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ABSTRACT
Peer-to-peer systems have emerged as a robust, scalable and de-
centralized way to share and publish data. In this paper, we pro-
pose P-Ring, a new P2P index structure that supports both equality
and range queries. P-Ring is fault-tolerant, provides logarithmic
search performance even for highly skewed data distributions and
efficiently supports large sets of data items per peer. We experimen-
tally evaluate P-Ring using both simulations and a real distributed
deployment on PlanetLab, and we compare its performance with
Skip Graphs, Online Balancing and Chord.

Categories and Subject Descriptors: H.2.2 Physical Design: Ac-
cess Methods, H.2.4 Systems - Distributed Databases

General Terms: Algorithms, Management, Performance.

Keywords: peer-to-peer systems, range queries, load balancing.

1. INTRODUCTION
Peer-to-peer (P2P) systems have emerged as a new paradigm

for structuring large-scale distributed systems. Their key advan-
tages are their scalability, due to resource-sharing among cooper-
ating peers, their fault-tolerance, due to the symmetrical nature of
peers, and their robustness, due to self-reorganization after failures.
Due to the above advantages, P2P systems have made inroads for
content distribution and service discovery applications [2, 19, 21,
23]. One of the requirements of such systems is to support range
queries. For example, in a large computing grid, where each node
advertises its resources, one might need to find all the nodes in the
grid with enough main memory for a memory intensive application:
“Select * From AllNodes M Where M.Memory > 2GB”.
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While there have been several promising P2P range index struc-
tures that have been proposed in the literature, they have certain
limitations. Skip Graphs [3] and P-trees [5] can only handle a single
data item per peer, and hence, are not well-suited for large data sets.
The index proposed by Gupta et al. [12] only provides approximate
answers to range queries, and can miss results. Mercury [4] and
P-Grid [2, 10] provide probabilistic (as opposed to absolute) guar-
antees on search and load-balancing, even when the P2P system is
fully consistent. BATON [14] only provides search performance
proportional to log2P , where P is the number of peers; when P is
large, the small base of the logarithm can lead to excessive search
cost. BATON* [13] provides search performance proportional to
logdP , but it does not prove any guarantees on load balancing.

We propose P-Ring, a new P2P range index. P-Ring provides
exact answers to range queries on arbitrary ordered domains, and
scales to a large number of peers and data items. P-Ring provides
provable guarantees on load-balancing, with load imbalance factor
of at most 2+ε, for any given ε > 0. P-Ring provides search perfor-
mance of O(logdP ), where P is the number of peers in the system,
and d is a tunable parameter. We are not aware of any other P2P
index that provides the same functionality and performance.

When designing P-Ring we were faced with two challenges.
First, the data items have to be distributed among peers such that
range queries can be answered efficiently, while still ensuring that
all peers have roughly the same number of data items (for load
balance). Techniques developed for equality queries are not appli-
cable as they distribute data items based on their hash value; since
hashing destroys the order of the items, range queries cannot be
answered efficiently. We need to devise a scheme that clusters data
items by their data value, and balances the number of items per
peer, even in the presence of highly skewed insertions and dele-
tions. Our first contribution is a scheme that provably maintains a
load imbalance of at most 2+ε (for any given ε >0) between any
two peers in the system, while achieving amortized constant cost
per insertion and deletion. This achieves a better load balance fac-
tor when compared to that of 4.24 proposed by Ganesan et al. [11],
while keeping the amortized insert/delete cost constant.

Our second challenge was to devise a query router that is robust
to peer failures and provides logarithmic search performance even
in the presence of skewed data distributions. Our P-Ring router,
called Hierarchical Ring (HR), is highly fault-tolerant, and a router
of order d provides guaranteed O(logdP + m) range search per-
formance in a stable system with P peers, where m is the number
of peers with data items in the query range. Even in the presence
of highly skewed insertions, we can guarantee a worst-case search
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Figure 1: P2P Framework

cost of O(r · d · logdP + m), where r is the number of peer inser-
tions per stabilization unit of the router (we will formally define all
terms later).

In a simulation study, we compare the performance of P-Ring
to an extension of Skip Graphs [3] and to Chord[23]. Our perfor-
mance results indicate that P-Ring outperforms the above extension
of Skip Graphs in terms of both query and update cost. P-Ring of-
fers the same (if order d of HR is 2) or better (if d > 2) search
performance than Chord, but at a higher cost, due to the support of
additional functionality (range queries as opposed to only equality
queries). We also present preliminary experimental results from a
real distributed implementation of P-Ring, Chord and Online Bal-
ancing [11] deployed on PlanetLab [1], a network of computers
distributed around the world.

