hierarchical Ring of

order d, has only dlogd(P)e levels, and the space requirement for the Content

Router component at each peer is O(d · logd(P)), where P is the number of peers

in the fault tolerant ring.

To be able to use the described data structure for routing, the Hierarchical

Ring maintains at each position in the double indexed array an entry (value, peer),

where peer represents the address of the peer corresponding to that position, and

value is the index value of the peer peer. In our algorithms, the index value of

a peer p is rangeMin(()p), the low end value of p.range (the range assigned by

the Data Store algorithms to peer p). We use p.node[i][j].value and respectively

p.node[i][j].peer, or, just p.node[i][j] if there is no risk of confusion, to refer to

the value and respectively peer address of the entry at level i, position j, in the

Hierarchical Ring nodes at peer p.

101

5.3.2 Maintenance Algorithms

Peer failures and insertions disrupt the consistency of the Hierarchical Ring. We

have a remarkably simple Stabilization Process that runs periodically at each peer

and repairs the inconsistencies in the Hierarchical Ring. The algorithm guaran-

tees that the Hierarchical Ring structure eventually becomes fully consistent after

any pattern of concurrent insertions and deletions, as long as the peers remain

connected at the fault-tolerant ring level (so successor peers are known).

The algorithm executed periodically by the Stabilization Process is shown in

Algorithm 9. The algorithm loops from the lowest level to the top-most level of

the Hierarchical Ring until the highest (root) level is reached (as indicated by the

boolean variable root). Since the height of the Hierarchical Ring data structure

could actually change, we update the height (p.numLevels) at the end of the

function.

Algorithm 10 describes the Stabilization Process within each level of the Hier-

archical Ring data structure at a peer. The key observation is that each peer needs

only local information to compute its own successor at each level. Thus, each peer

relies on other peers to repair their own successor at each level. When a peer p

stabilizes a level, it contacts its successor at that level and asks for its entries at

the corresponding level. Peer p replaces its own entries with the received entries

and inserts its successor as the first entry in the index node (lines 2 and 3). The

INSERT procedure, apart from inserting the specified entry at the beginning of

the list at given level, it also ensures that no more than d entries are in the list and

none of the entries in the list overshoots p (the list does not wrap around). Line 4

checks whether this level should be the last level in the Hierarchical Ring. This is

the case if all the peers in the system are already covered. If this level is not the

102

Algorithm 9 : p.Stabilize()

1: i = 1;
2: repeat
3: root=p.StabilizeLevel(i);
4: i + +;
5: until (root)
6: p.numLevels = i− 1;

Algorithm 10 : p.StabilizeLevel(int i)

1: succEntry = p.node[i][1];
2: p.node[i] = succEntry.node[i];
3: INSERT(i, succEntry);
4: if p.node[i].lastPeer.node[i][1] ∈

[p, p.node[i].lastPeer) then
5: return true

6: else
7: p.node[i + 1][1] = p.node[i][d];
8: return false;
9: end if

root level, the stabilization procedure computes the successor at the higher level

(line 7) and returns.

5.3.3 Routing Algorithm

The Content Router component supports broadcastReceive(msg,range) and

sendReceive(msg,range). We assume that each routing request originates at

some peer p in the P2P system. For simplicity of presentation, we assume that the

range has the form [lb, ub].

The routing procedure takes as input the lower-bound (lb) and the upper-bound

(ub) of the range in the request, the message that needs to be routed, the peer

where the request originated, the type of request (broadcast or send), and the

expected index value of the peer receiving the request, initialized with null; the

pseudo-code of the algorithm is shown in Algorithm 11. The last parameter bears

103

some discussion. Because the range associated to a peer can change during the

lifetime of the system, the index value of the peer could also change. It is therefore

possible for the value fields of the Hierarchical Ring entries to be outdated (for some

Hierarchical Ring entries, p.node[i][j].value 6= rangeMin(()p.node[i][j].peer)). To

avoid processing the routing requests at peers that overshoot the target, each peer

p′ that receives a routing request from a peer p also receives the value expected by

peer p for peer p′ (the value in the entry corresponding to p′ in the Hierarchical

Ring structure at peer p). If p′.range changed such that p′ now overshoots the

target of the request, the routing request is dropped and either p has to re-forward

to request, or the originator times out the request and possibly re-issues it. This

check is done in line 1 of Algorithm 11. Then, the routing procedure at each

peer selects the farthest away pointer that does not overshoot lb and forwards the

request to that peer. Once the algorithm reaches the lowest level of the Hierarchical

Ring, it traverses the successor list until the index value of the peer exceeds ub

(lines 7–9). If the type of the request is send, the algorithm stops at the first

peer having some items in the requested range. At the end of the range scan, a

SearchDoneMessage is sent to the peer that originated the search (line 11).

Example: Consider the a broadcast routing request for the range (18, 25] that

is issued at peer p1 in Figure 5.6. The routing algorithm first determines the

highest Hierarchical Ring level in p1 that contains an entry whose value is between

5 (rangeMin(()p1)) and 18 (the lower bound of the range query). In the current

example, this corresponds to the first entry at the second level of p1’s Hierarchical

Ring nodes, which points to peer p3 with value 15. The routing request is thus

forwarded to p3. p3 follows a similar protocol, and forwards the request to p4

(which appears as the first entry in the first level in p3’s Hierarchical Ring nodes).

104

Algorithm 11 : p.routeHandler(lb, up, msg, originator, requestType,
expectedV alue)

1: if rangeMin(p) 6= expectedV alue return; end if
2: // find maximum level that contains an entry that does not overshoot lb.
3: find the maximum level l such that ∃ j > 0

such that p.node[l][j].value ∈ (rangeMin(p), lb].
4: if no such level exists then
5: //handle the message and send the reply
6: send(p.handleMessage(msg), originator);
7: if rangeMin(succ(p)) ∈ (rangeMin(p), ub] and requestType == broadcast

then
8: // if successor satisfies search criterion
9: send(Route(lb,ub,msg,originator,requestType,p.node[1][1].value),

succ(p));
10: else
11: send(RoutingDoneMessage,originator);
12: end if
13: else
14: find maximum k such that

p.node[l][k].value ∈ (rangeMin(p), lb];
15: send(Route((lb,ub,msg,originator,requestType,p.node[l][k].value),

p.node[l][k].peer));
16: end if

Since p4 is responsible for items that fall within the required range, p4 processes

the routed message and returns the results to the originator p1 (line 6). Since

the successor of p4, p5, might store items in the (18, 25] range, the request is also

forwarded to p5. p5 processes the request and sends the results to p1. The search

terminates at p5 as the index value of its successor (5) does not fall within the

query range.

In a consistent state, the routing procedure will go down one level in the Hier-

archical Ring every time a routing message is forwarded to a different peer. This

guarantees that we need at most dlogd P e steps to send a message to the desti-

nation, if the Hierarchical Ring structure is consistent. If a Hierarchical Ring is

inconsistent, however, the routing cost may be more than dlogd P e. Note that even

105

if the Hierarchical Ring is inconsistent, it can still route requests by using the nodes

to the maximum extent possible, and then sequentially scanning along the ring.

In Chapter 6, we experimentally show that the search performance of Hierarchical

Ring does not degrade much even when the index is temporarily inconsistent.

5.4 Hierarchical Ring Theoretical Analysis

Definition We define a stabilizationround to be the execution of the StabilizeLevel

procedure (Algorithm 10) at some given level in all peers.

Definition We define a stabilization unit su to be the time needed for a stabiliza-

tion round.

5.4.1 Eventual Stabilization

The following theorem states that the Stabilization Process eventually returns

a Hierarchical Ring data structure to a fully consistent state after an arbitrary

sequence of concurrent insertions and deletions.

Theorem 5 (Hierarchical Ring Eventual Consistency) Given that at time

t there are P peers in the system and the fault tolerant ring is connected and no

peers join or leave the system after time t, and the Stabilization Process starts

running periodically at each peer, there is a time t0 such that at time t + t0 the

Hierarchical Ring is consistent with respect to the P peers.

Proof We prove by induction on the level of the Hierarchical Ring that the

Hierarchical Ring eventually becomes consistent. The key intuition is that higher

levels in Hierarchical Ring depend on lower levels, and the stabilization process

works bottom-up from the lowest level to the highest level (see Algorithm 9).

106

Within each level, the first entry depends only on the entries at the lower levels

at the same peer, and the other entries depend on the entries at same level with

smaller position at different peers.

