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Abstract
Current peer-to-peer (P2P) index structures only sup-

port a subset of the desired functionality for P2P database
systems. For instance, some P2P index structures support
equality queries but not range queries, while others support
range queries, but do not support multiple data items per
peer or provide guaranteed search performance. In this pa-
per, we devise a novel index structure called P-Ring that
supports both equality and range queries, is fault-tolerant,
provides guaranteed search performance, and efficiently
supports large sets of data items per peer. We are not aware
of any other existing index structure that supports all of the
above functionality in a dynamic P2P environment. In a
thorough experimental study we evaluate the performance
of P-Ring and quantify the performance trade-offs of the
different system components. We also compare P-Ring with
two other P2P index structures, Skip Graphs and Chord.

1. Introduction
Peer-to-peer (P2P) systems are emerging as a new

paradigm for structuring large-scale distributed sys-
tems. The key advantages of P2P systems are their scalabil-
ity, due to resource-sharing among cooperating peers, their
fault-tolerance, due to the symmetrical nature of peers,
and their robustness, due to self-reorganization after fail-
ures. Due to the above advantages, P2P systems have made
inroads for content distribution and service discovery ap-
plications [1, 33, 29, 30]. However, most existing sys-
tems only support location of services based on their name,
i.e., they only support equality queries.

In this paper, we argue for a much richer query seman-
tics for P2P systems. We envision a future where users
will use their local servers to offer services described by
semantically-rich XML documents. Users can thenquery
this “P2P service directory” as if all the services were reg-
istered in one huge centralized database. As a first step to-
wards this goal we propose P-Ring, a new distributed fault-
tolerant index structure that can efficiently supportrange
queries in addition to equality queries. P-Ring is fault-
tolerant, gives guaranteed logarithmic search performance
in a consistent system, and supports possibly large sets of

items per peer. Such an index structure could be used by
sophisticated P2P database applications such as digital li-
braries [22]. We are not aware of any other existing index
structure that supports all of the above functionality in a dy-
namic P2P environment.

When designing P-Ring we were faced with two chal-
lenges. First, we had to distribute data items among peers
in a such a way that range queries could be answered ef-
ficiently, while still ensuring that all peers had roughly the
same number of data items (for storage balance). Existing
techniques developed for equality queries are not applica-
ble in our scenario because they distribute data items based
on their hash value; since hashing destroys the order of the
data items, range queries cannot be answered efficiently. We
thus need to devise a scheme that clusters data items by their
datavalue, and balances the number of data items per peer
even in the presence of highly skewed insertions and dele-
tions. Our first contribution is a scheme that provably main-
tains a maximum load imbalance factor of at most2 + ε be-
tween any two peers in the system, while achieving amor-
tized constant cost per insertion and deletion.

Our second challenge was to devise a query router that
is robust to failures and provides logarithmic search perfor-
mance even in the presence of highly skewed data distribu-
tions. Our P-Ring router is highly fault-tolerant, and a router
of orderd provides guaranteedO(logd(P )) search perfor-
mance in a stable system withP peers. Even in the presence
of highly skewed insertions, we can guarantee a worst-case
search cost ofO(x · d · logd(P )), wherex is the number of
insertions per stabilization unit of the router (we will for-
mally define all terms later in the paper).

In a simulation study, we compare the performance of
PRing to an extension of SkipGraphs [2], the only other
P2P router that we are aware of that provides provable
search guarantees for range queries over arbitrary ordered
domains. Our performance results indicate that P-Ring out-
performs the above extension of Skip Graphs in terms of
both query and update cost. Surprisingly, P-Ring sometimes
outperforms Chord, an index structure designed for equal-
ity queries, even in the case of equality queries.
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Figure 1. Indexing Framework

2. System Model and Architecture
2.1. System Model

A peeris a processor that has some shared storage space
and some private storage space. The shared space is used to
store the distributed data structure for speeding up the evalu-
ation of user queries. We assume that each peer can be iden-
tified by a physical id, which can be its IP address. We also
assume a fail-stop model for peer failures. AP2P system
is a collection of peers. We assume there is some underly-
ing network protocol that can be used to send messages re-
liably from one peer to another with bounded delay. A peer
can join a P2P system by contacting some peer that is al-
ready part of the system. A peer can leave the system at any
time without contacting any other peer.

We assume that each data item stored in a peer exposes
a search key valuefrom a totally ordered domain that is in-
dexed by the system. Without loss of generality, we assume
that search key values are unique (duplicate values can be
made unique by appending the physical id of the peer where
the value originates and a version number; this transforma-
tion is transparent to users). Peers inserting data items into
the system can retain the ownership of their items. In this
case, the data items are stored in the private storage partition
at the peer and only pointers to the data items are inserted
into the system. In the rest of the paper we make no distinc-
tion between data items and pointers to the data items.

2.2. System Architecture
We have implemented P-Ring in the context of the PEP-

PER system [5], which provides a modular framework for
implementing new P2P index structures (Figure 1). We now
describe the relevant components of the framework.

Fault Tolerant Ring: The Fault Tolerant Ring connects the
peers in the system along a ring, and provides reliable con-
nectivity among these peers even in the face of peer fail-
ures. For a peerp, we can define thesucc(p) (respec-
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Figure 2. Fault Tolerant Ring

tively, pred (p)) to be the peer adjacent top in a clock-
wise (resp., counter-clockwise) traversal of the ring. Fig-
ure 2 shows an example of a Fault Tolerant Ring. If peerp1

fails, then the ring will reorganize such thatsucc(p5) = p2,
so the peers remain connected. Figure 1 shows the ring API.
When invoked on a peerp, p.getSuccessor returns
the address ofsucc(p). p.joinRing(knownPeer) in-
sertsp into an existing ring by contactingknownPeer .
p.leaveRing allows p to gracefully leave the ring (of
course,p can leave the ring without callingleaveRing
due to a failure). In our implementation of P-Ring, we use
Chord’s Fault Tolerant Ring [33].

Data Store: The Data Store is responsible for distributing
data items to peers. Ideally, the distribution should be uni-
form so that each peer stores about the same number of
items, thereby achieving storage balance. The Data Store
provides API methods to insert and delete items into the
system. One of the main contributions of this paper is a
new Data Store for P-Ring, which can effectively distribute
data items even under highly skewed insertions and dele-
tions (see Section 3).

Content Router: The Content Router is responsible for ef-
ficiently routing messages to peers that contain data items
satisfying a given predicate. The second major contribution
of this paper is a new Content Router that can route range
queries efficiently (see Section 4).

Replication Manager: The Replication Manager ensures
that items assigned to a peer are not lost if that peer fails. For
P-Ring, we use the Replication Manager proposed in [7].

P2P Index: The P2P Index is the index exposed to the end
user. It supports search functionality by using the function-
ality of the Content Router, and supports item insertion and
deletion by using the functionality of the Data Store.

3. P-Ring Data Store
One of the main challenges in devising a Data Store

for P2P range indices is handling data skew. Ideally we
would like the data items to be uniformly distributed among
the peers so that the storage load is nearly evenly dis-
tributed among the peers. Most existing P2P index struc-
tures achieve this goal by hashing. Data entries are assigned



to peers based on the hash value of their search key. Such
an assignment has been shown to be very close to a uniform
distribution of entries with high probability [29, 30, 33, 36].
However, hashing destroys the value ordering among the
search key values, and thus cannot be used to process range
queries efficiently (for the same reason that hash indices
cannot be used to handle range queries efficiently).

Since P-Ring is designed to support range queries, we as-
sign data items to peers directly based on their search key
value. In this case, the ring ordering is the same as the search
key value ordering wrapped around the highest value. The
problem is that now, even in a stable P2P system with no
peers joining or leaving, some peers might become highly
overloaded due to skewed data insertions and/or deletions.
We need a way to dynamically reassign and maintain the
ranges associated to the peers. The next section presents
our algorithms for handling data skew. In concurrent work,
Ganesan et al. [11] also propose a load balancing scheme
for data items where they prove a bound of 4.24 for stor-
age imbalance with constant amortized insertion and dele-
tion cost. Our P-Ring Data Store achieves a better storage
balance factor of(2+ε) with the same amortized cost for in-
sertions and deletions.

3.1. Handling Data Skew
The search key space is ordered on a ring, wrapping

around the highest value. The Data Store partitions this ring
space into ranges and assigns each of these ranges to a dif-
ferent peer. Letp.range = (p.l, p.u] denote the range as-
signed top. All the data entries in the system whose search
key lies inp.range are said to beowned by p. Let p.own
denote the list of all these entries. Let|p.range| denote the
number of entries inp.range and hence inp.own. The num-
ber of ranges is less than the total number of peers in the
system and hence there are some peers which are not as-
signed any ranges. Such peers are calledfree peers. Let
p.ringNode refer to the Fault Tolerant Ring component of
the P-Ring at peerp.