2. MODEL AND ARCHITECTURE
System Model. We assume that each peer in the system can be
identified by an address (IP address and port number), and peers
can communicate through messages. A peer can join a P2P system
by contacting some peer that is already part of the system. A peer
can leave the system at any time without contacting any other peer.
We assume that while in the system, the peers follow the distributed
indexing protocol. This assumption is consistent with other papers
in the literature [11, 14, 23]. In this paper we use P to denote the
number of peers in the system.

We assume that each data item (or short, item) stored in a peer
exposes a search key value from a totally ordered domain that is
indexed by the system. Without loss of generality, we assume that
search key values are unique. Duplicate values can transparently be
made unique by appending the address of the peer where the value
originates and a version number. We use N to denote the number
of items in the system.

For simplicity, we assume that the query distribution is uniform,
so the load of a peer is determined by the number of data items
stored at the peer. The algorithms introduced in this paper work
with any definition of the load.

We define the load imbalance in a system to be the ratio between
the most loaded and the least loaded peer in the system.
System Architecture. We have implemented P-Ring in an archi-
tecture similar to the modular framework of [6]. We now overview
the relevant components of the framework (Figure 1).
Fault Tolerant Ring: The Fault Tolerant Ring connects the peers
in the system along a ring, and provides reliable connectivity
among these peers even in the face of peer failures. For a peer p,
we can define the succ(p) (respectively, pred(p)) to be the peer

p1

p2

p3
p4

p5

Figure 2: Fault Tolerant Ring

adjacent to p in a clockwise (resp., counter-clockwise) traversal of
the ring. Figure 2 shows an example of a Fault Tolerant Ring. If
peer p1 fails, the ring will reorganize such that succ(p5) = p2,
so the peers remain connected. Figure 1 shows the Ring API. The
Ring provides methods to get the address of the successor, join the
ring or gracefully leave the ring (of course, a peer can leave the ring
without calling leaveRing due to a failure). In our implementa-
tion of P-Ring, we use Chord’s Fault Tolerant Ring [23].
Data Store: The Data Store is responsible for distributing the items
to peers. Ideally, the distribution should be uniform so that each
peer stores about the same number of items, achieving storage bal-
ance. One of the main contributions of this paper is a new Data
Store for P-Ring, which can effectively distribute items even under
skewed insertions and deletions (see Section 3).
Content Router: The Content Router is responsible for efficiently
routing messages to peers that have items satisfying a given predi-
cate. The second major contribution of this paper is a new Content
Router that can route range queries efficiently (see Section 4).
Replication Manager: The Replication Manager ensures that
items assigned to a peer are not lost if that peer fails. We use the
Replication Manager proposed in CFS [8].
P2P Index: The P2P Index is the index exposed to the end user.
It supports search functionality by using the functionality of the
Content Router, and supports item insertion and deletion by using
the functionality of the Data Store.

3. P-RING DATA STORE
The main challenge in devising a Data Store for P2P range in-

dices is handling data skew. We would like the items to be uni-
formly distributed among the peers so that the load is nearly evenly
distributed among the peers. Most existing P2P indices achieve
this goal by hashing. Items are assigned to peers based on the hash
value of their search key. Such an assignment has been shown to
be very close to a uniform distribution with high probability [23].
However, hashing destroys the value ordering among the search
key values, and thus cannot be used to process range queries ef-
ficiently (for the same reason that hash indices cannot be used to
handle range queries efficiently).

For P-Ring to support range queries, we assign items to peers di-
rectly based on their search key value. In this case, the ring ordering
is the same as the search key value ordering, wrapped around the
highest value. The problem is that now, even in a stable P2P system
with no peers joining or leaving, some peers might become over-
loaded due to skewed data insertions and/or deletions. We need a
way to dynamically reassign and maintain the ranges associated to
the peers. This section presents our algorithms for handling data
skew. All our algorithms guarantee correctness in face of concur-
rent operations, as we can apply the techniques introduced by Linga
et al. [15].



3.1 Handling Data Skew
The search key space is ordered on a ring, wrapping around the

highest value. The Data Store partitions this ring space into ranges
and assigns each of these ranges to a different peer. Let p.range =
(p.lb, p.ub] denote the range assigned to p. All items in the system
with search key in p.range are said to be owned by p. Let p.own
denote the list of all these items. Let |p.own| denote the number
of items in p.own and hence in p.range. The number of ranges is
less than the total number of peers in the system and hence there are
some peers which are not assigned any range. Such peers are called
helper peers. The others are called owner peers. Let P denote the
set of all peers, and let O be the subset of owner peers in P . Using
these notations, the load imbalance is defined as maxp∈O|p.own|

minp∈O|p.own| . In
this section, we present algorithms to maintain the load imbalance
at not more than two.