Base case: We prove that level 1 eventually becomes consistent. If the fault-

tolerant ring is connected, after some finite time, each peer p will have correct

successor pointers, and therefore correct first entry in the Hierarchical Ring struc-

ture at level 1: p.node[1][1] = succ(p). After another stabilization round, each

peer stabilizes with its successor, and the second entry p.node[1][2] at each peer p

is correct (lines 2-3 in Algorithm 10). After another run of stabilization with their

successor (run again the Algorithm 10 at level 1), the next entry becomes correct,

and so on. After d stabilization rounds at level 1, level 1 in each peer becomes

consistent. Note that subsequent runs of the stabilization algorithm do not modify

the Hierarchical Ring structure, once it becomes consistent and no peers enter or

leave the system.

Induction step: We assume that all levels < l are consistent in all peers and we

prove that after some finite time level l > 1 in the Hierarchical Ring structure at

each peer becomes consistent.

After level l − 1 becomes consistent, the first entry at level l is also correct

(line 7 in Algorithm 10). Similarly with the procedure at level 1, after d rounds of

stabilization at level l, all the entries become consistent, which is what we wanted

to prove.

The stabilization of levels continues until the last coverage condition from the

definition of a consistent Hierarchical Ring structure

(p.node[numLevels].lastPeer.node[numLevels][1] ∈
[p, p.node[numLevels].lastPeer)) is satisfied at each peer (Line 4 in Algorithm 10

107

and line 5 in Algorithm 9), so the entire Hierarchical Ring will become consistent

after a finite time.

5.4.2 Search

It is important to note that we cannot guarantee in a P2P system that every routing

request terminates. For example, a peer could crash in the middle of processing

a request, in which case the originator of the request would have to time out and

try the routing request again. This model is similar with that used in most other

P2P systems [RD01, SMK+01, RFH+01] and with the model we used for P-Tree in

Chapter 4. We can prove the following property about routing during concurrent

insertions and deletions.

Theorem 6 (Correctness of Routing) If we route towards a value v that cor-

responds to a peer in the fault-tolerant ring for the entire duration of the routing

process, either v will be found or the request will timeout.

Proof The proof for this theorem is similar with the proof of Theorem 4.3.7 in

Chapter 4. If a peer receives a routing request (Route message) but it fails before

it finishes processing the request, the search will timeout (the peer originating the

search will not receive the RoutingDoneMessage message and it has to timeout

the search and possibly re-issue it). The search will also timeout if the check in line

1 of Algorithm 11 succeeds. As this does not contradict the theorem, we assume in

the following that all peers receiving a routing request have the index value equal

to the value expected and will process the routing request.

From Algorithm 11, once a routing request for value v originates at some

peer originator, the routing request is always forwarded to peers p that have

108

rangeMin(()p) in (originator.value, v] (lines 9 and 15). This implies that a rout-

ing request cannot overshoot the target value, or it times out. It also implies that

every time a routing request is forwarded, the distance, in the value space, be-

tween the peer processing the routing request and the target value v decreases. As

value v is in the fault-tolerant ring, there must be peer pv such that v ∈ p.range.

Because the number of peers in the system is finite and we assume that the rate of

peers joining the fault-tolerant ring is lower than the rate at which a search request

is processed, it follows that peer pv will eventually receive the search request for

value v. From lines 4–6 of Algorithm 11 follows that value v is found.

Theorem 7 (Search Performance in Consistent State) In a stable network

of P peers with a consistent Hierarchical Ring data structure of order d ≥ 2,

equality queries take at most dlogd(P)e steps.

Proof From the definition of the Hierarchical Ring, the number of levels in a

consistent Hierarchical Ring structure is dlogd(P)e, where d ≥ 2 is the order of the

Hierarchical Ring and P is the number of peers in the system. If the Hierarchical

Ring is consistent, the routing procedure goes down one level every time the routing

request is forwarded to another peer (lines 14-15 in Algorithm 11). Since the

number of levels in the Hierarchical Ring structure is dlogd(P)e, the maximum

number of messages needed to answer an equality query is dlogd(P)e.

Theorem 8 (Search Performance During Insertions) If we have a stable sys-

tem with a consistent Hierarchical Ring of order d data structure and we start

inserting peers at the rate r peers/stabilization unit, then equality queries take at

109

most dlogd(P)e+ 2r(d− 1)dlogd(P)e hops, where P is the current number of peers

in the system.

Proof sketch: Let t0 be the initial time and P0 be the number of peers in the system

at time t0. For every i > 0 we define ti to be ti−1 + (d − 1)dlogd(Pi−1)e · su and

Pi to be the number of peers in the system at time ti. In the following, we call an

”old” peer to be a peer that can be reached in at most dlogd(P)e hops using the

Hierarchical Ring. If a peer is not ”old”, we call it ”new”. At any time point, the

worst case search cost for equality queries is dlogd(P)e+ x, where dlogd(P)e is the

maximum number of hops using the Hierarchical Ring to find an old peer and x is

the number of new peers. x is also the maximum number of hops to be executed

using the successor pointers to find any one of the new x peers (the worst case is

when all new peers are successors in the ring). We will show by induction on time

that the number of new peers in the system at any time cannot be higher than

2r(d− 1)dlogd(P)e.
As the base induction step we prove that at any time point in the interval [t0, t1]

there are no more than 2r(d− 1)dlogd(P)e new peers and at time t1 there are no

more than rddlogd(P)e new peers. From hypothesis, at t0 the Hierarchical Ring is

consistent, so there are no new peers. At the insertion rate of r peers/su, at any

time point in [t0, t1], the maximum number of peers inserted is r(d− 1)dlogd(P0)e,
which is smaller than r(d− 1)dlogd(P)e. This proves both statements of the base

induction step.

We prove now that if the maximum number of new peers at time ti is rddlogd(P)e,
than, at any time point in [ti, ti+1] the maximum number of new peers is 2r(d −
1)dlogd(P)e and the maximum number of new peers at time ti+1 is r(d−1)dlogd(P)e,
where i ≥ 1. The maximum number of peers inserted between ti and ti+1 is

110

r(d − 1)dlogd(Pi)e which is smaller than r(d − 1)dlogd(P)e. From the induction

hypothesis, at time ti there were at most r(d− 1)dlogd(P)e new peers. Between ti

and ti+1, some old peers can become new and new peers can become old, due to

changes in the Hierarchical Ring structure. However, the total number of entries

in the Hierarchical Ring structure does not decrease, so the number of old peers

becoming new cannot be higher than the number of new peers becoming old. Out

of the peers in the system at time ti, at most r(d−1)dlogd(P)e of them are new at

any time between ti and ti+1. Adding the peers inserted since ti we get that at any

time point in [ti, ti+1] the maximum number of new peers is 2r(d − 1)dlogd(P)e.
From Theorem ??, at time ti+1, all the peers existing in the system at time ti are

integrated into the Hierarchical Ring structure. This means that all peers existing

at time ti are/became old peers at time ti+1, which leaves the maximum number of

new peers at time ti+1 to be at most r(d−1)dlogd(P)e (the peers inserted between

ti and ti+1).

From induction it follows that at any time, the maximum number of new peers

is no more than 2r(d − 1)dlogd(P)e, which means that equality queries take at

most dlogd(P)e+ 2r(d− 1)dlogd(P)e hops. .

5.5 Summary

We presented P-Ring, a novel P2P index structure that supports equality and

range queries, is fault-tolerant, gives guaranteed logarithmic search performance

in a consistent system, and, as opposed to the P-Tree introduced in the previous

chapter, supports possibly large sets of items per peer. P-Ring is based on the

general indexing framework introduced in Chapter 3 and reuses existing algorithms

for the Fault-Tolerant Torus and Replication components. P-Ring has a new Data

111

Store component that effectively balances the items between the peers in the system

and a new Content Router that can provide logarithmic search performance in a

stable system even under highly skewed data distributions. A detailed evaluation

of the P-Ring in a real distributed environment and a comparison with other P2P

index structures is presented in the next chapter.

Chapter 6

A Performance Evaluation of P2P Range

Indexes

6.1 Overview

In this chapter we evaluate the performance of P-Ring, Skip Graphs [AS03a], On-

line Balancing [GBGM04] and Chord [SMK+01] in a real distributed environment.

Chord [SMK+01] supports only equality queries, but we implemented it so that we

have a baseline for the performance comparisons. The experiments were conducted

on PlanetLab [Pla], a network of computers distributed around the world.

P-Ring is not the first P2P index structure designed to support range queries.