Analogous to B+-tree leaf page maintenance, the number
of data entries in every range is maintained between bounds
lb = sf andub = 2 · sf,1 wheresf is the ”storage fac-
tor”, a parameter we will talk more about in Section 3.2.
Whenever the number of entries inp’s Data Store becomes
larger thanub (due to many insertions intop.range), we
say that anoverflowoccurred. In this case,p tries tosplit its
assigned range (and implicitly its entries) with a free peer.
Whenever the number of entries inp’s Data Store becomes
smaller thanlb = sf (due to deletions fromp.range is re-
sponsible for), we say that anunderflowoccurred. Peerp
tries to acquire a larger range and more entries from its suc-
cessor in the ring. In this case, the successor eitherredis-

1 A factor larger than 2 for the overflow condition is used in the exten-
sion to this scheme proposed in Section 3.3

Algorithm 1 : p.split()

1: p′ = getFreePeer ();
2: if p′ == null then
3: return;
4: end if
5: //execute the split
6: splitItems = p.own.splitSecondHalf() ;
7: splitV alue = splitItems[0];
8: splitRange = p.range.splitLast( splitV alue) ;
9: p′::joinRingMsgHandler (p,splitItems,splitRange);

Algorithm 2 : p′.joinRingMsgHandler (p,
splitItems, splitRange)

1: p′.range = splitRange;
2: p′.own = splitItems;
3: p′.ringNode.joinRing (p);

tributesits items withp, or gives up its entire range top and
becomes afree peer. We propose an extension to this ba-
sic scheme in Section 3.3, where we use the free peers in
the system to help balance the load amongst all the peers
such that the ratio between the load on the most loaded peer
to the load on the least loaded peer is bounded by a small
constant.

An Example. Consider the Data Store in Figure 3 which
shows the free peers (p6 andp7), and the ranges and key
values of entries assigned to the other peers in the system
(range(5, 10] with data entries with search keys6 and 8
are assigned to peerp1 etc.). Assume thatsf is 1, so each
peer in the ring can have 1 or 2 entries. When a data en-
try with search key9 is inserted into the system, it will be
stored atp1, leading to an overflow. As shown in Figure 4,
the range(5, 10] is split betweenp1 and the free peerp6.
p6 becomes the successor ofp1 on the ring andp6 is as-
signed the range(6, 10] with data entries with search keys8
and9.

Split. Algorithm 1 shows the pseudo-code of thesplit al-
gorithm executed by a peerp that overflows. We use the no-
tationp::fn() when functionfn() is invoked at peerp. Dur-
ing a split, peerp tries to find a free peerp′ and transfer half
of its items (and the corresponding range) top′. (The de-
tails of how a free peer is found are given in the next sec-
tion.) After p′ is found (line 1), half of the entries are re-
moved fromp.own andp.range is split accordingly. Peer
p then invites the free peerp′ to join the ring as its succes-
sor and maintainp′.range. The main steps of the algorithm
executed by the free peerp′ are shown in Algorithm 2. Us-
ing the information received fromp, p′ initializes its Data
Store component, the Ring component and the other index
components above the Data Store.

Merge and Redistribution. If there is an underflow at
peerp, p executes the merge algorithm given in Algorithm
3. Peerp invokes the initiateMergeMsgHandler



5

15

p1

10

18

20

p2

p3
p4

p5

6 8

p6

p7

11

1619

25

5

15

p1

10

18

20

p2

p3
p4

p5

6 8

p6
p7

11

1619

25

 9
5

15

p1

10

18

p2

p3

p4

p5
6 8

p6

p7

11

16

25

Figure 3. Data Store Figure 4. Data Store After Split Figure 5. Data Store After Merge

Algorithm 3 : p.merge()

1: //send message to successor and wait for result
2: (action, newRange, newItemsList) =

p.ringNode.getSuccessor()::
initiateMergeMsgHandler (p, |p.range|);

3: p.list.add (newItemsList);
4: p.range.add (newRange);

Algorithm 4 : (action, newRange, newItemsList)
p′.initiateMergeMsgHandler (p,numItems)

1: if numItems + p′.size > 2 · sf then
2: //redistribute
3: computenbItemsToGive;
4: splitItems = p′.list.splitFirst (nbItemsToGive);
5: splitV alue = splitItems.lastValue() ;
6: splitRange = p′.range.splitFirst (splitV alue);
7: return (redistribute ,splitRange,splitItems);
8: else
9: //merge and leave the ring

10: splitItems = p′.list;
11: splitInterval = p′.range;
12: p′.ringNode.leaveRing() ;
13: return (merge , splitRange, splitItems);
14: end if

function on its successor on the ring. The successor sends
back the action decided,merge or redistribute ,
a new range newRange and the list of entries
newItemsList that are to be re-assigned to peerp (line 2).
p appendsnewRange to p.range andnewItemsList to
p.own.

The outline of the initiateMergeMsgHandler
function is given in Algorithm 4. The invoked peer,
p′ = succ(p), checks whether a redistribution of en-
tries is possible between the two ”siblings” (line 1). If
yes, it sends some of its entries and the correspond-
ing range top. If a redistribution is not possible,p′ gives up
all its items and its range top′, and becomes a free peer.

ExampleLet us consider again Figure 3 and assume that
item with search key value19 is deleted from the system. In
this case, there is an underflow at peerp4 and peerp4 calls
initiateMergeMsgHandler in p5. Sincep5 has only
one item, redistribution is not possible. Peerp5 sends its
data entry top4 and becomes free. As shown in Figure 5,
peerp4 now owns the entries in the whole range(18, 5].

3.2. Managing Free Peers
Recall that free peers are used during splits and are gen-

erated during merge. There are three important issues to be
addressed when managing free peers. First, we should have
a reliable way of “storing” and finding free peers. Second,
we need to ensure that a free peer exists when it is needed
during split. Finally, even though free peers do not have a
position on the ring, they are a part of the system and should
be able to query the data in the system.

To solve the first issue, we create an artificial entry
(⊥, p′.physicalId) for every free peerp′ , where⊥ is the
smallest possible search key value. This artificial entry is in-
serted into the system like any regular entry. Using this im-
plementation, storing or removing a free peer is similar to
inserting or respectively removing a data item from the P2P
system. When a free peer is needed, an equality search for
⊥ is issued. This search is processed as a regular user query
and the result is returned to the peer issuing the request.

To ensure that a free peer exists when needed during
split, we employ the following scheme: letN be the num-
ber of entries in the system andn be the number of peers
in the system. If we setsf= dN/ne, a free peer is guar-
anteed to exist in the system any time an overflow occurs.
sf can either be estimated in a very conservative way so
that a free peer always exists when needed, or can be ad-
justed from time to time by estimatingN andn using back-
ground gossip style aggregation, say like in [19].

To solve the final issue, each free peer maintains a list of
non-free peers so that it can forward any query it receives to
one of the non-free peers to be processed.



3.3. Load Balancing using Free Peers
Though the scheme proposed in the previous sections

maintains the number of entries owned by each peer within
strict bounds, there are some peers who do not store any
of the data entries. So in a true sense there is no “load bal-
ance” amongst the peers. In this section we propose an ex-
tension to the basic scheme, which uses the free peers to
help “truly” balance the load on the peers. The extended
scheme proposed is provably efficient, i.e., every insert and
delete of a data entry has an amortized constant cost. Also
the load imbalance, defined as the ratio of the load on the
most loaded peer to the load on the least loaded peer, is
bounded by a small constant. We inform the reader that the
system evaluated in the experiments does not implement
these extensions to the basic scheme.

As a first step toward the algorithm, observe that if we
assign data entries to free peers too in some clever way
while maintaining the strict boundslb andub on the num-
ber of entries assigned, we should be able to bound the
load imbalance by the ratioub

lb . Inspired by this observa-
tion, we introduce the concept of “helper peers”. Every
free peer is obliged to “help” a peerp already on the ring.
The free peer helpsp by managing some part ofp.range
and hence some of the data entries owned byp. If p has
k helpersq1, q2, . . . , qk, p.range = (l, u] is divided into
(l = b0, b1], (b1, b2], . . . , (bk, u] such that each of the ranges
has equal number of entries. Peerp is now responsiblefor
(bk, u]. Each ofp’s helpers,qj , becomesresponsiblefor
one of the other ranges, say(bj−1, bj ]. Call the list of en-
tries peerq is responsiblefor to be q.resp and call the
corresponding rangeq.rangeresp. All queries dealing with
q.rangeresp will reach q. However, these helpers do not
own any entries. Any inserted or delete that reachesq is for-
warded to the peerp which actually owns the range andp
will see to that all the entries it owns are always evenly di-
vided amongst the helpers.p is also the one that initiates
the load balancing algorithm, based on the entries in(l, u].
Note that if a non free peer has no helpers,p.rangeresp =
p.range, andp.resp = p.own.

Let us set up some notation. Consider a set ofn peersP.
Consider a ring ordered key space and some multi-set of key
values on it. Consider a partitionR of the ring,|R| < n,
such that∀(l, u] ∈ R, lb ≤ |(l, u]| ≤ ub, ub

lb ≥ 2. Let
ρ : R → P be a 1-1 map defining the assignment of
ranges to peers. For every(l, u] ∈ R, p = ρ((l, u]) im-
pliesp.range = (l, u] andp.own is the set of entries which
lie in (l, u]. We can redefine thesucc andpred of p in
terms of the ranges inR andρ as follows:p1 = succ(p)
if p = ρ((l, u]) andp1 = ρ((l1, u1]) and l1 = u. Simi-
larly, p2 = pred(p) if p = ρ((l, u]) andp2 = ρ((l2, u2])
andu2 = l.

The setN = (ρ(R)) is the set of non free peers in the
system. The setF = P \ N is the set of free peers. Let

ψ : F → N be a function defining the helper peer assign-
ments. For a non free peerp ∈ N , let H(p) = {q|q ∈
F , ψ(q) = p}; i.e.,H(p) is the set of free peers assigned
to p. Note thatR andρ completely define the setsN and
F and also define which non free peerp ∈ N ownseach
range on the ring space (thus definingp.own). Also, for ev-
ery peerq ∈ P,R andρ coupled withψ completely define
which rangeq responsiblefor (thus definingq.resp). Note
that though free peers are responsible for ranges on the ring,
the successor and predecessor of a non free peer are still de-
fined in terms of the ownership, i.e., as defined in terms of
R andρ. We call the tuple(R, ρ, ψ) as aconfigurationof
the system data store.