Analogous to B+-tree leaf page maintenance, the number of
items in every range is maintained between bounds ` = sf and
u = 2 · sf, where sf is the ”storage factor”, a parameter we will
talk more about in Section 3.2. Whenever the number of items in
p’s Data Store becomes larger than u (due to many insertions into
p.range), we say that an overflow occurred. In this case, p tries to
split its assigned range (and implicitly its items) with a helper peer.
Whenever the number of items in p’s Data Store becomes smaller
than ` = sf (due to deletions from p.range), we say that an un-
derflow occurred. Peer p tries to acquire a larger range and more
items from its successor in the ring. In this case, the successor ei-
ther redistributes its items with p, or gives up its entire range to p
and becomes a helper peer.

Example Consider the Data Store in Figure 3 which shows the
helper peers p6 and p7, and the ranges and search key values of
items assigned to the other peers in the system (range (5, 10] with
items with search keys 6 and 8 are assigned to peer p1 etc.). As-
sume that sf is 1, so each peer in the ring can have 1 or 2 items.
When an item with search key 7 is inserted into the system, it will
be stored at p1, leading to an overflow. As shown in Figure 4, the
range (5, 10] is split between p1 and the helper peer p6. p6 be-
comes the successor of p1 on the ring and p6 is assigned the range
(7, 10] with item with search key 8.

Split Algorithm 1 shows the pseudo-code of the split algo-
rithm executed by a peer p that overflows. We use the notation
p::fn() when function fn() is invoked at peer p, and p.ringNode
refers to the Fault Tolerant Ring component of the P-Ring at peer
p. During a split, peer p tries to find a helper peer p′ (see Sec-
tion 3.2) and transfer half of its items, and the corresponding range,
to p′. After p′ is found (line 1), half of the items are removed from
p.own and p.range is split accordingly. Peer p then invites peer p′

to join the ring as its successor and maintain p′.range. The main
steps of the algorithm executed by the helper peer p′ are shown in
Algorithm 2. Using the information received from p, p′ initializes
its Data Store component, the Ring component and the other index
components above the Data Store.

Merge and Redistribution If there is an underflow at peer p,
p executes the merge algorithm given in Algorithm 3. Peer p in-
vokes the initiateMergeMsgHandler function on its suc-
cessor on the ring. The successor sends back the action decided,
merge or redistribute, a new range newRange and the list
of items newItemsList that are to be re-assigned to p (line 2). p
appends newRange to p.range and newItemsList to p.own.

The outline of the initiateMergeMsgHandler function is
given in Algorithm 4. The invoked peer, p′ = succ(p), checks
whether a redistribution of items is possible between the two ”sib-
lings” (line 1). If yes, it sends some of its items and the correspond-

Algorithm 1 : p.split()
1: p′ = getHelperPeer();
2: if p′ == null then
3: return;
4: end if
5: //execute the split
6: splitItems = p.own.splitSecondHalf();
7: splitV alue = p.own.lastValue();
8: splitRange = p.range.splitLast(splitV alue);
9: p′::joinRingMsgHandler(p,splitItems,splitRange);

Algorithm 2 : p′.joinRingMsgHandler(p, splitItems,
splitRange)
1: p′.range = splitRange;
2: p′.own = splitItems;
3: p′.ringNode.joinRing(p);

Algorithm 3 : p.merge()
1: //send message to successor and wait for result
2: (action, newRange, newItemsList) =

p.ringNode.getSuccessor()::
initiateMergeMsgHandler(p, |p.own|);

3: p.own.add(newItemsList);
4: p.range.add(newRange);

Algorithm 4 : (action, newRange, newItemsList)
p′.initiateMergeMsgHandler(p,numItems)
1: if numItems + |p′.own| > 2 · sf then
2: //redistribute
3: compute nbItemsToGive;
4: splitItems = p′.own.splitFirst(nbItemsToGive);
5: splitV alue = splitItems.lastValue();
6: splitRange = p′.range.splitFirst(splitV alue);
7: return (redistribute,splitRange,splitItems);
8: else
9: //merge and leave the ring

10: splitItems = p′.own;
11: splitRange = p′.range;
12: p′.ringNode.leaveRing();
13: return (merge, splitRange, splitItems);
14: end if

ing range to p. If a redistribution is not possible, p′ gives up all its
items and its range to p, and becomes a helper peer.

Example. Consider again Figure 3 and assume that item with
search key value 19 is deleted. Now there is an underflow at peer
p4 and peer p4 calls initiateMergeMsgHandler in p5. Since
p5 has only one item, redistribution is not possible. Peer p5 sends
its item to p4 and becomes a helper peer, with no range to own. As
shown in Figure 5, peer p4 now owns the whole range (18, 5].

3.2 Managing Helper Peers
We first discuss the pros and cons of using helper peers.
The main advantage of using helper peers is the decrease in cost

of re-balancing operations. Ganesan et al. showed in [11] that any
efficient load-balancing algorithm that guarantees a constant imbal-
ance ratio, as our algorithm does, needs to use re-order operations.
A highly loaded peer finds a lightly loaded peer that can give its
load to some neighbor peer, and take over some of the load of the
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highly loaded peer. In all of the previous approaches to load bal-
ancing that we are aware of [11, 14, 13], the lightly loaded peer is
already part of the ring, so it needs to leave the ring before joining
it in a new place. Leaving the ring is an expensive operation: new
neighbors are established in the ring, the items of the peer are sent
to the neighbor(s), more replicas are created to compensate for the
loss of the replicas stored at the leaving peer, and finally, the rout-
ing structure adjusts for the change. By using helper peers that are
not part of the ring, all these costs are eliminated, leading to more
efficient and faster load balancing.

Using helper peers might seem to contradict the symmetry of
the P2P systems. However, the number of helper peers is usually
small, and they change over time, due to re-balancing. Moreover,
Section 3.3 introduces a scheme that uses the helper peers for load
balancing among all peers.

Now, let us see how we manage the helper peers. Recall that
helper peers are used during split and are generated during merge.
There are three important issues to be addressed. First, we need
a reliable way of “storing” and finding helper peers. Second, we
need to ensure that a helper peer exists when it is needed during
split. Finally, even though helper peers do not have a position on
the ring, they should be able to query the data in the system.

To solve the first issue, we create an artificial item
(⊥, p′.address) for every helper peer p′, where ⊥ is the small-
est possible search key value. This item is inserted into the system
like any regular item. When a helper peer is needed, an equality
search for ⊥ is issued. The search is processed as a regular query
and the result is returned to the requester. As there are much fewer
helper peers than regular items, managing helper peers does not
significantly increase the load on the peers storing them. Using the
HR router from Section 4, the cost of inserting, deleting, or finding
a helper peer is O(logdP ).

To ensure that a helper peer exists when an overflow occurs, we
set sf = dN

P
e. The number of items N and the number of peers

P can be dynamically estimated by each peer at no additional mes-
sage cost (see Section 4.3).

Finally, each helper peer maintains a list of owner peers to which
it can forward any query to be processed.

3.3 Load Balancing using Helper Peers
The load-balancing scheme proposed maintains the number of

items stored by each owner peer within strict bounds. However,
the helper peers do not store any items, so there is no ”true” load
balance among peers. We propose now an extension to the basic
scheme, which uses the helper peers to“truly” balance the load. The
extended scheme is provably efficient, i.e., every insert and delete
of an item has an amortized constant cost. Also the load imbalance
is bounded by a small constant.

Observe that if we somehow assign items to helper peers too

while maintaining the bounds ` and u on the number of items
assigned, we are able to bound the load imbalance by u

`
. We

therefore extend the functionality of helper peers. Every helper
peer is obliged to “help” an owner peer already on the ring. A
helper peer helps an owner peer by managing some part of the
owner peers range and hence some of its load. If owner peer p
has k helpers q1, q2, . . . , qk, p.range = (lb, ub] is divided into
(lb = b0, b1], (b1, b2], . . . , (bk, ub] such that each sub-range has
equal number of items. Peer p is now responsible for (bk, ub]. Each
of p’s helpers, qj , becomes responsible for one of the other ranges,
say (bj−1, bj ]. Let q.resp be the list of items peer q is responsi-
ble for and q.rangeresp be the corresponding range. q participates
in routing and all queries dealing with q.rangeresp will reach q.
However, p still owns all the items in (lb, ub] and is responsible
for initiating the load balance operations. Also, any insert or delete
that reaches a helper peer is forwarded to the owner peer, who will
ensure that the items own are evenly divided among itself and the
helpers. In this context, the definition of the load imbalance be-
comes maxp∈P |p.resp|

minp∈P |p.resp| . In this section, we provide algorithms to
maintain the load imbalance at not more than 2 + ε, for any ε > 0.