Skip Graphs [AS03a] and Skip Nets [HJS+03] are both query routers that sup-

port range queries, but they only support one data item per peer and provide

only probabilistic guarantees for search performance, even in a fully consistent

system. Online Balancing [GBGM04] is a balancing algorithm that distributes

items to peers based on their search key value and maintains the load balance be-

tween peers during item and peer insertions and deletions. A query router such as

Skip Graphs or the P-Ring query router can be implemented on top of the ranges

constructed by the Online Balancing algorithm to provide logarithmic search per-

formance for range queries. Mercury [BAS04] is a randomized index structure that

offers the same functionality as P-Ring, support for range queries, but unlike P-

Ring, Mercury only provides probabilistic guarantees even when the index is fully

consistent. However, none of the structures mentioned above were implemented

into a real distributed system by their authors.

112

113

We implemented P-Ring, Skip Graphs, Online Balancing and Chord within the

indexing framework introduced in Chapter 3, in a real distributed environment.

Implementing all these structure within the indexing framework allowed us to do

an apple-to-apple comparison of the different structures, some of them offering

different functionality. This study represents the first comparative evaluation of

P2P index structures for range queries, in a real P2P environment. The code is

written in C++ and the final implementation has more than 30,000 lines of code.

6.2 Index Structures Evaluated

In this section, we give an overview of the index structures evaluated in this study

and instantiate them in our framework.

6.2.1 Skip Graphs

In Skip Graphs [AS03a], each peer has an index value given by search key value of

the data item stored at the peer. Peers are arranged in a list based on their index

value. This is considered to be level 0 in the Skip Graph structure. At each level,

each peer generates a random letter from a finite alphabet of size d. Peers in the

same list at current level, who generated the same letter, will be part of the same

list at the next level. Each peer maintains the address and index value for its left

and right neighbor in each list. Each peer repeats the process of generating letters

and constructing higher level lists, until each peer is alone in the list at some level.

Search in the Skip Graph starts at the highest level and follows the neighbor links

unless they overshoot the target value(s). In that case, the search continues at a

lower level. The search stops at level 0, when the required item has been found,

or it can be determined that it does not exists. Items in a range are found by

114

following the level 0 links, once the smallest value in the range is found. With high

probability, the equality search cost is O(d · logdP) hops, where P is the number

of peers, and d is the size of the alphabet (referred next as the order of the Skip

Graph).

The Skip Graph is maintained in face of peer failures by a periodic stabilization

process that checks and repairs the links top-down, by using the higher level links

to connect the gaps and repair the lower level links (’zipper’ operations). The Skip

Graphs also runs a bottom-up maintenance procedure, to adapt to new peers in

the system.

Framework instantiation: The Skip Graphs fit into the Content Router

component in our framework. The indexing value of each peer is determined by the

Data Store component (for example, as being the low end of the range associated

to the peer by the P-Ring Data Store). We use the Chord Ring algorithm to

implement the Fault Tolerant Torus and maintain the connectivity of the peers in

face of failures. In this way, the top-down maintenance process for Skip Graphs is

not needed, and the Skip Graphs can be maintained bottom-up, by always using

the lower level links to find the appropriate links at higher levels.

6.2.2 Online Balancing

Online Balancing [GBGM04] is a load balancing scheme for distributing data items

to peers, with a provable bound of al least 4.24 for load imbalance, with constant

amortized insertion and deletion cost.

In Online Balancing, peers are arranged in a ring and each peer is assigned a

range and all the items with search key values in that range. When the load at a

peer increases beyond a threshold, the peer tries first to shed some of its load to its

115

successor or predecessor. If the neighbors cannot take some of the load, the peer

searches for the least loaded peer in the system. If the load of that peer is below

the previous threshold, that peer will give all its load to one of its neighbors, and

take half of the load from the high loaded peer, joining the ring as its successor. If

the least loaded peer has a high load, the threshold is simply updated to a higher

value. When the load of a peer falls below a threshold, a similar process takes

place.

Framework Instantiation: The Online Balancing fits into the Data Store

component of our indexing framework.

6.2.3 Chord

In Chord [SMK+01], peer addresses and the data items search key values are

hashed into the same identifier space [0, 2m). The identifier length is m such that

the probability to have the same identifier for two different keys or peers is small.

IDs are ordered into an identifier circle modulo 2m. The assignment of items to

peers is done as follows: an item with given key id is stored into the first peer

having peer id equal or following the key id into the identifier space. In order to

efficiently find data in the system, each peer p keeps a structure containing the

following information:

• successor list: the next few peers on the identifier circle. More than one peer

is needed for fault tolerance.

• predecessor: the previous peer on the identifier circle

• finger table with m entries: the ith entry contains the identity of the first

peer that succeeds p by at least 2i−1 on the identifiers circle (succ((n +

116

2i−1)mod2m))

Using this structure, searches are forwarded towards the target by forwarding

them to the peer with the id closest to the target, but before it on the ring. The

number of peers that must be contacted to find an item in a P -peers network is

O(logP) with high probability.

The index structure is maintained in face of peer joins and failures by two

periodic stabilization protocols. The successor list is maintained by periodically

contacting the first successor, asking for its successor list and merging it with

the current successor list. During this process, the successor will also update its

predecessor information. We use this protocol to maintain the fault tolerant ring

structure, the base layer of all the P2P index structures we implemented.

To maintain the finger table, each peer p periodically pings each entry. If the

corresponding peer does not answer, p issues a search for a replacement peer with

id satisfying the definition.

Framework Instantiation: As described in Section 3.3, Chord index struc-

ture is implemented within our framework as follows: the successor and predecessor

pointers and in fact part of the Fault Tolerant Ring component. The Data Store

is implemented by assigning items to peers based on their hashed id. There are

no load-balancing operations due to items insertions or deletions. The finger table

is the implementation for the Content Router component. In our experiments, we

use the value m = 16 as the size of the id space.

For all index structures, we used the CFS Replication Manager [DKK+01],

that replicates the items stored at one peer to its successors in the ring. When

the predecessor of a peer fails, the peer takes over the range assigned to the failed

peer, and the Replication Manager inserts all the missing items into the Data Store.

117

For all index structures, we used the Chord successor maintenance algorithms to

implement the Fault Tolerant Torus.

6.3 Distributed Implementation Issues

In Chapter 4 and Chapter 5 we described the challenges faced when designing an

index structure that offers support for range queries in peer-to-peer systems. We

faced different types of challenges when implementing the algorithms. The first

challenge was the actual implementation of the algorithms. Just implementing an

index structure for a simulation study is straightforward. However, the algorithms

proposed in this dissertation, as well as the other P2P indexes evaluated here are

designed to be used in a P2P setting, and we wanted to test them in a P2P setting.

To have a full implementation of the P2P indexes, one needs to implement more

than just the storage balancing and query routing mechanisms. We implemented

a network layer, so peers can send and receive messages using TCP/IP, a periodic

manager to manage the maintenance procedures that are periodically invoked by

the different instantiations of the P2P indexing framework, and a locking mecha-

nism to control the access to shared objects in the multi-threaded implementation.

As actual P2P index components, we implemented the Chord Fault Tolerant Ring,

the CFS Replication Manager, three different Data Store implementations (P-Ring,

Online Balancing and Chord) and three Content Router implementations (P-Ring,

Skip Graphs and Chord). The total number of lines of code for our implementation

is more than 30,000.

We discuss next some of the issues that we had to address in order to have a

distributed implementation.

118

6.3.1 Locks

One of the most complex problems that needs to be addressed in a distributed

environment implementation is the concurrency problem. The implementation of

each component in the P2P indexing framework requires multiple threads to run

concurrently (for example, Ping Process, Stabilization Process, and processing of

routing requests), so access to shared objects needs to be protected. We imple-

mented a lock manager, and for each shared resource, the thread accessing the

resource first acquired a read (shared) lock or a write (exclusive) lock on the re-

source. The design of locks is complicated by the interaction of the different

components in the indexing framework. Each component can communicate with

the components at higher layers through the events it generates. In the same time,

each component can communicate with the component below it in the indexing

framework by using the API provided. This two way interaction can create cycles

in the locks-dependency graph, even if there are no cycles within any of the single

components. Let us give a brief example of such interaction:

Example: Peer A holds a write lock on R1 and sends a message to B. Peer B

needs a read lock on R2 to process the message. Peer B holds a write lock on R2

and sends a message to A. Peer A needs a read lock on R1 to process the message.

To minimize the possibility of locks, we tried to follow these rules when acquir-

ing and releasing locks:

1. Locks are always acquired in the same order, by all threads.

2. No write locks are held while a synchronous event is raised at any of the

components. (For synchronous events, such as rangeChangeEvent in the

Data Store, the thread raising the vent blocks until an answer is received.)