Definition 1 (Load Imbalance) Consider a configuration
of the data store(R, ρ, ψ). This completely defines theown
andresp sets for each peerp ∈ P. We define theload im-
balanceas

maxp∈P |p.resp|
minp∈P |p.resp|

The extended scheme, which we call AlgorithmEXT-
LOADBALANCE has three load balancing operations:
Split Operation:
CONDITION: A non free peerp splitswhen|p.own| ≥ ub;
i.e., the number of entries owned byp reached the upper
boundub. This operation requires the existence of a free
peer, which is guaranteed by Lemma 1.
ALGORITHM:

1: if |p.own| < ub then
2: return;
3: end if
4: //execute the split
5: if H(p) == ∅ then
6: q = findFreePeer();
7: p.setHelperPeer(q);
8: else
9: q = some peer inH(p);

10: end if
11: //nowp has at least one helper peerq
12: splitItems = p.own.splitSecondHalf() ;
13: splitV alue = splitItems[0];
14: splitRange = p.range.splitLast( splitV alue) ;
15: q::joinRingMsgHandler (p,splitItems,splitRange);
16: if H(p) \ {q} != ∅ then
17: transfer half the helpers fromp to q to getH′(p) and

H′(q);
18: end if
19: redistributep.own amongstH′(p);
20: rdistributeq.own amongstH′(q);
PURPOSE: Thesplit operation enforces an upper bound on
the number of items owns by a non free peer. Also, as shown
in Theorem 2, after a split,lb ≤ |p.own|, |q.own| ≤ ub.



Merge Operation:
CONDITION: When a non free peerp owns≤ lb entries, it
either tries to get some entries from its neighbors (succes-
sor or predecessor), or gives up the entries to its predecessor
and becomes free. The former case, called theredistribute
happens ifp has a neighbor on the ring (successor or pre-
decessor) which owns at leastub

2 entries. The latter, called
mergehappens when neither ofp’s neighbours have at least
ub
2 entries.

ALGORITHM:

1: if |p.own| > lb then
2: return;
3: end if
4: p1 = succ(p);
5: p2 = pred(p);
6: op = MERGE;
7: if |p1.own| ≥ ub

2 then
8: q = p1; op = REDISTRIBUTE;
9: else

10: if |p2.own| ≥ ub
2 then

11: q = p2; op = REDISTRIBUTE;
12: else
13: q = p2; op = MERGE;
14: end if
15: end if
16: if op = REDISTRIBUTE then
17: transferub

4 − lb
2 entries fromq.own to p.own;

18: redistribute newp.own amongstH(p);
19: redistribute newq.own amongstH(q);
20: else
21: q.own = q.own + p.own;
22: p.leaveRing();
23: H(q) = H(q) ∪H(p) ∪ {p};
24: end if

PURPOSE: Themergeoperation ensures that the number of
items owned by a peer does not fall belowlb. Also, as shown
in Theorem 2, after a redistribute,lb ≤ |p.own|, |q.own| ≤
ub, and after a merge,lb ≤ |q.own| ≤ ub.

Usurp Operation:
CONDITION: Consider a non free peerp1 ∈ N , and a free
peerq ∈ F , ψ(q) = p2. Given a constantδ, if |p1.resp| ≥
2
√

1 + δ|q.resp|, thenp1 canusurp the free peerq and set
q as its helper peer.
ALGORITHM:

1: find least loaded free peerq (ψ(q) = p2);
2: if |p1.resp| ≥ 2(

√
1 + δ)|q.resp| then

3: p1.setHelperPeer(q);
4: redistributep1.own amongst its new set of helper;
5: redistributep2.own amongst remaining helpers;
6: end if

PURPOSE: The first two operations only talk about bound-
ing entries owned by non free peers. However, load imbal-

ance is defined as the imbalance inp.resp for all p ∈ P.
This operation bounds the load imbalance between two
peersp andq, where at least one of them is a free peer, by
2
√

1 + δ (see Theorem 2). Note thatp.own does not change
for any non free peerp due tousurp operations.

The algorithmEXTLOADBALANCE performs the appro-
priate operation when the appropriate condition is met. We
assume that in theusurp operation, a non free peer can eas-
ily find the least loaded free peer and updates are reflected
immediate. This could be implemented by building an in-
dex on the load of free peers. We do not elaborate on this
aspect here.

Let us revisit now the issue of setting the upper and lower
bounds. In the basic scheme discussed in the previous sec-
tion, we setlb = sf and ub = 2sf. Since we needed
free peers to exist whenever a peer needed to split, we set
sf= dN/ne, wheren = |P| andN is the total number of
entries in the system; i.e.,n(d−1) < N ≤ nd, for some in-
tegerd impliessf = d. If due to inserts,N > nd, sf should
be updated to(d + 1) and if due to deletes,N ≤ n(d− 1),
sf should be updated to(d− 1).

In algorithm EXTLOADBALANCE, for efficiency rea-
sons (see Theorem 3), we needub ≥ 2sf. Henceforth, we
assume thatlb = d and ub = (2 + ε)d for some con-
stant ε > 0. In EXTLOADBALANCE, if due to inserts,
N > nd, we setsf to (d + 1). But, for efficiency rea-
sons (see Theorem 3), we do not updatesf to (d− 1) until
N ≤ n(d−1−γ), for some positive constantγ < 1

2 . Hence,
lb = d impliesn(d− 1− γ) ≤ N ≤ nd. This change, how-
ever, maintains the property that there are free peers avail-
able whenever a peer wants to split (see Lemma 1).

Lemma 1 Whenever algorithmEXTLOADBALANCE per-
forms thesplit operation, there exists a free peer in the sys-
tem.

Proof. Let lb = d. Thenub ≥ 2d. Suppose there are no free
peers when algorithmEXTLOADBALANCE wants to per-
form a split operation. Since there is a peer owningub en-
tries, the total number of entries in the system,N , is at least
(n − 1)d + 2d; i.e., N > nd. However,ub and lb are set
such that, iflb = d, thenn(d − 1 − γ) ≤ N ≤ nd. This
leads to the required contradiction.

Definition 2 (Valid Configuration) Letn be the number of
peers andN the number of entries in the system. Let con-
stantsγ ≤ 1

2 , lb andub be such thatub
lb ≥ 2 andlb = d im-

pliesn(d − 1 − γ) ≤ N ≤ nd, A configuration described
by the tuple(R, ρ, ψ) is said to be avalid configuration, if
for some positive constantδ, the ownership and responsi-
bility assignments completely defined by the configuration
satisfy:

1. Ownership Validity: lb < |p.own| < ub for all non
free peersp ∈ N , and



2. Responsibility Validity: if there are free peers in the
system andq ∈ F is the free peer responsible for
the least number of items, any peerp is such that
|p.resp| ≤ 2

√
1 + δ|q.resp|.

We can bound the maximum number of helper peers as-
signed to a non free peer to a constantκvalid

h in a valid con-
figuration (see Lemma 2).

Lemma 2 In a valid configuration, the number of helper
peers assigned to a non free peers is at mostκvalid

h =
4ub

lb

√
1 + δ − 1.

Proof. Consider a non free peerp owning` = |p.own| en-
tries and havingh helpers.p and each of its helpers are re-
sponsible for `

1+h entries. Since the current configuration is
valid, we have that any other peerq in the system is respon-
sible for at most `

1+h2
√

1 + δ entries. LetN denote the to-
tal number of items in the system. We know that

N ≥ n(lb− 1− γ)

Also, from the above discussion,

N ≤ (n− h− 1)
`

1 + h
2
√

1 + δ + `

From the above two equations, we have

h <
`

lb− 2
2
√

1 + δ ≤ 4
ub

lb

√
1 + δ

We are now ready to state the main theorems regarding
the correctness, load imbalance and the efficiency ofEXT-
LOADBALANCE.

Theorem 1 (Correctness)Starting from any initialvalid
configurationdefined by(R0, ρ0, ψ0), for every insert or
delete operation, algorithmEXTLOADBALANCE performs
a finite sequence ofsplit, mergeand usurpoperations and
results in a valid configuration.

Corollary 1.1 Starting from a valid configuration,EXT-
LOADBALANCE fixes a violation due to an insert or a
delete by performing at most onesplit or onemerge oper-
ation followed by a constant number ofusurp operations.

Theorem 2 (Load Imbalance) The algorithm always re-
turns to a valid configuration and hence the load imbalance
is at mostmax ub

lb , 2
√

1 + δ

Our cost model is very similar to the one used in Gane-
san et al. [11]. There are three major components to the cost
involved:

• Data Movement: we model this cost as being linear
in the number of entries moved from one peer to the
other.

• Distributing entries amongst helper peers: this happens
whenever the set of entries owned by a peerp or the set
of helpersH(p) changes.|p.own|, the number of items
which have to be distributed amongst the helpers, is
a very conservative estimate on the number of entries
moved around.

• Load Information: Our algorithm requires non-local
information about the least loaded free peer. We as-
sume that this comes at zero cost.

Under this cost model, we prove the following efficieny re-
sult.

Theorem 3 (Efficiency) Starting from an initial configura-
tion defined by(R0, ρ0, ψ0), for every sequenceσ of item
inserts and deletes, ifub

lb ≥ 2(1 + ε) for someε > 0, the se-
quence ofsplit, mergeand usurpoperations performed by
algorithm EXTLOADBALANCE for any prefix ofσ is such
that the amortized cost of an insert or a delete operation in
that prefix ofσ is a constant.

Before we go on to prove the theorems, we define a
potential Φ associated with every configuration(R, ρ, ψ).
We will use this potential to prove the above stated theo-
rems. Henceforth, we will assume thatlb = d andub =
(2 + ε)d for someε.

Definition 3 (Potential) We define for each configuration
(R, ρ, ψ) a potentialΦ = Φo + Φr, whereΦo andΦr are
defined as follows:

TheOwnershipPotential Φo =
∑

p∈P φo(p), where for
some constantco,

φo(p) =





0 p 6∈ N (free peer)
co

d (l0 − |p.own|)2 d ≤ |p.own| ≤ l0
0 l0 ≤ |p.own| ≤ u0
co

d (|p.own| − u0)2 u0 ≤ |p.own| ≤ (2 + ε)d

l0 = (1 +
ε

4
)d

u0 = (2 +
3ε

4
)d

TheResponsibilityPotential Φr =
∑

q∈P φr(q), where
for some constantcr

φr(q) =
cr

d
(|q.resp|)2

We now quantify the change in the ownership and re-
sponsibility potentials on an insert, a delete and respectively
a single load balancing operation. Define∆opΦ (and re-
spectively∆opΦo and∆opΦr) to be the decrease in poten-
tial Φ (Φo and Φr, respectively) due to one of the above
stated operations.
Insert: Due to an insert, an entry is inserted intop.own for
somep and inserted intoq.resp for someq ∈ H(p) ∪ {p}.
Hence,φr(p) will increase andφo(p) will increase when



u0 ≤ |p.own| ≤ (2+ ε)d. Hence, the minimum decrease in
Φ occurs when bothφr(q) andφo(p) increase and this de-
crease is

∆insΦo =
co

d
(|p.own| − u0)2 − co

d
(|p.own|+ 1− u0)2

= −co

d
(2|p.own|+ 1− 2u0)

≥ −co

d
(2(2 + ε)d + 1− 2(2 +

3ε

4
)d)

≥ −co

d
(
ε

2
d + 1)

≥ −c0ε

2
∆insΦr =

cr

d
(|q.resp|)2 − cr

d
(|q.resp|+ 1)2

= −cr

d
(2|q.resp|+ 1)

≥ −cr

d
(2(2 + ε)d + 1)

≥ −2(2 + ε)cr

∆insΦ ≥ −coε

2
− 2(2 + ε)cr (1)

Delete: Due to a delete, an entry is deleted fromp.own for
some non free peerp and deleted fromq.resp for some
q ∈ H(p) ∪ {p}. Like in the insert case, the minimum de-
crease inΦ occurs when bothφr(q) and φo(p) increase.
Here,φo(p) increases whend ≤ |p.own| ≤ l0.

∆delΦo =
co

d
(l0 − |p.own|)2 − co

d
(l0 − (|p.own| − 1))2

= −co

d
(2l0 − 2|p.own|+ 1)

≥ −co

d
(2(1 +

ε

4
)d + 1− 2d)

≥ −co

d
(
ε

2
d + 1)

≥ −c0ε

2
∆delΦr =

cr

d
(|q.resp|)2 − cr

d
(|q.resp|+ 1)2

≥ −2(2 + ε)cr

∆delΦ ≥ −coε

2
− 2(2 + ε)cr (2)

Split: First let us look at the decrease in the ownership po-
tential∆splitΦo. During a split, a peerp owning|p.own| =
(2+ ε)d entries, gives half of its entries to a free peerq. Af-
ter the split, bothp andq own (1 + ε

2 )d items. Hence, the
final ownership potentials ofp andq are0. Also, the ini-
tial ownership potential ofq is 0 since before the splitq was
a free peer.

∆splitΦo ≥ co

d
((2 + ε)d− u0)2 = co(

ε

4
)2d

Next, consider the change in the responsibility potential.
WhenH(p) 6= ∅, q is chosen fromH(p) and the helper

peers are distributed amongstp andq evenly. In this case,
the responsibilities change only when the number of helpers
apart fromq (|H(p) \ {q}|) is odd, say2h + 1. This is be-
cause the(1+ ε

2 )d entries inp andq are distributed amongst
h + 1 andh + 2 peers respectively. In this case the decrease
in Φr would be

∆splitΦr = (2h + 3)
cr

d

(
(2 + ε)d
2h + 3

)2

−(h + 1)
cr

d

((
1 + ε

2

)
d

h + 1

)2

−(h + 2)
cr

d

((
1 + ε

2

)
d

h + 2

)2

≥ cr

d

(
((2 + ε)d)2

4(h + 2)
− ((2 + ε)d)2

4(h + 1)

)

= cr(2 + ε)2d
(

1
4(h + 2)

− 1
4(h + 1)

)

= − cr(2 + ε)2

4(h + 1)(h + 2)
d

∆splitΦr ≥ −cr(2 + ε)2

8
d

Whenp does not have any associated helper peers, sayp
takes overp2’s helperq. Let, h = |H(p2)|, ` = |p2.own|.
We have,

∆splitφr(p) =
cr

d

(
((2 + ε)d)2 −

((
1 +

ε

2

)
d
)2

)

∆splitφr(q) =
cr

d

((
`

1 + h

)2

−
((

1 +
ε

2

)
d
)2

)

∀q2(6= q) ∈ H(p) ∪ {p2},

∆splitφr(q2) =
cr

d

((
`

1 + h

)2

−
(

`

h

)2
)

∆splitΦr =
cr

d

(
1
2
((2 + ε)d)2 +

`2

1 + h
− `2

h

)

=
cr

d

(
((2 + ε)d)2

2
− `2

h(h + 1)

)

≥ cr

d

(
((2 + ε)d)2

2
− ((2 + ε)d)2

1 · 2
)

≥ 0

Hence the minimum decrease in the potential due to a
split is

∆splitΦ ≥ co(
ε

4
)2d (3)

Merge: REDISTRIBUTE: Let us first quantify the decrease
in ownership potential. A peerp1 which owns|p1.own| = d
entries getsε4d entries fromp2 which owns at least(1+ ε

2 )d
entries. Before the redistribute,(1 + ε

2 )d ≤ |p2.own| ≤



(2 + ε)d. Hence, after the redistribute, we have(1 + ε
4 )d ≤

|p2.own| ≤ (2 + 3ε
4 )d. Hence,p2’s final ownership poten-

tial is 0. Also, p1’s final ownership potential is0 since it
will now have (1 + ε

4 )d entries. Since,p2’s initial poten-
tial could have been0, the minimum decrease in ownership
potential is given by

∆redistΦo ≥ co

d
(l0 − d)2 = co(

ε

4
)2d

For the change in the responsibility potential, let
|H(p1)| = h1 and |H(p2)| = h2. Let |p2.own| = `.
We have,

∀q1 ∈ H(p1) ∪ {p1},

∆redistφr(q1) =
cr

d




(
d

1 + h1

)2

−
((

1 + ε
4

)
d

1 + h1

)2



∀q2 ∈ H(p2) ∪ {p2},

∆redistφr(q2) =
cr

d

((
`

1 + h2

)2

−
(

`− ε
4d

1 + h2

)2
)

∆redistΦr = − cr

1 + h1

(
ε

2
d +

( ε

4

)2

d

)

+
cr

1 + h2

(
ε

2
`−

( ε

4

)2

d

)

≥ crε

2

((
1 + ε

2

)
d

1 + h2
− d

1 + h1

)

−crε
2d

16

(
h2 + h1

(1 + h1) (1 + h2)

)

≥ −crd

(
ε

2

(
1− 1 + ε

2

κh

)
+

ε2

16

(
1 +

1
κh

))

≥ −crd

(
ε

2
+

ε2

8

)

Hence the maximum decrease in potential is

∆redistΦ ≥ cod
ε2

16
− crd

(
ε

2
+

ε2

8

)
(4)

MERGE: Considering the ownership potential, a peerp1

which has|p1.own| = d entries, gives up all its entries to
p2 and becomes free. Hence,p1’s final ownership poten-
tial is 0. p2 has at most(1 + ε

2 )d entries before the merge.
Hence,p2’s final ownership potential is also0. Hence, the
decrease in ownership potential is at leastp1’s initial poten-
tial, which is

∆mergeΦo ≥ co

d
(l0 − d)2 = co

( ε

4

)2

d

Considering the responsibility potential, let|H(p1)| =
h1 and |H(p2)| = h2. Let |p2.own| = ` ≤ (

1 + ε
2

)
d. In

the merge,p1 gives up all its entries top2, becomes free,
and all the free peers in{p1} ∪H(p1) becomep2’s helpers.
Note that there might be too many helpers forp2 after the
merge, but a sufficient number ofusurp operations will re-
duce the number of free peers to belowκh.

∀q1 ∈ H(p1) ∪ {p1},

∆mergeφr(q1) =
cr

d

((
d

1 + h1

)2

−
(

` + d

2 + h1 + h2

)2
)

∀q2 ∈ H(p2) ∪ {p2},

∆mergeφr(q2) =
cr

d

((
`

1 + h2

)2

−
(

` + d

2 + h1 + h2

)2
)

∆mergeΦr =
cr

d

(
d2

1 + h1
+

`2

1 + h2
− (` + d)2

2 + h1 + h2

)

≥ −cr

(
(` + d)2

2 + h1 + h2

)

≥ −2cr

(
1 +

ε

4

)
d

Hence, the maximum decrease in potential is

∆mergeΦ ≥ co

( ε

4

)2

d− 2cr

(
1 +

ε

4

)
d (5)

Usurp: In the usurp operation, the ownership mappings do
not change. Hence the decrease in ownership potential due
to an usurp operation is0.

The responsibility potential, however, decreases in this
operation. Letp1 be a non free peers with|p1.own| = `1
and|H(p1)| = h1. Let q be the free peer usurped byp1. If
p2 = ψ(q), |p2.own| = `2 and |H(p2)| = h2 ≥ 1, then

`1
1+h1

≥ 2
√

1 + δ `2
1+h2

. Let hmax be the maximum number
of free peers assigned to a non free peer in the current con-
figuration. Note that the current configuration is not a valid
configuration and hence the maximum number of free peers
might exceedκvalid

h .

∀q1 ∈ H(p1) ∪ {p1},

∆usurpφr(q1) =
cr

d

((
`1

1 + h1

)2

−
(

`1
2 + h1

)2
)

∀q2( 6= q) ∈ H(p2) ∪ {p2},

∆mergeφr(q2) =
cr

d

((
`2

1 + h2

)2

−
(

`2
h2

)2
)

∆mergeφr(q) =
cr

d

((
`2

1 + h2

)2

−
(

`1
2 + h1

)2
)



∆mergeΦr =
cr

d

(
`21

1 + h1
− `21

2 + h2
+

`22
1 + h2

− `22
h2

)

=
cr

d

(
`21

(1 + h1)(2 + h1)
− `22

h2(1 + h2)

)

≥ cr

d

(
`21

2(1 + h1)2
− 2`22

(1 + h2)2

)

≥ cr

d

(
2
√

1 + δ`22
(1 + h2)2

− 2`22
(1 + h2)2

)

≥ 2crδ

(1 + hmax)2
d2

d

≥ 2crδ

(1 + hmax)2
d

∆usurpΦ ≥ 2crδ

(1 + hmax)2
d (6)

Proof. of Theorem 1: Consider a valid initial configura-
tion which satisfies theownershipandresponsibility valid-
ity conditions. If an insert violates the ownership constraint,
there is one peerp which violates the constraint by own-
ing ub entries. A split is performed which results inp own-
ing (1 + ε

2 )d entries and a free peerq being added to the
ring with the same number of entries. Hence, the new con-
figuration satisfies the ownership constraint.

If a delete causes an ownership violation, there is one
peerp which violates the constraint by owninglb entries. A
merge operation is performed. In the case of a redistribute,
p2 owning (1 + ε

2 )d ≤ |p.own| ≤ (2 + ε)d entries gives
ε
4 to p1. Thus nowp1 owns(1 + ε

4 )d entries andp2 owns
(1+ ε

4 )d ≤ (2+ 3ε
4 )d entries, satisfying the ownership con-

straints. In the case of a merge,p1 gives up itsd entries to
p2 and becomes free.p2 initially has at most(1 + ε

2 )d en-
tries and hence addition ofd more entries will not violate
the ownership constraints.

We showed that violation of an ownership constraint can
be fixed using one split or merge operation. However, this
operation might lead to violation of a responsibility con-
straint. This is fixed by using usurp operations. We prove
that the number of usurp operations required is finite by
using a simple potential argument. Recall the responsibil-
ity potentialΦr. Starting from a valid configuration, a con-
figuration resulting from an insert or a delete satisfies the
following modified ownership constraint: for allp ∈ P,
d ≤ |p.own| ≤ (2 + ε)d. Hence the potentialΦr is lin-
ear ind. The potential of the resulting valid configuration
is positive. From equation 6, the decrease inΦr due to an
usurp operation is greater than 0. Hence, in a finite num-
ber of usurp operations, we reach a valid configuration.

Lemma 3 In any configuration attained during the execu-
tion ofEXTLOADBALANCE, the number of helper peers as-
signed to a non free peers is at mostκh ≤ (4 + ε)κvalid

h ,
whereub

lb = (2 + ε).

Proof. We first prove that any configuration attained during
the execution ofEXTLOADBALANCE satisfies a variant of
Property 2 of a valid configuration, namely

2’ If there are free peers in the system andq ∈ F is the
free peer responsible for the least number of items, any
peerp is such that|p.resp| ≤ (2+ ε

2 )2
√

1 + δ|q.resp|.
Proving the above result would imply that the maximum
number of free peers assigned to a non free peer is at most
(2 + ε

2 )κvalid
h using the same arguments as in Lemma 2.

Let us step through the execution ofEXTLOADBAL -
ANCE on a sequence of inserts and deletes. Let`min be
the minimum number of entries a free peerq is responsi-
ble for and`max be the maximum number of entries a non
free peer is responsible for.

• Starting from a valid configuration with an imbalance
of at most2

√
1 + δ, an insert or a delete cannot re-

sult in a configuration with a greater imbalance than
4
√

1 + δ, since only one item is added or removed.

• An insert or a delete could be followed by a split or a
merge operation respectively. Let us consider an insert
followed by a split. Say peerp had(2+ ε)d−1 entries
in the valid configuration and an insert violated the
ownership constraint atp. If p has a helperq, p splits
with q and distributes the helpers inH(p)\{q} between
themselves. LetH(p) = h. In the initial configuration,
all peers inH(p)∪{p} are responsible for(2+ε)d−1

1+h . If
h were odd, then finally bothp andq would share the
items and helpers equally and the responsibility does
not change. However, ifh were even, say2m, then fi-
nally, p would be responsible for(1+

ε
2 )d

m entries andq

and its helpers would be responsible for(1+ ε
2 )d

1+m . How-
ever, the final responsibilities are off from the initial re-
sponsibilities by at most a factor of2 and hence even in
the worst case the imbalance is not more than4

√
1 + δ.

• Consider a delete followed by a redistribute. Initially,
p1 is responsible ford+1

1+h1
entries andp2 is responsi-

ble for at least(1+
ε
2 )d

1+h2
entries. Finally,p1 is responsible

for (1+ ε
4 )d

1+h1
andp2 is responsible for at least(1+

ε
4 )d

1+h1
. In

the case ofp1 and its helpers, the load could be imbal-
anced by an additional factor of at most(1 + ε

4 ) while
in the case ofp2 the load could be imbalanced by an
additional factor of2.

• Consider a delete followed by a merge. In this case,
p1 owns `1 entries withh1 helpers,p2 owns `2 en-
tries with h2 helpers. Finally,p1 andp2 and each of
the helpers is responsible for`1+`2−1

2+h1+h2
. Since `1

1+h1

and `2
1+h2

did not violate the responsibility condition,
`1+`2−1
2+h1+h2

can violate the condition by at most an addi-
tional factor of 2.



• For the usurp operation, we can show that the imbal-
ance after an usurp operation is not greater than the im-
balance before the operation. Letp1 usurpp2’s helper.
Let initially p1 andp2 own `1 and`2 entries and have
h1 and h2 helpers respectively. For the usurp to oc-
cur, `1

1+h1
≥ 2

√
1 + δ `2

1+h2
. We show that `2

1+h2
≤

`1
2+h1

, `2
h2
≤ `1

1+h1
. Hence the result.

`1
2 + h1

≥ `1
2(1 + h + 1)

≥
√

1 + δ`2
1 + h2

>
`2

1 + h2
`2
h2

≤ 2`2
1 + h2

≤ `1√
1 + δ(1 + h1)

<
`1

1 + h1

Hence, we see that the additional imbalance is not more than
a factor ofmax 2, (1 + ε

4 ) and hence the imbalance is at
worst(2 + ε

2 )2
√

1 + δ.
Proof. of Corollary 1.1: From the proof of the Theo-

rem 1, we know that the ownership violation caused by an
insert or a delete can be fixed in exactly one split or merge.

Sinceκh, the maximum number of free peers assigned to
a non free peer (Lemma 3), is a constant,∆usurpΦ is a frac-
tion of d. From the proof of Theorem 1, we know that any
attainable configuration has a potential linear ind. Since ev-
ery usurp operation decreases this potential by a fraction of
d, and the potential of the resulting valid configuration is
positive, the number of usurp operations is at most a con-
stant.

Proof. of Theorem 2: From Theorem 1, we know that
the algorithm always returns to a valid configuration. Also
in a valid configuration, the imbalance between free and non
free peers is at most2

√
1 + δ and the imbalance between

non free peers is at mostub
lb . Hence the result follows.

Proof. of Theorem 3: First note that the increase in the
potentialΦ on an insert or a delete is at mostε

2co + 2(2 +
ε)cr, which is a constant givenco andcr. If we can set the
constantsco andcr such that the minimum decrese inΦ is
greater than the maximum cost of a load balancing operta-
tion, we are done proving the amortized constant cost of an
insert or a delete.

The cost of asplit operation is at most(3 + 3ε
2 )d. In the

case whenp, the splitting peer has a helperq, the cost is con-
tributed by the transfer of(1+ ε

2 )d entries and the rearrang-
ing of entries amongstp’s andq’s helpers. Hence the total
cost is at most(3 + 3ε

2 )d. Whenp does not have a helper,
p takes awayq from some other non free peerp2. Here the

cost involved transfer of entries fromp to q and the rear-
ranging of entries amongstp2’s remaining helpers. Hence,
the cost is at most(3+ 3ε

2 )d. Hence we needco andcr such
that

co

( ε

4

)2

d ≥
(

3 +
3ε

2

)
d (7)

The cost of theREDISTRIBUTE case in amerge opera-
tion, is at most(3+ 5ε

4 )d. The cost involves transfer ofε4 en-
tries and the redistribution of the final set of entries owned
by p1 andp2 amongst their helpers.

cod
ε2

16
− crd

(
ε

2
+

ε2

8

)
≥

(
3 +

5ε

4

)
d (8)

The cost of aMERGE is at most(3 + ε
2 )d, since the cost

only involves transfer ofd entries to the more loaded peer
and redistribution of at most(2 + ε

2 )d entries amongst the
new set of helper peers. Hence,

co

( ε

4

)2

d− 2cr

(
1 +

ε

4

)
d ≥

(
3 +

ε

2

)
d (9)

Finally, theusurp operation costs̀1 + `2 ≤ 2(2 + ε)d,
where the two non free peers involved own`1 and`2 en-
tries respectively. The cost arises due to the redistribution
amongst the new set of helpers. Hence,

2crδ

κ2
h

d ≥ 2(2 + ε)d (10)

Solving equations 7, 8, 9, 10, we get

co
ε2

16
≥ cr

(
1 + ε +

ε

4

)
+

(
3 +

3ε

2

)

cr ≥ (2 + ε)κ2
h

δ

By setting the constantscr andco to values as shown above,
we can prove that the amotized cost of inserts and deletes is
a constant whend does not change.

We still need to consider the case whenlb changes.lb
changes either due toN becoming greater thannd due to in-
serts, in which caselb ← d+1 or due toN becoming lesser
thann(d−1−γ), γ < 1

2 , in which caselb ← d−1. Due to
the change ind the potential might increase. Note that the
change affects only the ownership potential and not the re-
sponsibility potential.

• Increase inΦ due tolb changing fromd to d + 1:
In this case,l0 = (1+ ε

4 )d increases by(1+ ε
4 ). Hence

for all the peersp owning |p.own| = ` ≤ l0 entries,



the potential increases and the increase is

inc Φ ≥ n
co

d

((
l0 +

(
1 +

ε

4

)
− `

)2

− (l0 − `)2
)

= n
co

d

(
2(l0 − `) +

(
1 +

ε

4

)) (
1 +

ε

4

)

≤ n
co

d

(
2d

ε

4

) (
1 +

ε

4

)

inc Φ ≤ nco
ε

2

(
1 +

ε

4

)

• Increase inΦ due tolb changing fromd to d− 1:
Similarly in this case,u0 decreases by(1 + ε

4 ). Hence
for all the peersp owning |p.own| = ` ≥ u0 entries,
the potential increases and the increase is

inc Φ ≤ nco
ε

2

(
1 +

ε

4

)

If we are able to show that the number of insert/delete
operations between two consecutive changes inlb is linear
in n, we can charge the increase in potential as a constant
overhead cost to each insert/delete operation and thus prove
that the amortized cost is a constant even with changes in
lb.

Let us count the number of steps between two consecu-
tive changes inlb.

• lb changes fromd− 1 to d and then tod + 1:
In this case, change fromd − 1 to d happens when
N > n(d − 1) and the change fromd to d + 1 hap-
pens whenN > nd. Hence there are at leastn inserts
between the changes.

• lb changes fromd + 1 to d and then tod− 1:
In this case, change fromd + 1 to d happens when
N ≤ n(d − γ) and the change fromd to d − 1 hap-
pens whenN ≤ n(d− 1− γ). Hence there are at least
n deletes between the changes.

• lb changes fromd + 1 to d and then back tod + 1:
In this case, change fromd + 1 to d happens when
N ≤ n(d − γ) and the change fromd to d + 1 hap-
pens whenN > nd. Hence there are at leastnγ inserts
between the changes.

• lb changes fromd− 1 to d and then tod− 1:
In this case, change fromd + 1 to d happens when
N > n(d − 1) and the change fromd to d − 1 hap-
pens whenN ≤ n(d− 1− γ). Hence there are at least
nγ deletes between the changes.

Thus there are at leastnγ inserts/deletes between two con-
secutive changes inlb. Hence by charging each insert/delete
an extra constant cost of

coε

2γ

(
1 +

ε

4

)

we can pay for the operations caused by the change inlb
also.

4. P-Ring Content Router
The goal of our Content Router is to efficiently route

messages to peers in a given range. The main challenge
in designing a Content Router for range queries is to han-
dle skewed distributions. Since the search key values dis-
tribution can be skewed, the ranges assigned to the peers
may not be of equal length. Consequently, index structures
that assume uniform data distribution in the indexing do-
main such as Chord [33] and Pastry [30] cannot be applied
in this case. Recently, some P2P indexing structures that can
handle skewed distributions have been proposed [8, 2, 15],
but these structures either provide only probabilistic search
guarantees [2, 15], or do not provide search guarantees [8]
even in a stable system.

The existing work on distributed B+-trees is not directly
applicable in a massively distributed system like ours. To
the best of our knowledge, all such index structures [17, 20]
try to maintain a globally consistent B+-tree byreplicating
the nodes of the tree across different processors. The consis-
tency of the replicated nodes is then maintained usingpri-
mary copyreplication. Relying on primary copy replication
creates both scalability (load/resource requirements on pri-
mary copy) and availability (failure of primary copy) prob-
lems, and is clearly not a solution for a large-scale P2P sys-
tems with thousands of peers.

We devise a new content router calledHierarchical Ring
(or short, HR) that can handle highly skewed data distri-
butions. In the following sections, we describe the content
router and the routing and maintenance algorithms. We then
analytically bound the search performance in a stable sys-
tem and under very heavily skewed insertion patterns. We
also experimentally evaluate the content router in the per-
spective of our architecture.

4.1. Hierarchical Ring
The HR Content Router is based on the simple idea of

constructing a hierarchy of rings.
Let d be an integer ¿ 1, called the ’order’ of HR. At the

lowest level, level 1, peerp maintains a list of the firstd suc-
cessors on the ring. Using the successors, a message could
always be forwarded to the last successor in the list that
does not overshoot the target “skipping” up to d-1 peers at a
time. Consider the ring in Figure 6, where peerp1 is respon-
sible for the range(5, 10], peerp2 is responsible for range
(10, 15] and so on and assume thatd=2. Each peer knows its
successor on the ring:succ(p1) = p2, succ(p2) = p3, ...,
succ(p5) = p1. At level 1 in the Content Router, each peer
maintains a list of 2 successors, as shown. Supposep1 needs
to route a message to a peer with value20. In this case,p1

will route the message top3 andp3 will forward the mes-
sage top5, the final destination.

At level 2, we again maintain a list ofd successors. How-
ever, a successor at level 2 corresponds to thedth succes-
sor at level 1. Note that using these successors, a message
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could always be routed to the last successor in the list that
does not overshoot the target, ”skipping” up tod2− 1 peers
at a time. Figure 7 shows the content of level 2 nodes at each
peer in the ring. Suppose thatp1 needs to route a message
to a peer with value20. p1 will route the message directly to
p5 (the final destination), using the list at level 2. The pro-
cedure of defining the successor at levell + 1 and creating
a list of levell + 1 successors is iterated until no more lev-
els can be created. In Figure 8, for peerp1 for example, note
thatsucc3(p5) = p4, which overshootsp1, so no more lev-
els can be constructed forp1.

An important observation about this index structure is
that we are conceptually indexing ”positions” in the ring
(i.e. at levell, a peerp has pointers to peers that aredl peers
away) instead of values, which allows the structure to han-
dle skewed data distributions.

Formally, the data structure for a HR of orderd is a
doubly indexed arraynode[level][position], where1 ≤
level ≤ numLevels and1 ≤ position ≤ d. The HR is
defined to be consistent if and only if at each peerp:

• p.node[1][1] = succ(p)

• p.node[1][j + 1] = succ(p.node[1][j]), 1 ≤ j < d

• p.node[l + 1][1] = p.node[l][d],

• p.node[l +1][j +1] = p.node[l +1][j].node[l +1][1],
1 ≤ l < numLevels, 1 ≤ j < d

• The successor atnumLevels of the last peer in the
list at numLevels level ”wraps” around, so all the
peers are indeed indexed:
p.node[numLevels].lastPeer.node[numLevels][1] ∈
[p, p.node[numLevels].lastPeer)

From this definition, it is easy to see that a consistent
HR of orderd, has onlydlogd(P )e levels, and the space re-
quirement for the Content Router component at each peer is
O(d · logd(P )), whereP is the number of peers in the fault
tolerant ring.

4.2. Maintenance
Peer failures and insertions disrupt the consistency of the

HR. We have a remarkably simpleStabilization Processthat
runs periodically at each peer and repairs the inconsisten-
cies in the HR. The algorithm guarantees that the HR struc-
ture eventually becomes fully consistent after any pattern of
concurrent insertions and deletions, as long as the peers re-
main connected at the fault-tolerant ring level.

The algorithm executed periodically by the Stabiliza-
tion Process is shown in Algorithm 5. The algorithm loops
from the lowest level to the top-most level of the HR
until the highest (root) level is reached (as indicated by
the boolean variableroot). Since the height of the HR
data structure could actually change, we update the height
(p.numLevels) at the end of the function.

Algorithm 6 describes the Stabilization Process within
each level of the HR data structure at a peer. The key ob-
servation is that each peer needs only local information to
compute its own successor at each level. Thus, each peer
relies on other peers to repair their own successor at each
level. When a peerp stabilizes a level, it contacts its succes-
sor at that level and asks for its entries at the corresponding
level. Peerp replaces its own entries with the received en-
tries and inserts its successor as the first entry in the index
node (lines 2 and 3). The INSERT procedure, apart from
inserting the specified entry at the beginning of the list at
given level, it also ensures that no more thand entries are in
the list and none of the entries in the list overshootsp (the
list does not wrap around). Line 4 checks whether this level
should be the last level in the HR. This is the case if all the
peers in the system are already covered. If this level is not
the root level, the stabilization procedure computes the suc-
cessor at the higher level (line 7) and returns.

4.3. Routing
The Content Router component supports the

sendReceive(msg,range) primitive. We as-



Algorithm 5 : p.Stabilize()
1: i = 1;
2: repeat
3: root=p.StabilizeLevel(i);
4: i + +;
5: until (root)
6: p.numLevels = i− 1;

Algorithm 6 : p.StabilizeLevel(inti)
1: succEntry = p.node[i][1];
2: p.node[i] = succEntry.node[i];
3: INSERT(i, succEntry);
4: if p.node[i].lastPeer.node[i][1] ∈

[p, p.node[i].lastPeer) then
5: returntrue
6: else
7: p.node[i + 1][1] = p.node[i][d];
8: returnfalse ;
9: end if

sume that each routing request originates at some peerp
in the P2P system. For simplicity of presentation, we as-
sume that therange has the form(lb, ub].

The routing procedure takes as input the lower-bound
(lb) and the upper-bound (ub) of the range in the request,
the message that needs to be routed, and address of the
peer where the request was originated; the pseudo-code
of the algorithm is shown in Algorithm 7. We denoted by
rangeMin(p) the low end value ofp.range. The routing
procedure at each peer selects the farthest away pointer that
does not overshootlb and forwards the request to that peer.
Once the algorithm reaches the lowest level of the HR, it tra-
verses the successor list until the value of a peer exceedsub
(lines 8-9). Note that every node which is responsible for a
part of(lb, ub] is visited during the traversal along the ring.
At the end of the range scan, aSearchDoneMessage is
sent to the peer that originated the search (line 11).

Example: Consider a routing request for the range
(18, 25] that is issued at peerp1 in Figure 8. The rout-
ing algorithm first determines the highest HR level inp1

that contains an entry whose value is between5 (value
stored inp1) and18 (the lower bound of the range query).
In the current example, this corresponds to the first en-
try at the second level ofp1’s HR nodes, which points to
peerp3 with value 15. The routing request is hence for-
warded to p3. p3 follows a similar protocol, and for-
wards the request top4 (which appears as the first entry
in the first level inp3’s HR nodes). Sincep4 is responsi-
ble for items that fall within the required range,p4 processes
the routed message and returns the results to the origi-
nator p1 (line 6). Since the successor ofp4, p5, might
store items in the(18, 25] range, the request is also for-
warded top5. p5 processes the request and sends the results

Algorithm 7 : p.routeHandler (lb, up, msg,
originator)

1: // find maximum level that contains an
2: // entry that does not overshootlb.
3: find the maximum levell such that∃ j > 0

such thatp.node[l][j].iV alue ∈ (rangeMin(p), lb].
4: if no such level existsthen
5: //handle the message and send the reply
6: send(p.handleMessage(msg), originator);
7: if rangeMin(succ(p)) ∈ (rangeMin(p), ub] then
8: // if successor satisfies search criterion
9: send(Route (lb,ub,msg,originator,requestType),

succ(p));
10: else
11: send(RoutingDoneMessage ,originator);
12: end if
13: else
14: find maximumk such that

p.node[l][k].iV alue ∈ (rangeMin(p), lb];
15: send(Route ((lb,ub,msg,originator),

p.node[l][k].peer));
16: end if

to p1. The search terminates atp5 as the value of its succes-
sor (5) does not fall within the query range.

In a consistent state, the routing procedure will go down
one level in the HR every time a routing message is for-
warded to a different peer. This guarantees that we need at
most dlogd(P )e steps, if the HR is consistent. If a HR is
inconsistent, however, the routing cost may be more than
dlogd(P )e. Note that even if the HR is inconsistent, it can
still route requests by using the nodes to the maximum ex-
tent possible, and then sequentially scanning along the ring.
In Section 5.2, we experimentally show that the search per-
formance of HRs does not degrade much even when the in-
dex is temporarily inconsistent.

It is important to note that in a P2P system we cannot
guarantee that every route request terminates. For example,
a peerp could crash in the middle of processing a request, in
which case the originator of the request would have to time
out and try the routing request again. This model is simi-
lar to that used in most other P2P systems [30, 33, 29].
4.4. Properties of Hierarchical Ring

In this section we describe some of the formal properties
of the Hierarchical Ring.
Definition We define a stabilization unit (su ) to be the time
needed to run theStabilizeLevel procedure at some
level in all peers.

Theorem 4 (Stabilization time) Given that at timet there
areP peers in the system and the fault tolerant ring is con-
nected and the stabilization procedure starts running peri-
odically at each peer, at timet + (d − 1)dlogd(P )esu the
HR is consistent with respect to theP peers.



Proof sketch:The stabilization starts at timet by stabiliz-
ing level 1 which already has the correct first entry (since
the fault-tolerant ring is connected). After at most one sta-
bilization unit, each peer finds out about its successor’s suc-
cessor and so on. After running theStabilizeLevel
procedured − 1 times at level 1, each peer has level 1 in
HR and the first entry in level 2 consistent . Since there are
dlogd(P )e levels, after(d−1)dlogd(P )e stabilization units,
the HR is consistent with respect to theP peers.

Theorem 5 (Search performance in stable state)In a
stable system ofP peers with a consistent Hierarchi-
cal Ring data structure of orderd, equality queries take at
mostdlogd(P )e hops.

Theorem 6 (Search performance during insertions)
If we have a stable system with a consistent HR of or-
derd data structure and we start inserting peers at the rate
r peers/stabilization unit, then equality queries take at most
dlogd(P )e+ 2r(d− 1)dlogd(P )e hops, whereP is the cur-
rent number of peers in the system.

Proof sketch:Let t0 be the initial time andP0 be the num-
ber of peers in the system at timet0. For everyi > 0 we de-
fine ti to beti−1 + (d − 1)dlogd(Pi−1)e · su andPi to be
the number of peers in the system at timeti. In the follow-
ing, we call an ”old” peer to be a peer that can be reached
in at mostdlogd(P )e hops using the HR. If a peer is not
”old”, we call it ”new”. At any time point, the worst case
search cost for equality queries isdlogd(P )e + x, where
dlogd(P )e is the maximum number of hops using the HR
to find an old peer andx is the number of new peers.x
is also the maximum number of hops to be executed using
the successor pointers to find any one of the newx peers
(the worst case is when all new peers are successors in the
ring). We will show by induction on time that the number of
new peers in the system at any time cannot be higher than
2r(d− 1)dlogd(P )e.

As the base induction step we prove that at any time
point in the interval[t0, t1] there are no more than2r(d −
1)dlogd(P )e new peers and at timet1 there are no more than
rddlogd(P )e new peers. From hypothesis, att0 the HR is
consistent, so there are no new peers. At the insertion rate of
r peers/su , at any time point in[t0, t1], the maximum num-
ber of peers inserted isr(d−1)dlogd(P0)e, which is smaller
thanr(d− 1)dlogd(P )e. This proves both statements of the
base induction step.

We prove now that if the maximum number of new peers
at timeti is rddlogd(P )e, than, at any time point in[ti, ti+1]
the maximum number of new peers is2r(d − 1)dlogd(P )e
and the maximum number of new peers at timeti+1 is r(d−
1)dlogd(P )e, wherei ≥ 1. The maximum number of peers
inserted betweenti andti+1 is r(d−1)dlogd(Pi)e which is
smaller thanr(d−1)dlogd(P )e. From the induction hypoth-
esis, at timeti there were at mostr(d − 1)dlogd(P )e new

peers. Betweenti andti+1, some old peers can become new
and new peers can become old, due to changes in the HR
structure. However, the total number of entries in the HR
structure does not decrease, so the number of old peers be-
coming new cannot be higher than the number of new peers
becoming old. Out of the peers in the system at timeti, at
mostr(d − 1)dlogd(P )e of them are new at any time be-
tweenti andti+1. Adding the peers inserted sinceti we get
that at any time point in[ti, ti+1] the maximum number of
new peers is2r(d− 1)dlogd(P )e. From Theorem 4, at time
ti+1, all the peers existing in the system at timeti are inte-
grated into the HR structure. This means that all peers ex-
isting at timeti are/became old peers at timeti+1, which
leaves the maximum number of new peers at timeti+1 to
be at mostr(d − 1)dlogd(P )e (the peers inserted between
ti andti+1).

From induction it follows that at any time, the maximum
number of new peers is no more than2r(d − 1)dlogd(P )e,
which means that equality queries take at mostdlogd(P )e+
2r(d− 1)dlogd(P )e hops. .

5. Experimental Evaluation
We focus on two main aspects in our experimental evalu-

ation. First, we evaluate the performance of the P-Ring Data
Store. As a baseline, we compare it with the hash-based
Chord Data Store, which does not support range queries.
Second, we evaluate the performance of the P-Ring Content
Router, and compare it with Skip Graphs. We also consider
the interaction between the two components in the presence
of peer insertions and deletions (system “churn”).
5.1. Experimental Setup

We developed a simulator in C++ to evaluate the index
structures. We implemented the P-Ring Data Store and the
Chord Data Store, and the P-Ring Content Router and Skip-
Graphs. Since SkipGraphs was originally designed for only
a single item per peer, we extended it to use the P-Ring Data
Store so that it could scale to multiple items per peer. For all
the approaches, we used the same Fault Tolerant Ring [33]
and the Replication Manager [7] so that we can isolate the
differences amongst the Data Stores and Content Routers.

We used three main performance metrics. The first met-
ric is the index message cost, which is the number of mes-
sages per second (in simulator time units) required for main-
taining the index. The second metric is theindex bandwidth
cost, which is the number of bytes per second required for
maintaining the index (since not all messages are of the
same size). The third metric is thesearch cost, which is
the number of messages required to evaluate a query. In
our experiments, we calculate the search cost by averag-
ing the number of messages required to search for a random
value in the system starting from100 random peers. Since
the main variable component in the cost of range queries is
finding the data item with the smallest qualifying value (re-
trieving the other values has a fixed cost of traversing the



relevant leaf values), we only measure the cost of finding
the first entry for range queries. This also enables us to com-
pare against the performance of Chord for equality queries.

In our experiments we varied the following parameters:
InsertionRate(similarly, DeletionRate) is the rate of inser-
tions (deletions) into the system.ItemInsertionPattern(sim-
ilarly, ItemDeletionPattern, specifies the skew in the data
values inserted (deleted) into the system. A value ofip
for this parameter means that all insertions are localized
within a fractionip of the search key space (default is 1).
NumPeersis the number of peers in the system (default is
2000).PeerIDRateis the rate of peer insertions and fail-
ures in the system; insertions and failures are equally likely.
For each the of experiments below, we vary one parame-
ter and we use the default values for the rest. We first eval-
uate the Data Store and Content Router components sep-
arately in a stable system configuration (without peer fail-
ures); we then investigate the effect of peer failures.

5.2. Experimental Results: Data Store
We now study the performance of P-Ring Data Store.

Note that the performance of the Data Store depends on the
performance of the Content Router (when searching for free
peers). To isolate these effects as much as possible, we fix
the P-Ring Content Router to have orders 2 and 10 for this
set of experiments (we investigate different orders in sub-
sequent sections). As a baseline for comparison, we use the
Chord Data Store, which is efficient due to hashing, but does
not support range queries.
5.2.1. Varying Item Insertion Rate Figure 9 shows the
index message cost as a result of varyingInsertionRate. The
message cost increases linearly withInsertionRatebecause
each item insertion requires a search message to locate the
peer that should store the item. The message cost increases
faster for the P-Ring Data Store than for Chord because the
P-Ring additionally needs to periodically split and merge
due to item skew. In contrast, the Chord datastore is more
efficient because it simply hashes data items to peers and
does not have any item redistribution overhead. This differ-
ence quantifies the additional overhead of supporting range
queries (using the P-Ring datastore) as opposed to simple
equality queries (using the Chord datastore). Finally, we
note that that the message cost for the P-Ring Data Store
decreases as we use a Content Router of higher order - this
is because the search for free peers becomes more efficient
with higher order Content Routers. The graph showing the
index bandwidth cost is similar and is not shown. We also
obtained similar results by varyingItemDeletionPattern.
5.2.2. Varying Item Insertion Pattern Figure 10 shows
the index message cost as a result of varyingItemInsertion-
Pattern (recall that 0 corresponds to highly skewed distri-
bution, while 1 corresponds to a uniform distribution). For
the Chord Data Store, as expected, we do not observe any
significant variation in message cost. The surprising aspect,

however, is that the message cost also remains relatively sta-
ble for P-Ring Data Store even under highly skewed distri-
butions. This suggests that the P-Ring Data Store effectively
manages item skew by splitting and merging as required.
The graph showing the index bandwidth cost is similar, and
we also obtained similar results by varyingItemDeletion-
Pattern.
5.3. Experimental Results: Content Router

We now investigate the performance of the P-Ring Con-
tent Router, and compare it with SkipGraphs and Chord.
Since Chord cannot directly handle range queries, we artif-
ically specify queries over thehash valuefor Chord (which
is its best-case scenario) so that we can compare Content
Routers in terms of performance.
5.3.1. Varying Number of PeersFigure 11 shows the
search cost when varying the number of peers. As ex-
pected, the search cost increases logarithmically with the
number of peers (note the logarithmic scale on the x-axis)
for all the Content Routers. However, the search costs for
the different Content Routers varies significantly. In par-
ticular, SkipGraphs has significantly worse search cost be-
cause the index structure of orderd has search performance
O(d×logd(N)) (whereN is the number of peers in the sys-
tem). In contrast, Chord has search costO(log2(N)) and a
P-Ring of orderd has search costO(logd(N)). For this rea-
son, the P-Ring of order 10 significantly outperforms the
other index structures due to the large base of the logarithm.
5.3.2. Varying Order Figure 12 shows the effect of vary-
ing the orderd of P-Ring on the search cost. As expected,
the search cost isO(logd(N)), whereN is the number of
peers in the system (recall the default isN = 2000). Fig-
ures 13 and 14 show how the index message cost and in-
dex bandwidth cost, respectively, vary with order. The index
message cost steadily decreases with order because there
are fewer levels in the Content Router that need to be stabi-
lized (recall that the number of levels in a Content Router
of orderd is logd(N)). However, the index bandwidth cost
decreases slightly and then increases because, at higher or-
ders, a lot more information has to be transferred during in-
dex stabilization. Specifically, each stabilization in a Con-
tent Router of orderd has to transferO(d) information (the
entries at one level). Hence, the total bandwidth requirement
is O(d · logd(N)), which is consistent with the experimen-
tal results. This shows the tradeoff between index stabiliza-
tion and search cost - a higher value ofd improves search
but increases bandwidth requirements.
5.4. Experimental Results: System Churn

Figure 15 shows the effect of peer insertions and fail-
ures on index performance, for 4 insertions/failures per sec-
ond (the results with other rates is similar). The basic trade-
off is between search cost and index bandwidth cost. When
the Content Router is stabilized at a high rate, this leads to
a high bandwidth cost due to many stabilization messages,
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but a low search cost since the Content Router is more con-
sistent. On the other hand, when the Content Router is sta-
bilized very slowly, the bandwidth cost decreases but the
search cost increases. Note that this also affects the Data
Store performance because the Data Store uses the Content
Router for inserting/deleting items and finding free peers.

As shown in Figure 15, the P-Ring Content Router al-
ways dominates SkipGraphs due to its superior search per-
formance. Chord outperforms P-Ring of order 2 because
Chord does not have the overhead of dealing with splits and
merges during system churn. However, P-Ring of order 10
offers a better search cost, albeit at a higher bandwidth cost,
while still supporting range queries. We also obtained simi-
lar results for search cost vs. index message cost, and hence
the results are not shown.

6. Related Work
There has been recent work on P2P data management

issues like schema mediation [3, 18, 32], query process-
ing [28], and the evaluation of complex queries such as joins
[14, 32]. However, none of these approaches address the is-
sue of supporting range queries efficiently.
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CAN [29], Chord [33], Pastry [30] and Tapestry [36] im-
plement distributed hash tables to provide efficient lookup
of a given key value. Since a hash function destroys the or-
dering in the key value space, these structures cannot pro-
cess range queries efficiently. Approaches to the lookup



problem based on prefix matching/tries [1, 9, 30] can-
not be used to solve the range query problem for arbitrary
numerical attributes such as floating point numbers. Other
approaches to the lookup problem include [12, 26, 35].
Techniques for efficient keyword search are presented in
[6, 27, 34]. None of these systems support range queries.

There has been work on developing distributed index
structures [16, 20, 23, 24]. However, most of these tech-
niques maintain consistency among the distributed replicas
by using aprimary copy, which creates both scalability and
availability problems when dealing with thousands of peers.
In contrast, the P-Ring data structure is designed to be re-
silient to extended failures of arbitrary peers. The DRT [21]
and dPi-tree [25] maintain replicas lazily, but these schemes
are not designed for peers that can leave the system, which
makes them inadequate in a P2P environment.

Gupta et al. [13] present a technique for computing range
queries in P2P systems using order-preserving hash func-
tions. Since the hash function scrambles the ordering in
the value space, their system can only provide approxi-
mate answers to range queries (as opposed to the exact
answers provided by P-trees). Aspnes et al. propose Skip
graphs [2], a randomized structure based on skip lists, which
supports range queries. Unlike P-Ring, they only provide
probabilistic guarantees even when the index is fully consis-
tent. Daskos et al. [8] present another scheme for answering
range queries, but the performance of their system depends
on certain heuristics for insertions. Their proposed heuris-
tics do not offer any performance guarantees and thus, un-
like P-Ring, their search performance can be linear in the
worst case even after their index becomes fully consistent.
Galanis et al. [10] describe an index structure for locating
XML documents in a P2P system, but this index structure
does not provide any provable guarantees on size and per-
formance, and is not designed for a highly volatile environ-
ment. Sahin et al. [31] propose a caching scheme to help an-
swer range queries, but their scheme does not provide any
performance guarantees for range queries which were not
previously asked.

In concurrent work, Ganesan et al. [11] propose a load
balancing scheme for data items where they prove a bound
of 4.24 for storage imbalance with constant amortized inser-
tion and deletion cost. The P-Ring data store achieves a bet-
ter storage balance with a factor of2+ε with the same amor-
tized insertion and deletions cost. Additionally, we also pro-
pose a new content router, the Hierarchical Ring.

Finally, the P-Ring evolved from the P-Tree index struc-
ture [4]. Unlike the P-Tree, the P-Ring supports multiple
items per peer and offers provable search guarantees not
only in a stable state but also during insertions and dele-
tions.

7. Conclusion
We have introduced P-Ring, a novel fault-tolerant P2P

index structure that efficiently supportsboth equality and
range queries in a dynamic P2P environment. P-Ring effec-
tively balances data items among peers even in the presence
of skewed data insertions and deletions and provides prov-
able guarantees on search performance. Our experimental
evaluation shows that P-Ring outperforms existing index
structures, sometimes even for equality queries, and that it
maintains its excellent search performance with low main-
tenance costs in a dynamic P2P system.
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