The extended scheme, EXTLOADBALANCE, is very similar to
the basic scheme. In the split algorithm Algorithm 1, only step
1 changes, and a new step is added. If p already has helper peers,
then p uses one of the helpers q to perform the split. The helper
peer q will become an owner peer. Else, p issues a search for a
helper peer. During the split, not only the range and items of p
are split, but also the helper peers of p. At the end of the split, p
redistributes the new p.own with its new reduced set of helpers. In
the merge algorithm, Algorithm 3, p contacts the first successor on
the ring who is an owner peer, p′. If the decision is to merge, all
the data items are moved from p to p′ and p and all the associated
helpers leave the ring and start helping some other randomly chosen
peers. If the decision is to redistribute, the items are moved from
p′.own to p.own. The items in p′.own and respectively p.own are
re-distributed among the helper peers of p′ and respectively p.

To bound the load imbalance close to u
`

, EXTLOADBALANCE
has an additional load balancing operation called usurp. Algo-
rithm 5 shows the pseudo-code of the usurp algorithm executed
by an owner peer p. During usurp, an owner peer p can usurp, or
take over, a helper peer q of another owner peer p′, if |p.resp| ≥
2
√

1 + δ|q.resp|, for a given constant δ > 0. The helper peer q
starts helping p, so |p.resp| is reduced. The getLeastLoaded-
HelperPeer() function can be implemented by using the HR
(Section 4.1) to maintain information about the least loaded peer.

Our algorithms will bound the load imbalance in the system by a
small constant (2+ε), at an amortized constant cost for item inser-
tions and deletions. We can prove the following:

THEOREM 1. Consider an initial load balanced system. For
every sequence σ of item inserts and deletes, and constants `, u, ε



Algorithm 5 : p.usurp()
1: //find least loaded helper peer and its ”master”
2: (q,p′) = getLeastLoadedHelperPeer();
3: if |p.resp| ≥ 2

√
1 + δ|q.resp| then

4: p.setHelperPeer(q);
5: redistribute p.own among new set of helpers;
6: redistribute p′.own among new set of helpers;
7: end if

such that u
`
≥ 2 and ε > 0,

• Load Imbalance: The sequence of split, merge and usurp
operations performed by Algorithm EXTLOADBALANCE is
such that after the completion of any prefix of σ, the current
partition of ranges, the assignment of ranges to owner peers
and assignment of helper peers to owner peers satisfy

1. ` ≤ |p.own| ≤ u for all owner peers p ∈ O;

2. load imbalance = maxq∈P |q.resp|
minq∈P |q.resp| < max(2 + ε, u

`
).

• Efficiency: If u
`
≥ 2 + ε, the above sequence of split, merge

and usurp operations is such that the amortized cost of an
insert or a delete operation is a constant.

PROOF. Full proofs for all theorems are given in [7].
We sketch now the proof for bound on the load imbalance. Since

u ≥ 2`, it is easy to see that during the course of the algorithm
EXTLOADBALANCE, the split and the merge operations bound
the size of p.own within ` and u. Unlike p.own, we can bound ` ≤
|p.resp| ≤ u, only for all p ∈ O with no helper peers. An owner
peer p with |p.own| = ` could have helpers making |p.resp| < `.
However, thanks to usurp operations, there cannot exists a q ∈ P
such that |q.resp| > 2(

√
1 + δ) · |p.resp|. By setting δ = (1 +

ε/2)2 − 1, we get the required bound.
We now sketch the proof for the efficiency result. Our cost model

is very similar to the one used in Ganesan et al. [11]. The only cost
we consider is the cost of moving items due to the load balanc-
ing operations. There are three major components to the cost: a)
Data movement: we model this cost as being linear in the number
of items moved from one peer to the other. b) Distributing items
amongst helper peers, whenever the set of items owned by a peer
p or the set of helpers H(p) changes: we use |p.own| as a very
conservative estimate of the number of items moved in this case.
c) Load information: our algorithm requires non-local information
about the least loaded helper peer. We assume that this cost can be
included in the data movement cost.

Let ` = sf and u = (2 + ε)sf for some ε > 0. Recall that
sf = dN/Pe. To prove the amortized constant cost of insert and
delete we use the potential function Φ = Φo +Φr , where Φo is the
ownership potential and Φr is the responsibility potential defined
as follows:

Φo =
P

p∈P φo(p), where

φo(p) =

8>><>>:
0 p 6∈ O (helper peer)
co
sf

(l0 − |p.own|)2 sf ≤ |p.own| ≤ l0
0 l0 ≤ |p.own| ≤ u0
co
sf

(|p.own| − u0)
2 u0 ≤ |p.own| ