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Abstract items per peer. Such an index structure could be used by
sophisticated P2P database applications such as digital li-

port a subset of the desired functionality for P2P database braries [22]. We are not aware of any other. eX|s_t|ng index
systems. For instance, some P2P index structures suppor?truqture thatsgpports all of the above functionality in a dy-
equality queries but not range queries, while others support hamic P2P environment.

range queries, but do not support multiple data items per ~ When designing P-Ring we were faced with two chal-
peer or provide guaranteed search performance. In this pa- lenges. First, we had to distribute data items among peers
per, we devise a novel index structure called P-Ring that in a such a way that range queries could be answered ef-
supports both equality and range queries, is fault-tolerant, ficiently, while still ensuring that all peers had roughly the
provides guaranteed search performance, and efficientlysame number of data items (for storage balance). Existing
supports large sets of data items per peer. We are not awaretechniques developed for equality queries are not applica-
of any other existing index structure that supports all of the ble in our scenario because they distribute data items based
above functionality in a dynamic P2P environment. In a On their hash value; since hashing destroys the order of the
thorough experimental study we evaluate the performancedata items, range queries cannot be answered efficiently. We
of P-Ring and quantify the performance trade-offs of the thus need to devise a scheme that clusters data items by their
different system components. We also compare P-Ring wittflatavalue and balances the number of data items per peer

two other P2P index structures, Skip Graphs and Chord. ~ even in the presence of highly skewed insertions and dele-
1. Introduction tions. Our first contribution is a scheme that provably main-

tains a maximum load imbalance factor of at mbste be-

Pegr-to-peer (P2P) _systems are emerging as a New qcen any two peers in the system, while achieving amor-
paradigm for structuring large-scale distributed sys- .. . . .
tized constant cost per insertion and deletion.

tems. The key advantages of P2P systems are their scalabil-
ity, due to resource-sharing among cooperating peers, their Our second challenge was to devise a query router that
fault-tolerance, due to the symmetrical nature of peers,is robust to failures and provides logarithmic search perfor-
and their robustness, due to self-reorganization after fail-mance even in the presence of highly skewed data distribu-
ures. Due to the above advantages, P2P systems have madi@ns. Our P-Ring router is highly fault-tolerant, and a router
inroads for content distribution and service discovery ap- Of orderd provides guarantee@(log,(P)) search perfor-
plications [1, 33, 29, 30]. However, most existing sys- mance in a stable system withpeers. Even in the presence
tems only support location of services based on their name Of highly skewed insertions, we can guarantee a worst-case
i.e., they only support equality queries. search cost o)(z - d - log,(P)), wherex is the number of

In this paper, we argue for a much richer query Seman_mserﬂon; per stablllzauon.umt of the router (we will for-
tics for P2P systems. We envision a future where usersMally define all terms later in the paper).
will use their local servers to offer services described by In a simulation study, we compare the performance of
semantically-rich XML documents. Users can theprery PRing to an extension of SkipGraphs [2], the only other
this “P2P service directory” as if all the services were reg- P2P router that we are aware of that provides provable
istered in one huge centralized database. As a first step tosearch guarantees for range queries over arbitrary ordered
wards this goal we propose P-Ring, a new distributed fault- domains. Our performance results indicate that P-Ring out-
tolerant index structure that can efficiently supp@mge performs the above extension of Skip Graphs in terms of
queriesin addition to equality queries. P-Ring is fault- both query and update cost. Surprisingly, P-Ring sometimes
tolerant, gives guaranteed logarithmic search performanceoutperforms Chord, an index structure designed for equal-
in a consistent system, and supports possibly large sets ofty queries, even in the case of equality queries.

Current peer-to-peer (P2P) index structures only sup-
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Fault Tolerant Ring getSuccessor()
joinRing(knownPeer) tively, pred (p)) to be the peer adjacent {oin a clock-
leaveRing() wise (resp., counter-clockwise) traversal of the ring. Fig-
ure 2 shows an example of a Fault Tolerant Ring. If pger
Figure 1. Indexing Framework fails, then the ring will reorganize such thatcc(ps) = p2,
so the peers remain connected. Figure 1 shows the ring API.
. When invoked on a pees, p.getSuccessor returns
2. System Model and Architecture the address ofucc(p). p.joinRing(knownPeer) in-
2.1. System Model sertsp into an existing ring by contactingnownPeer .

A peeris a processor that has some shared storage spacg.leaveRing  allows p to gracefully leave the ring (of
and some private storage space. The shared space is used gourse,p can leave the ring without callingaveRing
store the distributed data structure for speeding up the evaludue to a failure). In our implementation of P-Ring, we use
ation of user queries. We assume that each peer can be iderchord’s Fault Tolerant Ring [33].

tified by a physical id, which can be its IP address. We also pata Store: The Data Store is responsible for distributing
assume a fail-stop model for peer failuresPRP system  gata items to peers. Ideally, the distribution should be uni-
is a collection of peers. We assume there is some underlysorm so that each peer stores about the same number of
ing network protocol that can be used to send messages reitems, thereby achieving storage balance. The Data Store
liably from one peer to another with bounded delay. A peer provides API methods to insert and delete items into the
can join a P2P system by contacting some peer that is al-system. One of the main contributions of this paper is a
ready part of the system. A peer can leave the system at anyew Data Store for P-Ring, which can effectively distribute

time without contacting any other peer. data items even under highly skewed insertions and dele-
We assume that each data item stored in a peer exposegons (see Section 3).

:s;:(;cg kter?;\;aI:tz?an?/iiﬁtﬂltylc?srg?)rm‘we?]zrrr;?iltn tcvit;i;Z'meContent Router: The Content Router is responsible for ef-
y Y ) : gen Y ficiently routing messages to peers that contain data items
that search key values are unique (duplicate values can b

made uniaue by apoending the ohvsical id of the peer where atisfying a given predicate. The second major contribution
que by app g the phy he p of this paper is a new Content Router that can route range
the value originates and a version number; this transforma-

L . ; . . ueries efficiently (see Section 4).
tion is transparent to users). Peers inserting data items m'[oﬁI y( )

the system can retain the ownership of their items. In this Replication Manager: The Replication Manager ensures
case, the data items are stored in the private storage partitiofhat items assigned to a peer are not lost if that peer fails. For
at the peer and only pointers to the data items are inserted®-Ring, we use the Replication Manager proposed in [7].
into the system. In the rest of the paper we make no distinc-p2p Index The P2P Index is the index exposed to the end
tion between data items and pointers to the data items.  user. It supports search functionality by using the function-
2.2. System Architecture ality of the Content Router, and supports item insertion and
We have implemented P-Ring in the context of the PEP- deletion by using the functionality of the Data Store.
PER system [5], which provides a modular framework for 3. P-Ring Data Store
implementing new P2P index structures (Figure 1). We now  qna of the main challenges in devising a Data Store
describe the relevant components of the framework. for P2P range indices is handling data skew. Ideally we
Fault Tolerant Ring: The Fault Tolerant Ring connects the would like the data items to be uniformly distributed among
peers in the system along a ring, and provides reliable con-the peers so that the storage load is nearly evenly dis-
nectivity among these peers even in the face of peer fail-tributed among the peers. Most existing P2P index struc-
ures. For a peep, we can define theucc(p) (respec-  tures achieve this goal by hashing. Data entries are assigned



to peers based on the hash value of their search key. Sucllgorithm 1 : p.split()
an assignment has been shown to be very close to a uniform 1. / = getFreePeer ();
distribution of entries with high probability [29, 30, 33, 36].  2: if p/ == null then
However, hashing destroys the value ordering among the 3.  return;
search key values, and thus cannot be used to process range;: end if
queries efficiently (for the same reason that hash indices s: //execute the split
cannot be used to handle range queries efficiently). 6: splitItems = p.own.splitSecondHalf()
Since P-Ring is designed to support range queries, we as- 7: splitV alue = splitItems[0];
sign data items to peers directly based on their search key 8: split Range = p.range.splittast(  splitValue) ;
value. In this case, the ring ordering is the same as the searchg: p':;joinRingMsgHandler  (p,splitItems,splitRange);
key value ordering wrapped around the highest value. The
problem is that now, even in a stable P2P system with NO Algorithm 2 :  joinRingMsgHandler  (p,
peers joining or leaving, some peers might become highly splitItems, splitRange)
overloaded due to skewed data insertions and/or deletions——; — 5
. . L 1: p'.range = split Range;

We need a way to dynamically reassign and maintain the _ o X

. . 2: p'.own = splitltems;
ranges associated to the peers. The next section presents, ' ringNode.joinRing  (p);
our algorithms for handling data skew. In concurrent work, '

Ganesan et al. [11] also propose a load balancing SChem(i’ributesits items withp, or gives up its entire range foand
for data items where they prove a bound of 4.24 for stor- ;. .omes dree peer We propose an extension to this ba-

age imbalance with constant amortized insertion and dele-gi. scheme in Section 3.3. where we use the free peers in

tion cost. Our P-Ring Data Store achieves a better storagéne system to help balance the load amongst all the peers
balance factor of2+¢) with the same amortized costforin-  g,ch tha the ratio between the load on the most loaded peer
sertions and deletions. to the load on the least loaded peer is bounded by a small
3.1. Handling Data Skew constant.