119

3. No write locks are held while a message is send and an answer is expected.

4. Only one thread can upgrade locks on a resource, or the execution of all

threads that might try to upgrade locks on a resource is serialized.

5. Once a lock is acquired (and not released) by a thread, that thread cannot

request the lock again.

Due to the complex interaction between layers, the first rule was not always

followed. Moreover, even following this rules, deadlocks can arise. We constructed

the dependency graph for all possible executions of each thread and analyzed it

for cycles. We treated each cycle found on a case-by-case basis and eliminated all

cycles. We either modified the sequence in which locks are acquired or released,

or the type of locks held (for example, acquire a read lock and then upgrade it,

instead of acquiring a write lock directly). Note that, it is not always possible

to design a deadlock-free locks schedule without modifying the actual algorithms:

Let us look at the following example:

Example: Peer p holds a read lock on resource R1 and sends a message to peer

p′. Peer p′ needs a write lock on resource R2 to process the message. However, at

the time peer p′ receives the message, peer p′ holds a read lock on R2 and sent a

message to p. Peer p needs a write lock on R1 to process the message.

To solve a deadlock as presented above, we modified the algorithms such that

peers p and p′ do not hold any locks while sending the message. To keep the

correctness of the results, each peer makes a copy of the resource value before

sending the message. Upon receiving the message results, a lock on the resource is

requested, and the results are processed only if the resource value did not change.

Such modifications are specific to each algorithm.

120

We refer the reader to [LCGS05] for other examples of correctness and avail-

ability issues raised by concurrency and how to solve them in the context of our

peer-to-peer indexing framework.

6.3.2 Timeouts

Another issue in the deployment of distributed algorithms in wide area network

is finding appropriate values for the timeout parameters: how long should a

user/process/peer wait before deciding that the answer will never come? These

values need to be carefully chosen, as they can have a big impact on the correctness

and performance of the system. Assume that we set a low value for the message

receive timeout, so, if a reply for the message does not arrive in the specified inter-

val, it is assumed that the message was lost or the destination machine is down. In

this case, the sender will re-send the message, or take appropriate actions. How-

ever, if the message just takes a longer time to be processed, and the destination

machine is up and processing the message, we can have inconsistencies in the index

structure.

Example: In the P-Ring split protocol (see Chapter 5), assume that a peer p1

wants to split its range (a, b] and entries with a free peer p2, remaining with the

range (a, c] and associated entries, while the peer p2 should become responsible

for range (c, b] and the remaining entries. However, if the split message times-out

before it is processed at peer p2, peer p1 will remain responsible for the entire range

(a, b] (the split is ’rolled-back’, so the reliability of the system is not compromised).

If the message was processed at peer p2, but not in time for the acknowledgement

to be sent to p1, peer p2 also becomes responsible for the range (c, b]. Now we

have the situation that two peers are responsible for the range (c, b], and both peer

121

p1 and p2 have the same ring value b. This leads to permanent inconsistencies

in the underlying ring, as the protocols were not designed to handle two peers

with the same value on the ring. As an example consequence, the reliability of the

system decreases, as the items are not replicated to the successors, due to incorrect

successor pointers.

On the other side, if the timeout values are too high, the system might become

slow because it takes a very long time to detect the failure of a peer, and the

information in the index structure becomes stale.

In our PlanetLab experiments, we found that a timeout value of three minutes,

both for the search timeout and sender receive timeout works fine.

6.3.3 P-Ring Storage Factor Estimation

In the P-Ring Data Store algorithms introduced in Chapter 5, one of the parame-

ters of the load-balancing algorithms is the storage factor sf, the minimum number

of entries stored by a non-free peer. The value of sf depends on the value of N ,

the number of items in the system, and P , the number of peers in the system. We

estimated the values of N and P by aggregating these numbers bottom-up, along

the Hierarchical Ring structure. This computation does not increase the number

of messages in the system, as we piggyback the numbers on the Hierarchical Ring

stabilization messages. The values obtained at the highest level in the Hierarchical

Ring nodes at each peer are used by the P-Ring Data Store to compute the storage

factor. Due to the dynamism of the system, as well as the particular method of

estimation of N and P , the values obtained for N and P by different peers can

be different. However, the experiments show that overall, the P-Ring Data Store

achieves a load imbalance of approximately two, even in a dynamic system.

122

6.3.4 Online Balancing Index on Load

During the execution of Online Balancing algorithms [GBGM04] the most and

least loaded peers need to be found. As suggested in [GBGM04], we implemented

an index structure based on the loads of the peers, where the load was computed

as the threshold value corresponding to the number of entries stored by each peer.

We used the Hierarchical Ring on top of the Chord Fault Tolerant Ring to imple-

ment the index, as it has a better performance than the Skip Graphs, which were

suggested in [GBGM04]. The index needs to support updates, as the loads of the

peers varies. We implemented lazy updates, where the value is updated in-place,

and the new value is propagated to other peers during ring and Hierarchical Ring

stabilization. The reason for implementing the lazy updates instead of graceful

leave and join, as suggested in the paper, was the following: due to high rate of

updates, especially as the system was initialized, the connectivity of peers was lost.

We therefore had to use the lazy updates.

6.4 Experimental Framework

In this section we describe the components of the PEPPER experimental frame-

work. This architecture is designed to allow distributed deployment and evalua-

tion of P2P index structures, with a centralized core that controls the experiments,

gathers statistics about the system and analyzes the experimental data. The com-

ponents of the architecture, shown in Figure 6.1, are the following:

• Main Program: Starts the experiments and returns the results of the exper-

iments.

• Simulation Coordinator: Coordinates the entire experiment: addition and re-

123

Main
Program

Simulation
Coordinator

Monitor

Start-Kill
Daemon

Pepper Node

Pepper Node

Machine 1

Central site
Distributed sites

Figure 6.1: Distributed Deployment Architecture

moval of peers from the system, insertion and deletion of data items, queries.

• Monitor: Collects information about system state and network resources

consumed and produces the system statistics.

• Start-Kill Daemon: Waits for commands from the Simulation Coordinator

and starts or removes peers from the system, depending on the command

received.

• Pepper Node: Implements and executes the distributed indexing protocol.

We describe now in more details each of these components.

Main Program The Main Program is responsible for starting the experiments

and returning the results. For each experiment, The Main Program reads the

experiment parameters from a file or directly from the command line and creates a

Simulation Coordinator to carry out the experiment and a Monitor to collect and

124

analyze the results. The Main Program registers with the Monitor handlers that

specify how the data collected should be processed, depending on the objectives

of the experiment.

Simulation Coordinator The Simulation Coordinator is responsible for car-

rying out the experiments. The parameters of an experiment, such as the duration

of the experiment, the rate at which peers are added or removed from the sys-

tem, the ratio of peer insertions to peer deletions, the rate of data items insertion

or deletion, the ratio of data items insertion to deletions, the distribution of the

indexing values for data items inserted of deleted, are received from the Main Pro-

gram. The Simulation Coordinator also has a list of all addresses for the Start-Kill

Daemons and maintains a list of addresses for all Pepper Nodes created. Every

time a peer needs to be added or removed from the system, the corresponding

StartPeer or KillPeer command is sent to the Start-Kill Daemon running on the

machine where the peer is to be created or destroyed. The commands to insert or

delete data items, as well as search queries are sent directly to Pepper Nodes.

Monitor The Monitor is responsible for gathering and processing experimental

data. We have implemented a pull-based monitor, where the Monitor pulls the

statistics collected by Pepper Nodes at the end of each simulation. The Monitor

stores the statistics it receives from each Pepper Node, along with the address

of the Pepper Node and a timestamp that marks the time when the statistics

were received. The statistics collected are processed to obtain the information

of interest for that experiment. Some examples of such an information are: the

average number of maintenance messages needed to maintain the index structure

under the experiment’s conditions, the performance of the system as measured by

the number of messages needed to process a search request, the number of data

125

entries in the Data Store component at each peer.

Start-Kill Daemon The Start-Kill Daemon is responsible for creation and

destruction of Pepper Nodes. It is implemented as a program that runs on each

machine and waits for commands. The commands are received from the Simulator

Coordinator and can be of two types: StartPeer or KillPeer. When a StartPeer

command is received, the daemon creates a Pepper Node. The parameters needed

to create the Pepper Node are received as part of the StartPeer command. When

a KillPeer command is received, the Start-Kill Daemon destroys the Pepper Node

specified in the KillPeer command. In our implementation, creation of a Pepper

Node is done by forking a new process on that machine and the destruction of a

Pepper Node is done by killing the process corresponding to the Pepper Node.

Pepper Node A Pepper Node is responsible for executing the distributed

indexing protocol. The indexing protocol can be P-Ring, Chord, Skip Graphs,

Online Data Balancing or any other distributed indexing protocol implemented

in the P2P indexing framework presented in Chapter 3. During the execution of

the protocol, the Pepper Node collects statistics about the local state of the index

as well as the type, number and size of messages send or received by this Pepper

Node. These statistics are collected by the Monitor.

6.5 Experimental Setup

As specified at the beginning of this chapter, we implemented P-Ring, Online Bal-

ancing, Skip Graphs and Chord in the context of our indexing framework. Recall

that our framework allows for code reuse; we were thus able to reuse the same code

for the Fault Tolerant Ring (based on Chord [SMK+01]) and Replication Manager

components (based on CFS [DKK+01]) for all four structures. In addition, for

126

Table 6.1: P2P Index Structures Experiments Parameters

Parameter Range Default

ContentRouterOrder 2− 10 2

NumberPeers 1− 100 50

NumberItems 1− 4000 2000

SkewParameter 0.5− 1 0.5

PeerChurnPattern Join; Join&Leave; Leave Join&Leave

ItemChurnPattern Insert; Insert&Delete; Delete only Insert&Delete

P-Ring, we implemented the novel Data Store and Content Router described in

Chapter 5. We also implemented the Chord Data Store (based on hashing) and the

Chord Content Router (finger tables) based on the descriptions in [SMK+01]. We

implemented the Skip Graphs content router based on the description in [Sha03],

with minor adaptations to make Skip Graphs work on a ring instead of a line (as

was originally proposed). We implemented Online Balancing [GBGM04] as an

alternative implementation for the Data Store component.

In our experiments, we varied the parameters shown in Table 6.1.

The meaning of most parameters is self explanatory. Only the Skew Parameter

parameter needs some discussion. The distribution of the search key values for

the data items in the system follows a Zipfian distribution with values in [1, 216]

and skew parameter given by Skew Parameter value. However, because the values

indexed in the system need to be unique (see Section 2.1), we generate a unique

attribute for each initial search key value, and construct the index on the <search

key value, unique attribute> pairs.

127

6.6 Performance Model

We used four main performance metrics. The first is the message cost, which is the

number of messages sent per peer per minute due to the maintenance of the Fault-

Tolerant Ring, Data Store, Replication Manager and the Content Router. The

second is bandwidth cost, which is the number of bytes sent per peer per minute

due to the maintenance of different components. The third metric is the search

cost, which is the number of messages required to perform a search query. We

calculate the search cost by averaging the number of messages required to search

for a random value in the system starting from random peers, for all searches

completed within one minute. Since the main component in the cost of range

queries is the cost of finding the data item with the smallest qualifying value (the

rest of the values being retrieved by traversing the successor pointers), we only

measure the cost of finding the first entry for range queries. Finally, we looked

at the imbalance ratio, defined as the ratio measured each minute as the ratio

between maximum and minimum number of items in the Data Store component

at any peer (with number of items in Data Store being at least 1).

6.7 Content Router Evaluation

The performance of a P2P index depends heavily on the routing performance.

The content router is used not only to answer the queries, but as part of the

item insert and delete process, to find the peer(s) responsible for the item(s). To

isolate the cost of maintaining the content router from the cost of maintaining

the data store (for example, split and merge operations in Online Balancing and

P-Ring will affect the performance of the content routers, since they are reflected

128

as a peer join and respectively leave at the content router level), we implement a

”dummy” data store, that has only one item, with search key value corresponding

to the peer value, and performs no operations. Its only purpose is to translate the

events raised by the Fault Tolerant Torus into events that can be processed by the

Content Router component. In this section, we evaluate the performance of Chord

finger tables, Skip Graphs and Hierarchical Ring in a dynamic system, with peers

joining and leaving.

We set up a three-phase experiment: join phase, join/leave phase and leave

phase. The rate of peers joining or leaving the system is 0.05 peers/second. We

start with a system with only one peer, and, in the join phase, peers join the

system, at the specified rate. In the join/leave phase, new peers join the system

and old peers leave the system, with the ratio of join to leave being 1. Finally, in

the leave phase, peers are killed, at the specified rate. In each phase there are 50

operations. Between phases there are 10 minutes of stability, when no peers join

or leave the system. For the following experiments we use the stabilization rate

in both the Fault Tolerant Ring and Content Router to be once every 5 seconds

during the phases, and once every 2 seconds during the stability periods.

6.7.1 Search Cost

Figure 6.2 and Figure 6.3 show the search message cost over time for Hierarchical

Ring and respectively Skip Graphs of order d equal to 2, 4, 6, 8, and respectively

10. For all orders, we see that during the insert phase the search cost increases,

mainly due to the increased number of peers in the system, while the search cost

decreases in the delete phase, due to the decreasing number of peers in the system.

As expected, the search performance is O(logP) for both Hierarchical Ring and

129

0 20 40 60 80 100

0.5

1

1.5

2

2.5

3

3.5

4

Simulation Time (minutes)

H
ie

ra
rc

hi
ca

l R
in

g
N

um
be

r
of

 H
op

s

Join Phase Join/Leave

Leave Phase

HR order 2
HR order 4
HR order 6
HR order 8
HR order 10

Figure 6.2: Search Cost for Hierarchical Ring

130

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

Simulation Time (minutes)

S
ki

p
G

ra
ph

s
N

um
be

r
of

 H
op

s Join Phase Join/Leave

Leave Phase

SkipGraph order 2
SkipGraph order 4
SkipGraph order 6
SkipGraph order 8
SkipGraph order 10

Figure 6.3: Search Cost for Skip Graphs

131

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Simulation Time (minutes)

N
um

be
r

of
 H

op
s

Join Phase Join/Leave Leave Phase

HierarchRing order 2
SkipGraph order 2
Chord

Figure 6.4: Search Cost for Hierarchical Ring, Skip Graphs and Chord

Skip Graphs, where P is the number of peers in the system. However, looking at

the search performance for different orders, for each Content Router, we see that

for Hierarchical Ring, the search performance increases with increased order, while

for Skip Graphs, the search performance decreases with increased order. This is

due to the fact that in Hierarchical Ring, the search cost is proportional with

logdP , while in Skip Graphs, the search cost is proportional to d · logdP . This also

explains why Skip Graphs of order 2 and 4 are so close to each other (the minimum

of the function f(x) = xlogx(P) is reached for x = e).

Figure 6.4 shows the search cost of Hierarchical Ring of order 2, Skip Graphs

of order 2 and Chord, in a dynamic system. The search cost of Hierarchical Ring

132

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

Simulation Time (minutes)

H
ie

ra
rc

hi
ca

l R
in

gs
 M

es
sa

ge
 C

os
t

Join Phase Join/Leave
Leave Phase

HR order 2
HR order 4
HR order 6
HR order 8
HR order 10

Figure 6.5: Hierarchical Ring Message Cost

of order 2 is lower that the cost of Skip Graphs order 2 and approximately equal

to the cost of Chord. Since Hierarchical Ring of order 2 gives the worst search

performance among Hierarchical Ring of different orders, while the Skip Graphs

of order 2 provides the best search performance among Skip Graphs of different

orders, we can conclude that in general, the search performance of Hierarchical

Ring is better than the search performance of Skip Graphs, and Hierarchical Ring

provide the same or better performance than Chord, while supporting a larger

class of queries.

133

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8
x 10

4

Simulation Time (minutes)

H
ie

ra
rc

hi
ca

l R
in

gs
 B

an
dw

id
th

 C
os

t

Join Phase Join/Leave Leave PhaseHR order 2
HR order 4
HR order 6
HR order 8
HR order 10

Figure 6.6: Hierarchical Ring Bandwidth Cost

134

6.7.2 Maintenance Cost

Figures 6.5 and 6.6 show how the message cost and bandwidth cost, respectively,

vary with the order of the Hierarchical Ring. The message cost decreases with

order because there are fewer levels in the Hierarchical Ring that need to be sta-

bilized (recall that the number of levels in a Content Router of order d is logd P).

However, the index bandwidth cost decreases slightly and then increases because,

at higher orders, more information has to be transferred during index stabiliza-

tion. Specifically, each stabilization message in a Hierarchical Ring of order d has

to transfer O(d) information (the entries at one level). Hence, the total bandwidth

requirement is O(d·logd(P)) which is consistent with the experimental results. This

shows the tradeoff between index stabilization and search cost - a higher value of

d improves search but increases bandwidth requirements. However, as shown in

Figure 6.4, the search cost of Hierarchical Ring of order 2 is already lower that the

cost of Skip Graphs and approximately equal to the search cost of Chord.

Figure 6.7 and Figure 6.8 show the message cost and respectively the bandwidth

cost for Hierarchical Ring of order 2, Skip Graphs of order 2 and Chord. Both costs

show similar trends. The maintenance cost for Hierarchical Ring or order 2 is lower

than that of Chord, which is lower than that of Skip Graphs order 2. This is due to

the fact that all of the Content Routers shown have about the same number of levels

(O(logdP)), where order d is 2 in this case, but Hierarchical Ring require only one

message to stabilize each level, while the Skip Graphs requires an average of O(d)

and Chord requires O(log2P) messages to search for the appropriate entry at each

level of the structure. The regions with higher costs in the graphs correspond to the

periods of stabilization between churn phases, when the stabilization procedures

are run more frequently.

135

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

500

Simulation Time (minutes)

C
on

te
nt

 R
ou

te
r

M
es

sa
ge

 C
os

t

Join Phase Join/Leave Leave Phase

HierarchRing order 2
SkipGraph order 2
Chord

Figure 6.7: Message Cost for Hierarchical Ring, Skip Graphs and Chord

6.8 Data Store Evaluation

We evaluate the following Data Store implementations: Chord Data Store, Online

Balancing and P-Ring Data Store. The performance of the Data Store depends par-

tially on the performance of the Content Router used to route the inserts, deletes,

and sometimes to search for least/most loaded peer. We tested the Chord Data

Store with the Chord finger tables as the Content Router, and the P-Ring Data

Store and Online Balancing with the Hierarchical Ring of order 2 Content Router.

For Online Balancing, we also used Hierarchical Ring to implement the index on

the peers loads, as the Hierarchical Ring provide a better performance than the

Skip Graphs (see Section 6.7). We used the Fibbing algorithm for Online Balanc-

136

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18
x 10

4

Simulation Time (minutes)

C
on

te
nt

 R
ou

te
r

B
an

dw
id

th
 C

os
t Join Phase Join/Leave Leave Phase

HierarchRing order 2
SkipGraph order 2
Chord

Figure 6.8: Bandwidth Cost for Hierarchical Ring, Skip Graphs and Chord

ing, as this provide a better load balance than the Doubling algorithm [GBGM04].

We used a storage factor = 0.8 * nb items/nb peers for P-Ring Data Store, as this

ensures there are few free peers when free peers are needed. The number of items

and the number of peers in the system was estimated as specified in Section 6.3

by aggregating these numbers bottom-up, along the Hierarchical Ring structure,

during the Hierarchical Ring stabilization.

6.8.1 Stable System

We study the performance of the different Data Stores in a system evolving only

due to insertion and deletion of data items. We start the system by inserting 50

137

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

Simulation Time (minutes)

Im
ba

la
nc

e
R

at
io

Insert Phase Insert/Delete Delete Phase

PRing
OnlineHR

Figure 6.9: Imbalance Ratio

peers and no data items. Then, we randomly insert/delete items in three phases:

insert only, insert and delete, and delete only. In each phase we execute 2000

operations, at the 1 operation/second rate. In all our experiments, the items are

inserted according to a specified distribution, default being Zipfian distribution

with domain [1, 65536] and skew parameter 0.5. The items to be deleted are

chosen uniformly at random from the existing items.

The main functionality provided by Data Store is assigning items to peers, in

such a way that the load in almost uniformly distributed. This would mean that

the imbalance ratio is close to one.

Imbalance Ratio Figure 6.9 shows the evolution of imbalance ratio for P-

138

0 50 100 150 200
0

20

40

60

80

100

120

Simulation Time (minutes)

N
um

be
r

of
 B

al
an

ci
ng

 In
vo

ca
tio

ns
Insert Phase Insert/Delete Delete Phase

PRing
OnlineHR

Figure 6.10: Balancing Operations

Ring and Online Balancing. The imbalance ratio for P-Ring is almost always close

to 2, while for Online Balancing, the imbalance ratio is above 2, but below 4.24

for the most part. For both P-Ring and Online Balancing, the imbalance ratio

is temporarily higher at the beginning of the insert phase, and at the end of the

delete phase. There are two reasons for this: first, since we start and end with

no data items, the average number of items is very low at the beginning and end,

and even few items can make a big difference in the imbalance ratio. The second

reason is that the ranges assigned to peers need to adapt to the change in data

distribution. We see that the ranges adapt quickly, so after only a few minutes,

the imbalance ratio is below the theoretical ratio: 2 for P-Ring and 4.24 for Online

139

0 50 100 150 200 250

0

5

10

15

20

Simulation Time (minutes)

D
at

a
S

to
re

 M
es

sa
ge

 C
os

t Insert Phase Insert/Delete Delete Phase

PRing
OnlineHR
Chord

Figure 6.11: Message Cost for Data Store

Balancing.

We notice that at the beginning of the insert phase, the P-Ring adapts faster

than Online Balancing at the new data distribution. We believe this is due to the

original distribution of ranges: for P-Ring, one peer is responsible for the entire

indexing range, while the others are free peers that are not responsible for any

range, while in Online Balancing, each peer is responsible for a random-size range.

Maintenance Cost Figure 6.10 shows the number of re-balancing operations

for P-Ring and Online Balancing. Remember that Chord does not re-balance

when items are inserted or deleted. The general trend is similar for both P-Ring

and Online Balancing. The number of load balancing operations is higher at the

140

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Simulation Time (minutes)

D
at

a
S

to
re

 B
yt

e
C

os
t

Insert Phase Insert/Delete Delete Phase

PRing
OnlineHR
Chord

Figure 6.12: Bandwidth Cost for Data Store

beginning of the insert phase and towards the end of the delete phase, as the

changes in the items in the system are significant and peer ranges need to be

adjusted to the current data distribution. During the insert/delete phase, since

the items inserted follow the same data distribution as the ones inserted during

the insert phase, and the items deleted are chosen uniformly at random between

the existing items, the number of load balancing operations is very small, showing

that the peer ranges are well adjusted to the data distribution (ranges in high-item

density areas are small and ranges in low- item density areas are large), and small

changes in the items do not trigger load-balancing operations.

Figure 6.11 shows the average message cost for the maintenance of the Data

141

0 50 100 150 200 250

0

2

4

6

8

10

12

14

16

18

20

Simulation Time (minutes)

In
se

rt
/D

el
et

e
M

es
sa

ge
 C

os
t

Insert Phase Insert/Delete Delete Phase

PRing
OnlineHR
Chord

Figure 6.13: Message Cost for Item Insert and Delete Operations

Store component for Chord, P-Ring and Online Balancing. Figure 6.12 shows

similar trends for the bandwidth cost, as for the message cost. We expected the

maintenance cost for P-Ring Data Store and Online Balancing to be clearly higher

than for Chord Data Store, due to the re-organization operations: split and merge

in P-Ring, and neighbor adjust and reorder in Online Balancing. However, the

differences in message costs are not as big as expected, especially during the in-

sert/delete phase. This is due to the fact that in the insert/delete phase, there are

very few re-balancing operations, as shown in Figure 6.10. Moreover, Figure 6.13

shows the message cost due to insert and delete messages. By comparing this with

the overall cost of maintaining the Data Store, we see that this message cost is

142

0 50 100 150 200
0

2

4

6

8

10

12

Simulation Time (minutes)

Im
ba

la
nc

e
R

at
io

Insert Phase Insert/Delete Delete Phase

zipf 0.5
zipf 0.75
zipf 1

Figure 6.14: P-Ring Imbalance Ratio

similar for all Data Store implementations, and this cost is a major component of

the maintenance cost.

Skew Parameter Figure 6.14, Figure 6.15 and Figure 6.16 show the evolution

of imbalance ratio for P-Ring, Online Balancing and respectively Chord, as items

with search key values drawn from a Zipfian distribution with skew parameter

0.5 (a little skew), 0.75 (somewhat skew) and 1 (skewed) are inserted and deleted

from the system. For P-Ring and Online Balancing, we see that the distribution

of the data items has no effect on the imbalance ratio. This is due to the fact that

ranges adapt to the distribution, using the re-balancing operations, regardless of

how skewed the distribution is. For Chord, we note that the imbalance ratio is

143

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Simulation Time (minutes)

Im
ba

la
nc

e
R

at
io

Insert Phase Insert/Delete Delete Phasezipf 0.5
zipf 0.75
zipf 1

Figure 6.15: Online Balancing Imbalance Ratio

very high. This is due to the fact that Chord does not re-balance based on the

data items distribution, and ensuring a roughly uniform number of items for each

peer requires running O(log P) virtual peers at each physical peer.