The search key space is ordered on a ring, wrapping  An Example. Consider the Data Store in Figure 3 which
around the hlghest value. The Data Store partitions this ringshows the free peer@d andp7), and the ranges and key
space into ranges and assigns each of these ranges to a difajues of entries assigned to the other peers in the system
ferent peer. Lep.range = (p.l,p.u] denote the range as- (range(5, 10] with data entries with search keyisand 8
signed top. All the data entries in the system whose search are assigned to peei etc.). Assume thatf is 1, so each
key lies inp.range are said to bewned by p. Letp.own peer in the ring can have 1 or 2 entries. When a data en-
denote the list of all these entries. Liptrange| denote the  try with search key is inserted into the system, it will be
number of entries ip.range and hence ip.own. Thenum-  stored ap,, leading to an overflow. As shown in Figure 4,
ber of ranges is less than the total number of peers in thethe range(5, 10] is split betweerp; and the free peeps.
system and hence there are some peers which are not as;; becomes the successor f on the ring andpg is as-
signed any ranges. Such peers are calted peersLet  signed the ranggs, 10] with data entries with search keys
p.ring N ode refer to the Fault Tolerant Ring component of gndo.
the P-Ring at peep. _ Split. Algorithm 1 shows the pseudo-code of it al-

Analogous to B+-tree leaf page maintenance, the numbergorithm executed by a pegtthat overflows. We use the no-
of data entries in every range is maintained between bOU”df’tationp::fn() when functionfn() is invoked at peep. Dur-

Ib = sf andub = 2 - sf_,l wherest is the "storage fac-  ing a split, peep tries to find a free peer and transfer half
tor”, a parameter we will talk mqre about in Section 3.2. of its items (and the Corresponding rangepto(The de-
Whenever the number of entriesiis Data Store becomes  tails of how a free peer is found are given in the next sec-
larger thanub (due to many insertions intp.range), We  tion.) After p’ is found (line 1), half of the entries are re-
say that amoverflowoccurred. In this case,tries tosplit its moved fromp.own andp.range is split accordingly. Peer

assigned range (and implicitly its entries) with a free peer. ;, then invites the free pegf to join the ring as its succes-
Whenever the number of entriesifs Data Store becomes  sor and maintaip’.range. The main steps of the algorithm

smaller thanlb = sf (due to deletions from.range isre-  executed by the free pegf are shown in Algorithm 2. Us-
sponsible for), we say that amderflowoccurred. Peep ing the information received from, p’ initializes its Data
tries to acquire a larger range and more entries from its suc-sigre component, the Ring component and the other index
cessor in the ring. In this case, the successor ertuis- components above the Data Store.

Merge and Redistribution. If there is an underflow at
1 Afactor larger than 2 for the overflow condition is used in the exten- peerp, p executes the merge algorithm given in Algorithm
sion to this scheme proposed in Section 3.3 3. Peerp invokes theinitiateMergeMsgHandler
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Algorithm 3 : p.merge()
1: //send message to successor and wait for result
2: (action,newRange,newltemsList) =
p.ringNode.getSuccessor()::
initiateMergeMsgHandler (p, |p-rangel);
3: p.list.add (newltemsList);
4: p.range.add (new Range);

Algorithm 4 :  (action,newRange, newltemsList)
p'.initiateMergeMsgHandler (p,numlItems)
1: if numlItems + p’.size > 2 - sf then
/Iredistribute
computenbltemsT oGive,
splitItems = p’.list.splitFirst (nbltemsToGive);
splitValue = splitltems.lastValue() ;
split Range = p’.range.splitFirst (splitV alue);
return fedistribute splitRange,splitItems);
else
/Imerge and leave the ring

XN RAWDN

10:  splitltems = p'.list;
11:  splitInterval = p'.range;
12:  p'.ringNode.leaveRing() ;

13:  return fnerge, split Range, splitltems);
14: end if

function on its successor on the ring. The successor send
back the action decidednerge or redistribute ,
a new range newRange and the list of entries
newltemsList that are to be re-assigned to pedtine 2).
p appendsiew Range t0 p.range and newltemsList to
p.own.

The outline of theinitiateMergeMsgHandler
function is given in Algorithm 4. The invoked peer,
p’ = succ(p), checks whether a redistribution of en-
tries is possible between the two "siblings” (line 1). If

Example Let us consider again Figure 3 and assume that
item with search key valu® is deleted from the system. In
this case, there is an underflow at pggiand peemp, calls
initiateMergeMsgHandler in ps. Sinceps has only
one item, redistribution is not possible. Pegrsends its
data entry top, and becomes free. As shown in Figure 5,
peerps now owns the entries in the whole rangs, 5].

3.2. Managing Free Peers

Recall that free peers are used during splits and are gen-
erated during merge. There are three important issues to be
addressed when managing free peers. First, we should have
a reliable way of “storing” and finding free peers. Second,
we need to ensure that a free peer exists when it is needed
during split. Finally, even though free peers do not have a
position on the ring, they are a part of the system and should
be able to query the data in the system.

To solve the first issue, we create an artificial entry
(L, p’.physicalld) for every free peep’ , where L is the
smallest possible search key value. This artificial entry is in-
serted into the system like any regular entry. Using this im-
plementation, storing or removing a free peer is similar to
inserting or respectively removing a data item from the P2P
system. When a free peer is needed, an equality search for
L isissued. This search is processed as a regular user query
gnd the result is returned to the peer issuing the request.

To ensure that a free peer exists when needed during
split, we employ the following scheme: 1&f be the num-
ber of entries in the system amdbe the number of peers
in the system. If we setf= [N/n]|, a free peer is guar-
anteed to exist in the system any time an overflow occurs.
sf can either be estimated in a very conservative way so
that a free peer always exists when needed, or can be ad-
justed from time to time by estimatiny andn using back-
ground gossip style aggregation, say like in [19].

yes, it sends some of its entries and the correspond- To solve the final issue, each free peer maintains a list of

ing range ta. If a redistribution is not possible] gives up
all its items and its range tdg, and becomes a free peer.

non-free peers so that it can forward any query it receives to
one of the non-free peers to be processed.



3.3. Load Balancing using Free Peers

¥ F — N be a function defining the helper peer assign-

Though the scheme proposed in the previous sectiongnents. For a non free peer € N, let H(p) = {qlq €
maintains the number of entries owned by each peer within¥%(¢) = p}; i.e., H(p) is the set of free peers assigned
strict bounds, there are some peers who do not store anyo p- Note thatR andp completely define the set§” and
of the data entries. So in a true sense there is no “load bal-* and also define which non free peerc A ownseach
ance” amongst the peers. In this section we propose an exfange on the ring space (thus definjnguwn). Also, for ev-
tension to the basic scheme, which uses the free peers t&Y peerg € P, R andp coupled withy) completely define
help “truly” balance the load on the peers. The extended Which rangey responsiblefor (thus definingg.resp). Note
scheme proposed is provably efficient, i.e., every insert andthat though free peers are responsible for ranges on the ring,
delete of a data entry has an amortized constant cost. Alsghe successor and predecessor of a non free peer are still de-
the load imbalancedefined as the ratio of the load on the fined in terms of the ownership, i.e., as defined in terms of
most loaded peer to the load on the least loaded peer, is® andp. We call the tuplg(R, p, ) as aconfigurationof
bounded by a small constant. We inform the reader that thethe system data store.
system evaluated in the experiments does not implement

these extensions to the basic scheme.
As a first step toward the algorithm, observe that if we

Definition 1 (Load Imbalance) Consider a configuration
of the data storéR, p, ). This completely defines then

assign data entries to free peers too in some clever way?"d7esp Sets for each pegr € P. We define théoad im-

while maintaining the strict bound$ andub on the num-

ber of entries assigned, we should be able to bound the

load imbalance by the rati%. Inspired by this observa-
tion, we introduce the concept of “helper peers”. Every
free peer is obliged to “help” a pegralready on the ring.
The free peer helpg by managing some part gfrange
and hence some of the data entries ownedgbif p has

k helpersq, gs, . .., qx, p.range = (l,u] is divided into

(I = bo, b1], (b1, b2], ..., (bk,u] such that each of the ranges
has equal number of entries. Peeis now responsibleor
(b, u|. Each ofp’s helpers,g;, becomesesponsiblefor
one of the other ranges, séy;_1,b;]. Call the list of en-
tries peerq is responsiblefor to be g.resp and call the
corresponding rang@range,.sp. All queries dealing with
g.rangeresp Will reach . However, these helpers do not
own any entries. Any inserted or delete that reaghisgor-
warded to the pees which actually owns the range apd
will see to that all the entries it owns are always evenly di-
vided amongst the helperg.is also the one that initiates
the load balancing algorithm, based on the entrigg,in].
Note that if a non free peer has no helpersange,csp, =
p.range, andp.resp = p.own.

Let us set up some notation. Consider a set péerspP.

Consider aring ordered key space and some multi-set of key12:

values on it. Consider a partitioR of the ring,|R| < n,
such thatv(l,u] € R, b < [(l,u]] < ub, ¥ > 2. Let
p : R — P be a 1-1 map defining the assignment of
ranges to peers. For evet}u] € R, p = p((l,u]) im-
pliesp.range = (I, u] andp.own is the set of entries which
lie in (I,u]. We can redefine theucc andpred of p in
terms of the ranges iR andp as follows:p; = succ(p)
if p = p((l,u]) andp; = p((l1,u1]) andly = w. Simi-
larly, p, = pred(p) if p = p((I,u]) andps = p((l2, u2])
anduy = .

The set\V = (p(R)) is the set of non free peers in the
system. The sef = P \ N is the set of free peers. Let

balanceas

maxpep |p.resp|
miny,ep |p.resp|

The extended scheme, which we call AlgorithexT-
LOADBALANCE has three load balancing operations:
Split Operation:

CONDITION: A non free peep splitswhen|p.own| > ub;

i.e., the number of entries owned pyreached the upper
boundub. This operation requires the existence of a free
peer, which is guaranteed by Lemma 1.

ALGORITHM:

o if |p.own| < ubthen

return;

: end if

. llexecute the split

if H(p) == 0 then

q = findFreePeer();

p.set Helper Peer(q);
else

q = some peer irH(p);

- end if

11: //now p has at least one helper peer

splitItems = p.own.splitSecondHalf() ;
splitValue = splitItems|0];

splitRange = p.range.splitLast( splitValue) ;
g::;joinRingMsgHandler  (p,splitltems,split Range);
if H(p) \ {q}!=0then

transfer half the helpers fromto ¢ to getH’(p) and

H'(q);
end if
19: redistributep.own amongstH’ (p);

20: rdistributeq.own amongstH’(q);

PURPOSE The split operation enforces an upper bound on
the number of items owns by a non free peer. Also, as shown
in Theorem 2, after a splith < |p.own|, |g.own| < ub.

[
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Merge Operation:
CONDITION: When a non free pegrowns< [b entries, it

ance is defined as the imbalancepinesp for all p € P.
This operation bounds the load imbalance between two

either tries to get some entries from its neighbors (succes-peersp andq, where at least one of them is a free peer, by
sor or predecessor), or gives up the entries to its predecessdty/1 + 4 (see Theorem 2). Note thatbwn does not change

and becomes free. The former case, calledrélaéstribute
happens ifp has a neighbor on the ring (successor or pre-
decessor) which owns at Iea%t entries. The latter, called
mergehappens when neither pk neighbours have at least
b entries.
ALGORITHM:
1: if [p.own| > lbthen
2:  return;

- end if
p1 = succ(p),
p2 = pred(p);
op MERGE,
L if |p1.own| > % then

q = p1; op = REDISTRIBUTE
else

if |p2.own| > %b then

q = p2; op = REDISTRIBUTE
else
q = p2; op = MERGE

end if
end if
if op = REDISTRIBUTEthen

transfer“ — £ entries fromg.own to p.own;

redistribute newp.own amongstH(p);

redistribute nevg.own amongstH(q);
else

g.own = q.own + p.own,
22 p.leaveRing();
23 H(q) = H(g) UH(p) U{p};
24; end if

© ® N TR ®
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PURPOSE Themergeoperation ensures that the number of
items owned by a peer does not fall belthwAlso, as shown
in Theorem 2, after a redistributé, < |p.own/|, |g.own| <

ub, and after a mergeédh < |g.own| < ub.

Usurp Operation:
CoNDITION: Consider a non free pegi € N, and a free
peerq € F, ¢¥(q) = p2. Given a constan, if |p;.resp| >
2v/1 + 0]q.resp|, thenp,; canusurp the free peeg and set
q as its helper peer.
ALGORITHM:
: find least loaded free peer(v(q) = p2);
if |p1.resp| > 2(v/1+ 0)|g.resp| then
p1.set Helper Peer(q);
redistributep; .own amongst its new set of helper;
redistributeps.own amongst remaining helpers;
end if

IR SR o

PURPOSE The first two operations only talk about bound-
ing entries owned by non free peers. However, load imbal-

for any non free peer due tousurp operations.

The algorithmExTLOADBALANCE performs the appro-
priate operation when the appropriate condition is met. We
assume that in thesurp operation, a non free peer can eas-
ily find the least loaded free peer and updates are reflected
immediate. This could be implemented by building an in-
dex on the load of free peers. We do not elaborate on this
aspect here.

Let us revisit now the issue of setting the upper and lower
bounds. In the basic scheme discussed in the previous sec-
tion, we setlb = sf andub = 2sf. Since we needed
free peers to exist whenever a peer needed to split, we set
sf= [N/n], wheren = |P| and N is the total number of
entries in the system; i.eo{d—1) < N < nd, for some in-
tegerd impliessf = d. If due toinsertsN > nd, sf should
be updated tdd + 1) and if due to deletesy < n(d — 1),
sf should be updated t@ — 1).

In algorithm EXTLOADBALANCE, for efficiency rea-
sons (see Theorem 3), we negld > 2sf. Henceforth, we
assume thatb = d andub = (2 + €)d for some con-
stante > 0. In EXTLOADBALANCE, if due to inserts,

N > nd, we setsf to (d + 1). But, for efficiency rea-
sons (see Theorem 3), we do not updateo (d — 1) until

N < n(d—1—~), for some positive constant< 3. Hence,

Ib = dimpliesn(d—1—+) < N < nd. This change, how-
ever, maintains the property that there are free peers avail-
able whenever a peer wants to split (see Lemma 1).

Lemma 1 Whenever algorithnEXTL OADBALANCE per-
forms thesplit operation, there exists a free peer in the sys-
tem.

Proof. Letib = d. Thenub > 2d. Suppose there are no free
peers when algorithnEXTLOADBALANCE wants to per-
form a split operation. Since there is a peer ownibgen-
tries, the total number of entries in the systé¥,is at least
(n —1)d+ 2d; i.e., N > nd. However,ub andib are set
such that, iflb = d, thenn(d — 1 —v) < N < nd. This
leads to the required contradiction. ]

Definition 2 (Valid Configuration) Letn be the number of
peers andN the number of entries in the system. Let con-
stantsy < % (b andub be such tha’% >2andlb = dim-
pliesn(d — 1 —v) < N < nd, A configuration described
by the tuple(R, p, v) is said to be avalid configurationif

for some positive constaiit the ownership and responsi-
bility assignments completely defined by the configuration
satisfy:

1. Ownership Validity b < |p.own| < ub for all non
free peerp € NV, and



2. Responsibility Validity if there are free peers in the e Distributing entries amongst helper peers: this happens

system and; € F is the free peer responsible for whenever the set of entries owned by a peerthe set
the least number of items, any pegeris such that of helpersH(p) changes|p.own|, the number of items
Ip.resp| < 24/1 4 d|q.resp. which have to be distributed amongst the helpers, is

a very conservative estimate on the number of entries

We can bound the maximum number of helper peers as- moved around.

signed to a non free peer to a constajft? in a valid con-

figuration (see Lemma 2). e Load Information: Our algorithm requires non-local
] . ) information about the least loaded free peer. We as-
Lemma 2 _In a valid configuration, the_ number of helper sume that this comes at zero cost.
peers assigned to a non free peers is at mgstid = Under thi del he following effici
b nder this cost model, we prove the following efficieny re-
492 /1+6 - 1. i P 9 y

Proof. Consider a non free pegrowning?¢ = |p.own| en-

tries and having: helpersp and each of its helpers are re- Theorem 3 (Efficiency) Starting from an initial configura-
sponsible forﬁ entries. Since the current configuration is 10N defined bY(Ro, po, ¥0), for every sequence of item
valid, we have that any other pegin the system is respon-  inserts and deletes, i > 2(1 + ¢) for somee > 0, the se-
sible for at most£-21/T + 0 entries. LetV denote the to- ~ quence ofplit, mergeand usurpoperations performed by

tal number of items in the system. We know that algorithm EXTLOADBALANCE for any prefix ofo is such
that the amortized cost of an insert or a delete operation in
N>n(lb—1—-7) that prefix ofo is a constant.
Also. from the above discussion Before we go on to prove the theorems, we define a

potential ® associated with every configurati¢R, p, v).

We will use this potential to prove the above stated theo-
rems. Henceforth, we will assume that= d andub =

(2 + €)d for somee.

From the above two equations, we have
Definition 3 (Potential) We define for each configuration
h < ¢ WI+s < 415@ ('R,.p,w) a potential® = &, + ®,., where®, and ®,. are
Ib—2 lb defined as follows:
[ | The OwnershipPotential ®, = _ p $o(p), Where for
We are now ready to state the main theorems regardingsome constant,,
the correctness, load imbalance and the efficiendgorf-

LOADBALANCE. 0 p & N (free peer)
_  (ly — [p.own|)®  d < |p.own| <l

Theorem 1 (Correctness)Starting from any initialvalid Po(p) = 0 lo < |p.own| < ug
configurationdefined by(Ry, po, 1), for every insert or  (|p.own| —up)* up < |p.own| < (2+ €)d
delete operation, algorithrEXTLOADBALANCE performs €

. ) . lo = (14+-)d
a finite sequence dplit, mergeand usurpoperations and 4
results in a valid configuration. w = (24 %)d

Corollary 1.1 Starting from a valid configurationExT- o _
LOADBALANCE fixes a violation due to an insert or a  1h€ ResponsibilityPotential @, = 3 p ¢r(q), Where
delete by performing at most omglit or onemerge oper- for some constant,

ation followed by a constant number@furp operations. r )
_ ¢r(a) = — (lg-respl)
Theorem 2 (Load Imbalance) The algorithm always re-

turns to a valid configuration and hence the load imbalance  We now quantify the change in the ownership and re-
is at mostmax 7—5, 2vV1+96 sponsibility potentials on an insert, a delete and respectively
Our cost model is very similar to the one used in Gane- a single load balancing operation. Defide, ® (and re-

san et al. [11]. There are three major components to the cos .peCt'Velonp(I)o andAoP@T) fo be the decrease in poten-
involved: ial ® (¢, and ®,., respectively) due to one of the above

stated operations.
e Data Movement: we model this cost as being linear Insert: Due to an insert, an entry is inserted iptown for
in the number of entries moved from one peer to the somep and inserted intq.resp for someqg € H(p) U {p}.
other. Hence,¢,.(p) will increase andp,(p) will increase when



ug < |p.own| < (2+ €)d. Hence, the minimum decrease in peers are distributed amongsandq evenly. In this case,
® occurs when botlp,.(¢) and¢,(p) increase and this de- the responsibilities change only when the number of helpers

crease is apart fromg (|H(p) \ {¢}|) is odd, say2h + 1. This is be-
Co . Co , causethél+ 5)d entries inp andq are distributed amongst
Ains®o = E(\p-me —up)” — E(Ip.ownl +1—wuo) h+ 1 andh + 2 peers respectively. In this case the decrease
_ _%(z‘p_owm 41— 2u) in @, would be
Co 3e e (24 €)d\>
> ——(2(2 1—-2(2+ — ) = -
> cd(e( +e)d + 2+ 4)d) Aspiit @, (2h+3)d (2h+3)
> —2(=d+1 ¢ 2
R cde(2d+ ) _(h_|_1)ﬁ w
> —% d\ h+1
Cr Cr €
Ains®r = E(|Q-r65p|)2 - E(‘Q-Tesﬂ + 1)2 —(h+ Q)CL (1 + 5) d
Cr d h+2
= ——(2|q.resp|+ 1)
& o & ((2+9d°  (2+9d)?
2 ——22+agd+1) = d\ 4h+2) 4(h +1)
> =22+ €)e, B 9 1 B 1
= «2+ed (4(h T2 A1)
Co€ cr(2+ €)?
Apps® > 9 2(2 + G)Cr (1) 4(h + 1)(/1 + 2)
. cr(2+€)?
Delete Due to a delete, an entry is deleted fremwn for Agpiit®, > ————>d
some non free pees and deleted frony.resp for some 8
q € H(p) U{p}. Like in the insert case, the minimum de- Whenp does not have any associated helper peers, say
crease in® occurs when both,.(¢) and ¢,(p) increase.  takes ovemps's helperg. Let, h = |H(p2)|, £ = |p2.own|.
Here,¢,(p) increases whed < |p.own| < lj. We have,
Co Co Cr € 2
Aga®s = (o = |pownl)® = (o — (pown| = 1)*  Agudr(p) = = (((2 +e)d)? — ((1 + 5) d) )
C
= —2(2lp — 2|p.own| + 1) ¢\ 2
d Ao - & () _ €
spli ¢7‘ q - 1+ d
> _%0(2(14_2)(1_,_1_2(1) piit@r(a) d 1+h (( 2) )
Co , €
> —g(§d +1) Vao(# q) € H(p) U {p2},
> Cp€ 2 2
s s = 5 (s4z) (1)
split®r(q2 =
Aga®, = %(|q.resp|)2 - %(|q.resp| +1)2 pliedr(@2) d < L+h h
> —2(2+e€)c e (1 2 e e
= v Agian®, = — [ =((2 -
split *'r d (2(( +€)d) + 1+h h
Cot o (2 + €)d)? 3 72
Aga® > —7—2(24—6)@ 2 = 3 ( 5 h(h+ 1)
2 2
Split: First let us look at the decrease in the ownership po- > % (((2 +2€)d) - (2 Ir 62)d) )
tential A4, ®,. During a split, a peep owning|p.own| = > 0 '
(2 + €)d entries, gives half of its entries to a free peeAf- -
ter the split, bottp andg own (1 + §)d items. Hence, the Hence the minimum decrease in the potential due to a
final ownership potentials gf andq are0. Also, the ini- splitis
tial ownership potential of is 0 since before the splitwas .
a free peer. Agpin® > co(z)gd (3)
Agprit®o > %((2 +e)d —up)? = Co(i)zd Merge: REDISTRIBUTE Let us first quantify the decrease

in ownership potential. A peer which owns|p;.own| = d
Next, consider the change in the responsibility potential. entries gets;d entries fromp, which owns at leastl + 5 )d
WhenH(p) # 0, q is chosen fronH(p) and the helper  entries. Before the redistributél + 5)d < [pz.own| <



(2 + €)d. Hence, after the redistribute, we haiet §)d <
[p2.own| < (2 + 3¢)d. Hence p,'s final ownership poten-
tial is 0. Also, p;’s final ownership potential i§ since it
will now have (1 + {)d entries. Sincep,’s initial poten-
tial could have beef, the minimum decrease in ownership
potential is given by

€\2
pi = 00(4) d
For the change in the responsibility potential,
|H(p1)| = h1 and |H(p2)| = he. Let |p2.own| = L.
We have,

Aredwfq) (ZO - d)2

let

Vg1 € H(p1) U{p1},

e d \* ((+9)d
Arcdistqsr((h) - E <1+h1) N ( 1+h1
Vg2 € H(p2) U {p2},
Cr V4 2 f—id
Aredist¢r(q2) - E <1+h2> - <1—|—h2) )
C €
A . @ = — r .
redist *r 1+h1 2d+

€
+ 5! )
- cr€<(1 5)d__d )
= 2\ 14+hy 1+h
credd ha + hy
16 ((1+h1 1+h2>
€ 1+ ¢ 2 1

> —crd<2(1— mh2)+6<1+m>>

€ 62
> —ed| -+
> (2+8>

Hence the maximum decrease in potential is

62 € 62
cod16 crd<2 + 8)
MERGE Considering the ownership potential, a peer
which has|p;.own| = d entries, gives up all its entries to
p2 and becomes free. Hence,’s final ownership poten-
tial is 0. po has at most1 + §)d entries before the merge.
Hence,p,’s final ownership potential is als@ Hence, the
decrease in ownership potential is at lgass initial poten-
tial, which is

Aredistq) > (4)

Co 9 €\2
Aperge®o > ¥ (lo —d)* =co (4) d
Considering the responsibility potential, I|é’(( )| =

hy and|H(ps2)| = hs. Let |ps.own| = € < (1+5)d. In

the mergep, gives up all its entries tp,, becomes free,
and all the free peers ifp; } U H(p1) becomep,’s helpers.

Note that there might be too many helpers forafter the

merge, but a sufficient number efurp operations will re-
duce the number of free peers to belewy

Va1 € H(p1) U {p1},

Cr d 2 Z‘i‘d 2
A, i _ o o t+d
merge¢7(q1) d <(1+h1> <2—|—h1+h2> >
V(J2 € H(pQ) L,I{pQ}7
Cr Y4 2 g_i_d 2
A _ o ( t+d
e = <(1+h2> <2+h1+h2) )
2 2 9
Amerge(pr = C—T d + 4 . (f —+ d)
d 1+ My 14 ho 2+ hy + ho
2
> ¢ (M)
a 2+h1+h2
€
> €
> 2, (1+ 4>d

Hence, the maximum decrease in potential is
€\2 €
Amergeq) Z Co (*) d— QCT (1 + Z) d (5)

Usurp: In the usurp operation, the ownership mappings do
not change. Hence the decrease in ownership potential due
to an usurp operation &

The responsibility potential, however, decreases in this
operation. Letp; be a non free peers witlp,.own| = ¢,
and|H(p1)| = hi1. Letq be the free peer usurped by. If
P2 = ¥(q), |p2. 0wn| = ¢y and|H(p2)| = he > 1, then
1+h 1+6 maz D€ the maximum number
of free peers aSS|gned to a non free peer in the current con-
figuration. Note that the current configuration is not a valid
configuration and hence the maximum number of free peers
might exceeds? !,

Vg1 € H(pi) U {p1},
4

Ausurp®r(q1) = % <<1 +h1>2 a (2+h1)2>

Va2 (# q) € H(p2) U{p2}, ) ,
Apergetoe(a) = & (( oo - (B) )
() - ()

14 ho
_(2+h1

Cr
Ame'rge ¢T (q) = E



Proof. We first prove that any configuration attained during
the execution oEXTLOADBALANCE satisfies a variant of
Property 2 of a valid configuration, namely

2' If there are free peers in the system and F is the
free peer responsible for the least number of items, any
peerpis such thatp.resp| < (2+5)2v/1 + d|q.resp|.

Proving the above result would imply that the maximum
number of free peers assigned to a non free peer is at most
(24 £)kpei using the same arguments as in Lemma 2.

Let us step through the execution BXTLOADBAL -
ANCE on a sequence of inserts and deletes. 4.gt, be
the minimum number of entries a free pegeis responsi-
ble for and/,,,,, be the maximum number of entries a non

Amergeq)r = CL g E% - ﬁ
d 1+h1 2+h2 L+hy s
i )
- d +h1 2+h1) h2(1+h2)
Cr ( 202 )
> T
- d \2(1+ hl (1 + hg)
s (2\/1+ 503 202 )
= d\ (1+hy)?2  (1+hy)?
< 2¢,.0 dj
T (14 hme)? d
2¢,.0
> -
2 0 han)?”
2
Ausurp® &0 g (6)

> - @
- (1 + hmam)Q

Proof. of Theorem 1 Consider a valid initial configura-
tion which satisfies thewnershipandresponsibility valid-
ity conditions. If an insert violates the ownership constraint,
there is one peep which violates the constraint by own-
ing ub entries. A split is performed which resultsirown-
ing (1 + §)d entries and a free pegrbeing added to the
ring with the same number of entries. Hence, the new con-
figuration satisfies the ownership constraint.

If a delete causes an ownership violation, there is one
peerp which violates the constraint by ownitiggentries. A
merge operation is performed. In the case of a redistribute,
p2 owning (1 + §)d < |p.own| < (2 + €)d entries gives
£ to p1. Thus nowp; owns(1 + {)d entries angh, owns
(1+£)d < (2+ 2¢)d entries, satisfying the ownership con-
straints. In the case of a merge, gives up itsd entries to
p2 and becomes freg; initially has at mos{(1 + §)d en-
tries and hence addition @f more entries will not violate
the ownership constraints.

We showed that violation of an ownership constraint can
be fixed using one split or merge operation. However, this
operation might lead to violation of a responsibility con-
straint. This is fixed by using usurp operations. We prove
that the number of usurp operations required is finite by
using a simple potential argument. Recall the responsibil-
ity potential®,.. Starting from a valid configuration, a con-
figuration resulting from an insert or a delete satisfies the
following modified ownership constraint: for gll € P,

d < |p.own| < (2 + €)d. Hence the potentiab,. is lin-

ear ind. The potential of the resulting valid configuration
is positive. From equation 6, the decreasebindue to an
usurp operation is greater than 0. Hence, in a finite num-
ber of usurp operations, we reach a valid configuratida.

Lemma 3 In any configuration attained during the execu-
tion of EXTLOADBALANCE, the number of helper peers as-
signed to a non free peers is at mast < (4 + €)kp!,
where% = (2 +¢).

free peer is responsible for.

e Starting from a valid configuration with an imbalance

of at most2v/1 + 4, an insert or a delete cannot re-
sult in a configuration with a greater imbalance than
44/1 4+ ¢, since only one item is added or removed.

An insert or a delete could be followed by a split or a
merge operation respectively. Let us consider an insert
followed by a split. Say peerhad(2 + €)d — 1 entries

in the valid configuration and an insert violated the
ownership constraint at. If p has a helpey, p splits
with g and distributes the helpersti(p)\{q} between
themselves. Lek{(p) = h. In the initial configuration,

all peers irtH (p) U {p} are responsible foP=L4=1 if

h were odd, then finally botp andq would share the
items and helpers equally and the responsibility does
not change. However, f were even, sagm, then fi-

nally, p would be responsible fog’ltn—g)d entries andy

and its helpers would be responsible féf%zd. How-
ever, the final responsibilities are off from the initial re-
sponsibilities by at most a factor dfand hence evenin
the worst case the imbalance is not more thgh + 0.

Consider a delete followed by a redistribute. Initially,
p1 IS responsible fordtLl 1+, entries and-, is responsi-

ble for at least:=2) entries. Finallyp, is responsible

14+ho
for (i:h) andp is responsible for at Ieaéf“T)d. In

the case op, and its helpers, the load could be imbal-
anced by an additional factor of at mg@st+ $) while

in the case of-, the load could be imbalanced by an
additional factor of.

Consider a delete followed by a merge. In this case,
p1 owns/; entries withh; helpers,p, owns ¢, en-
tries with ho helpers. Finallyp; andps and each of
the helpers is responsible fgp+2=L. Since

1+}L1
and 1ffh did not violate the responsibility condition,

£1465—1 ; i P
rhon, can violate the condition by at most an addi

tional factor of 2.




e For the usurp operation, we can show that the imbal- cost involved transfer of entries fromto ¢ and the rear-
ance after an usurp operation is not greater than the im-ranging of entries amonggt’s remaining helpers. Hence,

balance before the operation. Lgtusurpp,’s helper.
Let initially p; andp, own ¢; and/; entries and have
hy, and ho helpers respectively. For the usurp to oc-
cur, o= > 2V/1+ 02—, We show that; 2~ <

1+hy —
b b 4 Hence the result.

24+h1’ ho — 1+h;y
2 < 21
24+hy — 2(1+h+1)
S V1+ 60,
- 14 ho
Lo
> 14 ho
féﬁ < 205
ho — 1+ he
< 6—1
T VI + )
< 4
14+ m

Hence, we see that the additional imbalance is not more than

a factor ofmax2, (14 §) and hence the imbalance is at

worst(2 + §)2v1 + 6. [ |
Proof. of Corollary 1.1: From the proof of the Theo-

the cost is at mogB3 + 3;)d. Hence we need, andc, such

that
Co (E)Qd > <3+32€> d

The cost of theREDISTRIBUTE case in anerge opera-
tion, is at most3+ 5¢)d. The cost involves transfer gfen-
tries and the redistribution of the final set of entries owned
by p; andp, amongst their helpers.

€2 € €2 5e
- — P > -
cod16 crd(2+8> > (3+4)d (8)

The cost of aMERGEis at most(3 + §)d, since the cost
only involves transfer off entries to the more loaded peer
and redistribution of at mogR + §)d entries amongst the
new set of helper peers. Hence,

co<i>2d—2c,.(1+z>d > (3+§)d )

@)

Finally, theusurp operation costé; + {5 < 2(2 + €)d,

rem 1, we know that the ownership violation caused by an Where the two non free peers involved o#nand/, en-
insert or a delete can be fixed in exactly one split or merge. tries respectively. The cost arises due to the redistribution
Sincexy,, the maximum number of free peers assigned to @mongst the new set of helpers. Hence,

anon free peer (Lemma 3), is a constaXy,.,,® is a frac-
tion of d. From the proof of Theorem 1, we know that any
attainable configuration has a potential linead.isince ev-

2¢,.0

2
K,

d > 22+ed (10)

ery usurp operation decreases this potential by a fraction of _ _
d, and the potential of the resulting valid configuration is Solving equations 7, 8, 9, 10, we get

positive, the number of usurp operations is at most a con-

stant. [ |
Proof. of Theorem 2 From Theorem 1, we know that

the algorithm always returns to a valid configuration. Also
in a valid configuration, the imbalance between free and non

free peers is at moy/1 + ¢ and the imbalance between
non free peers is at mo$§. Hence the result follows. m
Proof. of Theorem 3 First note that the increase in the
potential® on an insert or a delete is at mdgt, + 2(2 +
€)c,, Which is a constant gives, andc,.. If we can set the
constants:, andc, such that the minimum decresednis

= 2 o(ltetrs)+ 345
“1 = TUTTy 2

(2+ )k

¢ T e
Tz 0

By setting the constants andc, to values as shown above,

we can prove that the amotized cost of inserts and deletes is

a constant wherd does not change.

We still need to consider the case whidnchangesib
changes either due f§ becoming greater thand due to in-

greater than the maximum cost of a load balancing operta-Serts, in which cast — d+ 1 or due tolV becoming lesser
tion, we are done proving the amortized constant cost of anthann(d —1—+),~v < 3, in which caséb < d— 1. Due to

insert or a delete.

The cost of asplit operation is at mogB + 2¢)d. In the
case whemp, the splitting peer has a helpgrthe costis con-
tributed by the transfer dfl + 5)d entries and the rearrang-
ing of entries amonggt's andg’s helpers. Hence the total
cost is at most3 + 2¢)d. Whenp does not have a helper,
p takes away; from some other non free pegs. Here the

the change inl the potential might increase. Note that the
change affects only the ownership potential and not the re-
sponsibility potential.

¢ Increase in® due tolb changing from{ to d + 1:
In this casely = (1+ {)d increases byl + ). Hence
for all the peerg owning |p.own| = ¢ < [y entries,



the potential increases and the increase is

((zo n (1 n

(200 -0+ (

incd >

IN

incd <

¢ Increase in® due tolb changing from{ tod — 1:
Similarly in this casey, decreases byl + ). Hence
for all the peerg owning |p.own| = £ > ug entries,
the potential increases and the increase is

) 4)2 ~ (I €)2>

. €
inc® < nec,—

4. P-Ring Content Router

The goal of our Content Router is to efficiently route
messages to peers in a given range. The main challenge
in designing a Content Router for range queries is to han-
dle skewed distributions. Since the search key values dis-
tribution can be skewed, the ranges assigned to the peers
may not be of equal length. Consequently, index structures
that assume uniform data distribution in the indexing do-
main such as Chord [33] and Pastry [30] cannot be applied
in this case. Recently, some P2P indexing structures that can
handle skewed distributions have been proposed [8, 2, 15],
but these structures either provide only probabilistic search
guarantees [2, 15], or do not provide search guarantees [8]
even in a stable system.

The existing work on distributed B+-trees is not directly
applicable in a massively distributed system like ours. To

If we are able to show that the number of insert/delete the best of our knowledge, all such index structures [17, 20]

operations between two consecutive changés ia linear

try to maintain a globally consistent B+-tree [@plicating

in n, we can charge the increase in potential as a constanthe nodes of the tree across different processors. The consis-
overhead cost to each insert/delete operation and thus provéency of the replicated nodes is then maintained ugpitig
that the amortized cost is a constant even with changes inmary copyreplication. Relying on primary copy replication

lb.

creates both scalability (load/resource requirements on pri-

Let us count the number of steps between two consecu-mary copy) and availability (failure of primary copy) prob-

tive changes irib.

e [bchanges froml — 1 to d and then tal + 1:
In this case, change fromi — 1 to d happens when
N > n(d — 1) and the change frond to d + 1 hap-
pens whenV > nd. Hence there are at leastinserts
between the changes.

e [bchanges froml + 1 to d and then taf — 1:
In this case, change fromi + 1 to d happens when
N < n(d — v) and the change frond to d — 1 hap-
pens whenV < n(d — 1 —~). Hence there are at least
n deletes between the changes.

e [bchanges frona + 1 to d and then back td + 1:
In this case, change fromd + 1 to d happens when
N < n(d — ~) and the change frori to d + 1 hap-
pens whenV > nd. Hence there are at leasy inserts
between the changes.

e [bchanges frona — 1 tod and then taf — 1:
In this case, change fromi + 1 to d happens when
N > n(d — 1) and the change frond to d — 1 hap-
pens whenV < n(d — 1 — ). Hence there are at least
n+y deletes between the changes.

Thus there are at leasty inserts/deletes between two con-
secutive changes ith. Hence by charging each insert/delete
an extra constant cost of

we can pay for the operations caused by the chandé in

also.

lems, and is clearly not a solution for a large-scale P2P sys-
tems with thousands of peers.

We devise a new content router calldgtrarchical Ring
(or short, HR) that can handle highly skewed data distri-
butions. In the following sections, we describe the content
router and the routing and maintenance algorithms. We then
analytically bound the search performance in a stable sys-
tem and under very heavily skewed insertion patterns. We
also experimentally evaluate the content router in the per-
spective of our architecture.

4.1. Hierarchical Ring

The HR Content Router is based on the simple idea of
constructing a hierarchy of rings.

Let d be an integer ¢, 1, called the 'order’ of HR. At the
lowest level, level 1, pear maintains a list of the first suc-
cessors on the ring. Using the successors, a message could
always be forwarded to the last successor in the list that
does not overshoot the target “skipping” up to d-1 peers at a
time. Consider the ring in Figure 6, where pgeis respon-
sible for the rangé5, 10], peerp, is responsible for range
(10, 15] and so on and assume tlia2. Each peer knows its
successor on the ringucc(p;) = pa, succ(ps) = p3, ...,
succ(ps) = p1. At level 1 in the Content Router, each peer
maintains a list of 2 successors, as shown. Supppreeds
to route a message to a peer with vale In this casep;
will route the message to; andps will forward the mes-
sage tqs, the final destination.

Atlevel 2, we again maintain a list @fsuccessors. How-
ever, a successor at level 2 corresponds tadthesucces-
sor at level 1. Note that using these successors, a message
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Figure 6. HR Level 1 Figure 7. HR Levels 1 and 2 Figure 8. HR Levels 1, 2, and 3

could always be routed to the last successor in the list that4.2. Maintenance

does not overshoot the target, "skipping” upi#to— 1 peers Peer failures and insertions disrupt the consistency of the
atatime. Figure 7 shows the content of level 2 nodes at eachyR. \We have a remarkably simpBabilization Procesthat

peer in the ring. Suppose thai needs to route a message ryns periodically at each peer and repairs the inconsisten-
to a peer with valu@0. p, will route the message directly 1o cies in the HR. The algorithm guarantees that the HR struc-
ps (the final destination), using the list at level 2. The pro- tyre eventually becomes fully consistent after any pattern of

cedure of defining the successor at level 1 and creating  concurrent insertions and deletions, as long as the peers re-
a list of levell +- 1 successors is iterated until no more lev- majn connected at the fault-tolerant ring level.

els can be created. In Figure 8, for ppefor example, note
thatsuccs(ps) = p4, Which overshootg,, so no more lev-
els can be constructed fpr.

An important observation about this index structure is
that we are conceptually indexing "positions” in the ring
(i.e. atlevel, a peep has pointers to peers that afepeers
away) instead of values, which allows the structure to han-
dle skewed data distributions.

Formally, the data structure for a HR of ordéris a
doubly indexed arrayiode[level][position], wherel <
level < numlLevels and1 < position < d. The HR is
defined to be consistent if and only if at each peer

The algorithm executed periodically by the Stabiliza-
tion Process is shown in Algorithm 5. The algorithm loops
from the lowest level to the top-most level of the HR
until the highest (root) level is reached (as indicated by
the boolean variableoot). Since the height of the HR
data structure could actually change, we update the height
(p.numLevels) at the end of the function.

Algorithm 6 describes the Stabilization Process within
each level of the HR data structure at a peer. The key ob-
servation is that each peer needs only local information to
compute its own successor at each level. Thus, each peer
relies on other peers to repair their own successor at each
e p.node[l][1] = succ(p) level. When a peep stabilizes a level, it contacts its succes-

o p.node[l][j + 1] = succ(p.node[1][j]), 1 < j < d sor at that level and asks for its entries at the corresponding
level. Peelp replaces its own entries with the received en-

o pnode[l +1][1] = p.nodell](d], tries and inserts its successor as the first entry in the index

e p.node[l +1][j + 1] = p.node[l + 1][j].node[l + 1][1], node (lines 2 and 3). The INSERT procedure, apart from

1 <l <numLevels,1 <j<d inserting the specified entry at the beginning of the list at
e The successor atumLevels of the last peer in the given level, it also ensures that no more tlgmtries are in

list at numLevels level "wraps” around, so all the the list and none of the entries in the list overshqofthe

peers are indeed indexed: list does not wrap around). Line 4 checks whether this level
p.node[num Levels).last Peer.node[numLevels][1] € ~ should be the last level in the HR. This is the case if all the
[p, p-node[num Levels].last Peer) peers in the system are already covered. If this level is not

the root level, the stabilization procedure computes the suc-

From this definition, it is easy to see that a consistent cessor at the higher level (line 7) and returns.