6.8.2 Churn System

In this set of experiments, we study the effects of peer insertions and failures

(”churn”) on the Data Store. For these experiments we start the system by insert-

ing 1 peer and 2000 data items with indexing attribute values following a Zipfian

distribution with domain [1, 65536] and skew parameter 0.5. Then, peers randomly

join/leave the system, in three phases: join only, join and leave, and leave only. In

144

0 50 100 150 200 250
0

50

100

150

200

250

Simulation Time (minutes)

C
ho

rd
 Im

ba
la

nc
e

R
at

io

Insert Phase Insert/Delete Delete Phase

zipf 0.5
zipf 0.75
zipf 1

Figure 6.16: Chord Imbalance Ratio

each phase we execute 50 operations, at the 0.02 operations/second rate.

Imbalance Ratio Figure 6.17 shows the evolution of imbalance ratio for P-

Ring and Online Balancing, as peers join and leave the system. Both algorithms

adapt to the changes in the system, however the imbalance ratio is more variable

than in the item churn case (see Figure 6.9). This is due to the fact that changes

in the peers, where each peer holds many data items, have a bigger impact on the

number of items temporarily stored at each peer. As expected, the imbalance ratio

is lower for P-Ring, than for Online Balancing, P-Ring thus ensuring a better load

balance, at the cost of having a small number of peers temporarily free.

145

0 50 100 150
0

2

4

6

8

10

12

Simulation Time (minutes)

Im
ba

la
nc

e
R

at
io

Join Phase Join/Leave Leave Phase

PRing
OnlineHR

Figure 6.17: P-Ring, Online Balancing Imbalance Ratio - Churn System

Maintenance Cost Figure 6.18 shows the message cost for maintaining the

Data Store component for P-Ring, Online Balancing and Chord. The average

number of messages is higher at the beginning, as the 2000 items are inserted into

the system, and there are only few peers into the system. After the items are

inserted, the average number of messages decreases. Figure 6.20 shows similar

results for the bandwidth consumed for maintaining the Data Store component.

Figure 6.19 and Figure 6.21 show the details of the message and bandwidth cost,

with the highest values eliminated. We see that the Data Store message cost for

Chord is close to zero, after the items were inserted, as Chord Data Store does not

try to re-balance the ranges associated to peers, even if the loads of the peers vary,

146

0 20 40 60 80 100 120 140 160 180

0

50

100

150

200

250

300

Simulation Time (minutes)

D
at

a
S

to
re

 M
es

sa
ge

 C
os

t

Join Phase Join/Leave Leave Phase

PRing
OnlineHR
Chord

Figure 6.18: Data Store Message Cost - Churn System

as peers join and leave the system. The difference in cost between Chord and P-

Ring and Online Balancing comes from the load balancing operations effectuated

by P-Ring and Online Balancing, and represents the cost associated with providing

extra functionality: explicit load balance, as opposed to the implicit load balance

provided by hashing.

6.9 Search versus Maintenance

In the next experiment we determine the tradeoff between search performance and

maintenance cost. Figure 6.22 shows how the search cost of P-Ring, Online Balanc-

ing and Chord varies with the average message cost (including maintenance cost

147

0 20 40 60 80 100 120 140 160

0

5

10

15

20

25

30

35

40

Simulation Time (minutes)

D
at

a
S

to
re

 M
es

sa
ge

 C
os

t

PRing
OnlineHR
Chord

Join Phase Join/Leave Leave
Phase

Figure 6.19: Data Store Message Cost Details - Churn System

for all index components), and Figure 6.23 shows how the search cost varies with

the maintenance cost for the Content Router only. The data points for the graphs

were obtained by varying the ratio of the Content Router stabilization rate to the

ring stabilization rate. The ring stabilization was once in 60 seconds for Chord,

and once in 40 seconds for P-Ring and Online Balancing. We chose these rates

to ensure that the ring remains connected in face of peer churn. The stabilization

rate for P-Ring and Online Balancing is higher than for Chord (the stabilization is

more frequent) because P-Ring and Online Balancing have to deal with splits and

merges, which affect the position of peers in the ring. Figure 6.22 and Figure 6.23

show that in general, the search cost decreases with increased maintenance cost.

148

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5
x 10

5

Simulation Time (minutes)

D
at

a
S

to
re

 B
an

dw
id

th
 C

os
t

Join Phase Join/Leave Leave Phase

PRing
OnlineHR
Chord

Figure 6.20: Data Store Bandwidth Cost - Churn System

This is due to the fact that a high rate of stabilization for the content router leads

to a high maintenance message cost due to many stabilization messages, but a low

search cost since the index is more consistent. On the other hand, when the con-

tent router is stabilized very slowly, the maintenance cost decreases but the search

cost increases. These trends are consistent with the intuition. However, towards

the ”high message cost” end of the graph, we see that both the search cost and

the message cost are high. The reason is that the content router is stabilized at

a higher rate than the ring, which leads to high maintenance cost, but the search

cost does not increase because the ring level is not consistent and therefore the

content router is not consistent. It confirms the intuition that there is no reason

149

0 20 40 60 80 100 120 140 160
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Simulation Time (minutes)

D
at

a
S

to
re

 B
an

dw
id

th
 C

os
t

PRing
OnlineHR
Chord

Join/Leave Leave
Phase

Join Phase

Figure 6.21: Data Store Bandwidth Cost Details - Churn System

to stabilize the Content Router component of the P2P index at a higher rate than

the Fault-Tolerant Ring.

From the graphs we see that the tradeoff for P-Ring and Online Balancing is

similar, since both use the Hierarchical Ring as the content router. The interesting

thing to note, however, is that for a given message cost, the P-Ring offers a better

search performance than Online Balancing, and even Chord. Thus, the P-Ring

offers the best search-message cost tradeoff in a system under churn.

Please note that in all the experiments involving the Online Balancing, the

cost of maintaining an additional index on the load of the peers was not taken into

consideration. That cost is an additional high cost Online Balancing pays when

150

5 10 15 20 25 30 35 40 45
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

Message Cost

N
um

be
r

of
 H

op
s

PRing
OnlineHR
Chord

Figure 6.22: Search Cost vs. Maintenance Cost - Churn System

compared with P-Ring.

6.10 Summary

We have implemented P-Ring and another three P2P index structures proposed

in the literature, Chord [SMK+01], Skip Graphs [AS03a], and Online Balanc-

ing [GBGM04] in the context of our framework. By using the framework, we

were able to perform an apple-to-apple comparison of this structures that provide

slightly different functionalities. Chord shares some common components with

P-Ring, but only supports equality queries. Skip Graphs support range queries,

but only support a single data item per peer. By implementing it as the Content

151

0 5 10 15 20 25 30 35
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

Content Router Message Cost

N
um

be
r

of
 H

op
s

PRing
OnlineHR
Chord

Figure 6.23: Search Cost vs. Content Router Maintenance Cost - Churn System

Router component in a larger P2P index, we could compare it with the P-Ring

Content Router, that provides the same functionality. Similarly, by implement-

ing the Online Balancing as the Data Store component in a larger P2P index, we

were able to compare it with the P-Ring Data Store. In a real distributed study

performed on PlanetLab, we compared the performance of the four index struc-

tures. Our performance results indicate that P-Ring outperforms Skip Graphs in

terms of both query and update cost. P-Ring offers a better load balance than

Online Balancing, at a lower cost. P-Ring outperforms Chord in terms of search

performance and supports a larger class of queries, with a low overhead.

Chapter 7

Conclusions and Future Directions
This dissertation made three main contributions, at the architectural, algorithmic

and implementation level. We proposed a modularized indexing architecture that

cleanly separates the functional components of a P2P index structure. Our frame-

work allows us to reuse existing algorithms, to tailor the index structure to different

application requirements, and to evaluate new and existing algorithms in the same

code base. We introduced P-Tree, a new content router designed to support both

equality and range queries. We also introduced P-Ring, a novel fault-tolerant P2P

index structure that efficiently supports both equality and range queries in a dy-

namic P2P environment — with provable guarantees on search performance in a

stable system, and as opposed to the P-Tree, efficiently supports possibly large

sets of items per peer. We implemented P-Ring and three other existing P2P

index structures in the context of our indexing framework. We performed exten-

sive experiments on PlanetLab, a network of computers distributed around the

world. Our experimental evaluation shows that P-Ring outperforms existing in-

dex structures even for equality queries, and that it maintains its excellent search

performance with low maintenance costs in a dynamic P2P system.

The work presented in this dissertation represents just the first steps towards

building a fully functional P2P database systems. There are many interesting open

issues including dynamic load balancing, support for efficiently processing complex

queries (joins), exploiting physical proximity and adapting to heterogeneous peer

resources.

152

BIBLIOGRAPHY

[Abe01] Karl Aberer. P-grid: A self-organizing access structure for p2p in-
formation systems. In Sixth International Conference on Cooperative
Information Systems (CoopIS 2001), 2001.

[Abe02] Karl Aberer. Scalable data access in peer-to-peer systems using unbal-
anced search trees. In Workshop on Distributed Data and Structures
(WDAS-2002), 2002.

[AS03a] James Aspnes and Gauri Shah. Skip graphs. In SODA, 2003.

[AS03b] Baruch Awerbuch and Christian Scheideler. Peer-to-peer systems for
prefix search. In Proceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 123–132. ACM Press,
2003.

[BAS04] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mer-
cury: supporting scalable multi-attribute range queries. SIGCOMM
Comput. Commun. Rev., 34(4), 2004.

[BGK+02] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu. Data management for peer-to-peer com-
puting: A vision. In WebDB, 2002.

[CGM02] Arturo Crespo and Hector Garcia-Molina. Routing indices for peer-
to-peer networks. In ICDCS, 2002.

[Com79] D. Comer. The ubiquitous b-tree. In Computing Surveys, 11(2), pages
121–137, 1979.

[DGA03] A Daskos, S Ghandeharizadeh, and X An. Peper: A distributed range
addressing space for p2p systems. In DBISP2P, 2003.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Wide-area cooperative storage with CFS. In SOSP, 2001.

[FV02] Michael J Freedman and Radek Vingralek. Efficient peer-to-peer
lookup based on a distributed trie. In Proc. 1st International Work-
shop on Peer-to-Peer Systems IPTPS02, Cambrige, MA, March 2002.

[GAE03] Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi. Approxi-
mate range selection queries in peer-to-peer systems. In Proceedings of
the First Biennial Conference on Innovative Data Systems Research,
Asilomar, California, United States, January 2003.

[GBGM04] Prasanna Ganesan, Mayank Bawa, and Hector Garcia-Molina. Online
balancing of range-partitioned data with applications to peer-to-peer
systems. In VLDB, 2004.

153

154

[GBL+03] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Rob-
bert van Renesse. Kelips: Building an efficient and stable P2P DHT
through increased memory and background overhead. In Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), 2003.

[GHIS01] Steven Gribble, Alon Halevy, Zachary Ives, and Maya Rodrigand Dan
Suciu. What can databases do for peer-to-peer? In Fourth Inter-
national Workshop on the Web and Databases (WebDB’2001), May
2001.

[GSGM03] Prasanna Ganesan, Qixiang Sun, and Hector Garcia-Molina. Yappers:
A peer-to-peer lookup service over arbitrary topology. In INFOCOM,
2003.

[HHB+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham Boon, Thau Loo,
Scott Shenker, and Ion Stoica. Querying the internet with pier. In
Proceedings of 19th International Conference on Very Large Databases
(VLDB), September 2003.

[HHH+02] M Harren, J Hellerstein, R Huebsch, B T Loo, S Shenker, and I Stoica.
Complex queries in dht-based peer-to-peer networks. In Proc. 1st In-
ternational Workshop on Peer-to-Peer Systems IPTPS02, Cambrige,
MA, March 2002.

[HJS+03] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skip-
net: A scalable overlay network with practical locality properties. In
USITS, 2003.

[ICH00] Brandon Wiley Ian Clarke, Oskar Sandberg and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval
system. In In Proc. of the ICSI Workshop on Design Issues in
Anonymity and Unobservability, 2000.

[IRF02] Adriana Iamnitchi, Matei Ripeanu, and Ian Foster. Locating data
in (small-world?) peer-to-peer scientific collaborations. In Proc. 1st
International Workshop on Peer-to-Peer Systems IPTPS02, Cambrige,
MA, March 2002.

[JC92] T. Johnson and A. Colbrook. A distributed data-balanced dictionary
based on the b-link tree. In International Parallel Processing Sympo-
sium, pages 319–325, March 1992.

[JK93] Theodore Johnson and Padmashree Krishna. Lazy updates for dis-
tributed search structures. In Proceedings of the ACM SIGMOD Con-
ference on Management of Data, May, 1993, Washington D.C., pages
337–346, 1993.

155

[JOV05] H.V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. Baton: A bal-
anced tree structure for peer-to-peer networks. In VLDB, 2005.

[JSHL02] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. Garlic:
a new flavor of federated query processing for db2. In SIGMOD, pages
524–532. ACM Press, 2002.

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke. Computing aggre-
gate information using gossip. In FOCS, 2003.

[KJ94] Padmashree A. Krishna and Theodore Johnson. Index replication in
a distributed b-tree. In COMAD, 1994.

[KK03] M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-
optimal distributed hash table. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

[KW94] Brigitte Krll and Peter Widmayer. Distributing a search tree among a
growing number of processors. In Proceedings of the 1994 ACM SIG-
MOD International Conference on Management of Data, Minneapolis,
Minnesota, 1994, pages 265 – 276. ACM Press, 1994.

[LCGS05] Prakash Linga, Adina Crainiceanu, Johannes Gehrke, and Jayavel
Shanmugasundaram. Guaranteeing correctness and availability in p2p
range indices. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data. Baltimore, MD, June 2005, 2005.

[LdS01] Carl Lagoze and Herbert Van de Sompel. The open archive initiative:
Building a low-barrier interoperability framework. In JCDL, 2001.

[LNS93] Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. Lh*
- linear hashing for distributed files. In Peter Buneman and Sushil
Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, D.C., May 26-28,
1993, pages 327–336. ACM Press, 1993.

[LNS94] Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. Rp*:
A family of order preserving scalable distributed data structures. In
Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, VLDB’94,
Proceedings of 20th International Conference on Very Large Data
Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 342–
353. Morgan Kaufmann, 1994.

[Lom96] David B. Lomet. Replicated indexes for distributed data. In Proceed-
ings of the Fourth International Conference on Parallel and Distributed
Information Systems, December 18-20, 1996, Miami Beach, Florida,
pages 108–119. IEEE Computer Society, 1996.

156

[LS00] Witold Litwin and Thomas Schwarz. Lh*rs: A high-availability scal-
able distributed data structure using reed solomon codes. In Weidong
Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, Proceed-
ings of the 2000 ACM SIGMOD International Conference on Man-
agement of Data, May 16-18, 2000, Dallas, Texas, USA, volume 29,
pages 237–248. ACM, 2000.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. In Proceedings of the twenty-
first annual symposium on Principles of distributed computing (PODC
’02), 2002.

[Pla] Planetlab home page - http://planet-lab.org.

[PM02] V. Papdimos and D. Maier. Distributed queries without distributed
state. In WebDB, 2002.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware, volume 2218 of Lecture Notes in Computer Science, pages
329–350. Springer, 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. In Proceedings
of the ACM SIGCOMM ’01 Conference, San Diego, California, August
2001.

[Sha03] Gauri Shah. Distributed Data Structures for Peer-to-peer Systems.
PhD thesis, Yale University, 2003.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the ACM SIGCOMM ’01
Conference, San Diego, California, August 2001.

[VPT03] David Maier Vassilis Papadimos and Kristin Tufte. Distributed query
processing and catalogs for peer-to-peer systems. In CIDR, 2003.

[weba] Gnutella website. http://www.gnutella.com/.

[webb] Kazaa website. http://www.kazaa.com/us/index.htm.

[webc] Morpheus website. http://www.morpheus.com/.

[webd] OpenNap website. http://opennap.sourceforge.net/.

[WSNZ03] Lee Tan Wee Siong Ng, Beng Chin Ooi and Aoying Zhou. Peerdb: A
p2p-based system for distributed data sharing. In ICDE 2003, 2003.

157

[YGM02] Beverly Yang and Hector Garcia-Molina. Efficient search in peer-to-
peer networks. In ICDCS, 2002.

[ZKJ01] Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: an
infrastructure for fault-taulerant wide-area location and routing. In
Technical Report UCS/CSD-01-1141, U.C.Berkeley, 2001.