HR of orderd, has only[log,(P)] levels, and the space re- _
quirement for the Content Router component at each peer i4-3.  Routing

O(d -log,(P)), whereP is the number of peers in the fault The Content Router component supports the
tolerant ring. sendReceive(msg,range) primitive. We as-



Algorithm 5 : p.Stabilize()
1. 1=1;
2: repeat
3. root=p.StabilizeLevel];
4 1+ +;
5: until (root)
6: p.numLevels =1 —1;

Algorithm 6 : p.StabilizeLevel(int)
1: succEntry = p.node[i][1];

2: p.nodeli] = succEntry.nodeli;

3: INSERT(, succEntry);

4: if p.nodeli].last Peer.node[i][1] €
[p, p.nodeli].last Peer) then

5: returntrue

6: else

7 p.nodeli + 1][1] = p.nodeli][d);

8: returnfalse

9: end if

sume that each routing request originates at some jpeer
in the P2P system. For simplicity of presentation, we as-
sume that theange has the forn{ib, ub).

The routing procedure takes as input the lower-bound
(1b) and the upper-bound:f) of the range in the request,

Algorithm 7 : p.routeHandler (ib, wup, msg,
originator)
1: // find maximum level that contains an
2: /[ entry that does not overshaét
3: find the maximum level such thafl j > 0
such thap.node[l][j].iValue € (rangeMin(p), 1b).

4: if no such level existthen
5. //handle the message and send the reply
6:  sendp.handleMessage(msg), originator);
7. if rangeMin(succ(p)) € (rangeMin(p), ub] then
8: /l'if successor satisfies search criterion
9: sendRoute (Ib,ub,msg,originator,requestType),
suce(p));
10: else
11: sendRoutingDoneMessage ,originator);
12:  endif
13: else

14:  find maximumk such that
p.node[l][k].iValue € (rangeMin(p), 1b];

15:  sendRoute ((Ib,ub,msg,originator),
p.node[l][k].peer));

16: end if

to p;. The search terminatesat as the value of its succes-
sor (5) does not fall within the query range.
In a consistent state, the routing procedure will go down

the message that needs to be routed, and address of thgne level in the HR every time a routing message is for-
peer where the request was originated; the pseudo-codyarded to a different peer. This guarantees that we need at

of the algorithm is shown in Algorithm 7. We denoted by
rangeMin(p) the low end value op.range. The routing

most [log,(P)] steps, if the HR is consistent. If a HR is
inconsistent, however, the routing cost may be more than

procedure at each peer selects the farthest away pointer th‘T[logd(P)]. Note that even if the HR is inconsistent, it can
does not overshodb and forwards the request to that peer. stj|| route requests by using the nodes to the maximum ex-

Once the algorithm reaches the lowest level of the HR, it tra-
verses the successor list until the value of a peer exadeds
(lines 8-9). Note that every node which is responsible for a
part of (Ib, ub] is visited during the traversal along the ring.
At the end of the range scan,S%archDoneMessage is
sent to the peer that originated the search (line 11).
Example: Consider a routing request for the range
(18,25] that is issued at peer; in Figure 8. The rout-
ing algorithm first determines the highest HR levelpin
that contains an entry whose value is betwée(value
stored inp;) and18 (the lower bound of the range query).
In the current example, this corresponds to the first en-
try at the second level gf;’'s HR nodes, which points to
peerps with value 15. The routing request is hence for-
warded tops. p3 follows a similar protocol, and for-
wards the request tp, (which appears as the first entry
in the first level inp3’s HR nodes). Since, is responsi-
ble for items that fall within the required rangeg,processes

tent possible, and then sequentially scanning along the ring.
In Section 5.2, we experimentally show that the search per-
formance of HRs does not degrade much even when the in-
dex is temporarily inconsistent.

It is important to note that in a P2P system we cannot
guarantee that every route request terminates. For example,
a peep could crash in the middle of processing a request, in
which case the originator of the request would have to time
out and try the routing request again. This model is simi-
lar to that used in most other P2P systems [30, 33, 29].

4.4. Properties of Hierarchical Ring

In this section we describe some of the formal properties
of the Hierarchical Ring.

Definition We define a stabilization unis() to be the time
needed to run th&tabilizelLevel procedure at some
level in all peers.

Theorem 4 (Stabilization time) Given that at time there

the routed message and returns the results to the origi-are P peers in the system and the fault tolerant ring is con-

nator p; (line 6). Since the successor of;, ps, might
store items in thg18,25] range, the request is also for-

nected and the stabilization procedure starts running peri-
odically at each peer, at time+ (d — 1)[log,(P)]su the

warded tops. ps processes the request and sends the resultdHR is consistent with respect to tliepeers.



Proof sketch:The stabilization starts at timeby stabiliz- peers. Betweety andt; 1, some old peers can become new
ing level 1 which already has the correct first entry (since and new peers can become old, due to changes in the HR
the fault-tolerant ring is connected). After at most one sta- structure. However, the total number of entries in the HR
bilization unit, each peer finds out about its successor’s suc-structure does not decrease, so the number of old peers be-
cessor and so on. After running tistabilizeLevel coming new cannot be higher than the number of new peers
procedured — 1 times at level 1, each peer has level 1 in becoming old. Out of the peers in the system at timet

HR and the first entry in level 2 consistent . Since there aremostr(d — 1)[log,(P)] of them are new at any time be-
[log,;(P)] levels, afted—1)[log,(P)] stabilization units,  tweent,; andt; ;. Adding the peers inserted sinteve get

the HR is consistent with respect to tRepeers. ] that at any time point if¢;, t;,11] the maximum number of
new peers i€r(d — 1) [log,(P)]. From Theorem 4, at time
t;1+1, all the peers existing in the system at timere inte-
grated into the HR structure. This means that all peers ex-
isting at timet; are/became old peers at timg ;, which
leaves the maximum number of new peers at time to
Theorem 6 (Search performance during insertions) be at most-(d — 1)[log,(P)] (the peers inserted between

If we have a stable system with a consistent HR of or- ¢; andt;1).

derd data structure and we start inserting peers atthe rate ~ From induction it follows that at any time, the maximum

r peers/stabilization unit, then equality queries take at most number of new peers is no more thw(d — 1)[log,(P)],
[log,(P)] +2r(d—1)[log,(P)] hops, whereP is the cur- ~ which means that equality queries take at mast, ()] +

Theorem 5 (Search performance in stable state)jn a
stable system of° peers with a consistent Hierarchi-
cal Ring data structure of ordet, equality queries take at
most[log,(P)] hops.

rent number of peers in the system. 2r(d — 1)[log,(P)] hops. m.
Proof sketchiet £, be the initial time and?, be the num- - EXperimental EYa|Uat'0U .

ber of peers in the system at timtie For every; > 0 we de- We focus on two main aspects in our experimental evalu-
finet; to bet;_, 4+ (d — 1)[logy(P;_1)] - su and P; to be ation. First, we evaluate the performance of the P-Ring Data
the number of peers in the system at titneln the follow- Store. As a baseline, we compare it with the hash-based

ing, we call an "old” peer to be a peer that can be reachedChord Data Store, which does not support range queries.
in at most[log,(P)] hops using the HR. If a peer is not Second, we evaluate the performance of the P-Ring Content

"old”, we call it "new”. At any time point, the worst case Router, and compare it with Skip Graphs. We also consider
search cost for equality queries fig,(P)] + =, where the interaction between the two components in the presence
Mog,(P)] is the maximum number of hops using the HR Of peer insertions and deletions (system “churn”).

to find an old peer and is the number of new peers. 5.1. Experimental Setup

is also the maximum number of hops to be executed using We developed a simulator in C++ to evaluate the index
the successor pointers to find any one of the nepeers structures. We implemented the P-Ring Data Store and the
(the worst case is when all new peers are successors in th€hord Data Store, and the P-Ring Content Router and Skip-
ring). We will show by induction on time that the number of Graphs. Since SkipGraphs was originally designed for only
new peers in the system at any time cannot be higher thara single item per peer, we extended it to use the P-Ring Data

2r(d — 1) [logy(P)]. Store so that it could scale to multiple items per peer. For alll
As the base induction step we prove that at any time the approaches, we used the same Fault Tolerant Ring [33]
point in the intervalty, t;] there are no more thar(d — and the Replication Manager [7] so that we can isolate the
1)[log,(P)] new peers and at timg there are no more than  differences amongst the Data Stores and Content Routers.
rd[log,;(P)] new peers. From hypothesis, tatthe HR is We used three main performance metrics. The first met-

consistent, so there are no new peers. At the insertion rate ofic is theindex message cqsthich is the number of mes-

r peerssu, at any time point irj¢o, t1], the maximum num-  sages per second (in simulator time units) required for main-
ber of peers inserted igd — 1) [log;(Py)], whichis smaller  taining the index. The second metric is thdex bandwidth
thanr(d — 1)[log,(P)]. This proves both statements of the cost which is the number of bytes per second required for

base induction step. maintaining the index (since not all messages are of the
We prove now that if the maximum number of new peers same size). The third metric is trsearch costwhich is
attimet; isrd[log,(P)], than, at any time pointiift;, t;11] the number of messages required to evaluate a query. In
the maximum number of new peers2is(d — 1) [log,(P)] our experiments, we calculate the search cost by averag-
and the maximum number of new peers at timeg isr(d— ing the number of messages required to search for a random

1)[log,(P)], wherei > 1. The maximum number of peers value in the system starting frof®0 random peers. Since
inserted betweety andt; 1 isr(d — 1)[log,(P;)] which is the main variable component in the cost of range queries is
smaller tham(d—1)[log,(P)]. From the induction hypoth-  finding the data item with the smallest qualifying value (re-
esis, at time; there were at most(d — 1)[log,(P)] new trieving the other values has a fixed cost of traversing the



relevant leaf values), we only measure the cost of finding however, is that the message cost also remains relatively sta-
the first entry for range queries. This also enables us to com-ble for P-Ring Data Store even under highly skewed distri-
pare against the performance of Chord for equality queries.butions. This suggests that the P-Ring Data Store effectively
In our experiments we varied the following parameters: manages item skew by splitting and merging as required.
InsertionRatg(similarly, DeletionRatg is the rate of inser-  The graph showing the index bandwidth cost is similar, and
tions (deletions) into the systeftemInsertionPatterigsim- we also obtained similar results by varyiitgmDeletion-
ilarly, ItemDeletionPatternspecifies the skew in the data Pattern
values inserted (deleted) into the system. A valuepof 5.3. Experimental Results: Content Router
for this parameter means that all insertions are localized e now investigate the performance of the P-Ring Con-
within a fractionip of the search key space (default is 1). tent Router, and compare it with SkipGraphs and Chord.
NumPeerss the number of peers in the system (default is Since Chord cannot directly handle range queries, we artif-
2000). PeerIDRateis the rate of peer insertions and fail- jcally specify queries over theash valudor Chord (which
ures in the system; insertions and failures are equally likely. s its best-case scenario) so that we can compare Content
For each the of experiments below, we vary one parame-Routers in terms of performance.
ter and we use the default values for the rest. We first eval-g 3 1. Varying Number of PeersFigure 11 shows the
uate the Data Store and Content Router components Sepsearch cost when varying the number of peers. As ex-
arately in a stable system configuration (without peer fail- hected, the search cost increases logarithmically with the
ures); we then investigate the effect of peer failures. number of peers (note the logarithmic scale on the x-axis)
5.2. Experimental Results: Data Store for all the Content Routers. However, the search costs for
We now study the performance of P-Ring Data Store. the different Content Routers varies significantly. In par-
Note that the performance of the Data Store depends on theicular, SkipGraphs has significantly worse search cost be-
performance of the Content Router (when searching for freecause the index structure of ordehas search performance
peers). To isolate these effects as much as possible, we fiXxO(d x log,(N)) (whereN is the number of peers in the sys-
the P-Ring Content Router to have orders 2 and 10 for thistem). In contrast, Chord has search a0slog,(/N)) and a
set of experiments (we investigate different orders in sub- P-Ring of ordekl has search co§¥(log,;(NV)). For this rea-
sequent sections). As a baseline for comparison, we use theon, the P-Ring of order 10 significantly outperforms the
Chord Data Store, which is efficient due to hashing, but doesother index structures due to the large base of the logarithm.
not support range queries. 5.3.2. Varying Order Figure 12 shows the effect of vary-
5.2.1. Varying ltem Insertion Rate Figure 9 shows the ing the orderd of P-Ring on the search cost. As expected,
index message cost as a result of vanjmgertionRateThe the search cost i©(log;(N)), whereN is the number of
message cost increases linearly witkertionRatebecause  peers in the system (recall the defaultNs= 2000). Fig-
each item insertion requires a search message to locate theres 13 and 14 show how the index message cost and in-
peer that should store the item. The message cost increasedex bandwidth cost, respectively, vary with order. The index
faster for the P-Ring Data Store than for Chord because themessage cost steadily decreases with order because there
P-Ring additionally needs to periodically split and merge are fewer levels in the Content Router that need to be stabi-
due to item skew. In contrast, the Chord datastore is morelized (recall that the number of levels in a Content Router
efficient because it simply hashes data items to peers andf orderd is log,;(N)). However, the index bandwidth cost
does not have any item redistribution overhead. This differ- decreases slightly and then increases because, at higher or-
ence quantifies the additional overhead of supporting rangeders, a lot more information has to be transferred during in-
gueries (using the P-Ring datastore) as opposed to simplalex stabilization. Specifically, each stabilization in a Con-
equality queries (using the Chord datastore). Finally, we tent Router of orded has to transfe©)(d) information (the
note that that the message cost for the P-Ring Data Storeentries at one level). Hence, the total bandwidth requirement
decreases as we use a Content Router of higher order - thigs O(d - log;(N)), which is consistent with the experimen-
is because the search for free peers becomes more efficiertal results. This shows the tradeoff between index stabiliza-
with higher order Content Routers. The graph showing the tion and search cost - a higher valuedimproves search
index bandwidth cost is similar and is not shown. We also but increases bandwidth requirements.

obtained similar results by varyirigemDeletionPattern 5.4. Experimental Results: System Churn
5.2.2. Varying Item Insertion Pattern Figure 10 shows Figure 15 shows the effect of peer insertions and fail-
the index message cost as a result of varyieminsertion- ures on index performance, for 4 insertions/failures per sec-

Pattern (recall that O corresponds to highly skewed distri- ond (the results with other rates is similar). The basic trade-
bution, while 1 corresponds to a uniform distribution). For off is between search cost and index bandwidth cost. When
the Chord Data Store, as expected, we do not observe anyhe Content Router is stabilized at a high rate, this leads to
significant variation in message cost. The surprising aspecta high bandwidth cost due to many stabilization messages,
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but a low search cost since the Content Router is more con-
sistent. On the other hand, when the Content Router is sta- PRing - Order 2
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search cost increases. Note that this also affects the Data Sﬁﬁ;g?;gﬁgs_ oorder 2 -
Store performance because the Data Store uses the Contefit ;5 | Chord ,
Router for inserting/deleting items and finding free peers. < e,
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offers a better search cost, albeit at a higher bandwidth cost,
while still supporting range queries. We also obtained simi-
lar results for search cost vs. index message cost, and hence
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the results are not shown.
6. Related Work

There has been recent work on P2P data management CAN [29], Chord [33], Pastry [30] and Tapestry [36] im-
issues like schema mediation [3, 18, 32], query process-plement distributed hash tables to provide efficient lookup
ing [28], and the evaluation of complex queries such as joinsof a given key value. Since a hash function destroys the or-
[14, 32]. However, none of these approaches address the isdering in the key value space, these structures cannot pro-

sue of supporting range queries efficiently.

cess range queries efficiently. Approaches to the lookup



problem based on prefix matching/tries [1, 9, 30] can- 7. Conclusion

not be used to solve the range query problem for arbitrary ~ We have introduced P-Ring, a novel fault-tolerant P2P
numerical attributes such as floating point numbers. Otherindex structure that efficiently support®th equality and
approaches to the lookup problem include [12, 26, 35]. range queries in a dynamic P2P environment. P-Ring effec-
Techniques for efficient keyword search are presented intively balances data items among peers even in the presence
[6, 27, 34]. None of these systems support range queries. of skewed data insertions and deletions and provides prov-

: L _ able guarantees on search performance. Our experimental
There has been work on developing distributed index evaluga]ltion shows that P-Rinpg outperforms existigg index

st.ructures .[16Z 20, 2:.3’ 24]. However,hmglst 9; th%se t?ch— structures, sometimes even for equality queries, and that it
hiques maintain consistency among the distributed replicas, Jinains its excellent search performance with low main-

by using aprimary copy which create§ both scalability and tenance costs in a dynamic P2P system.
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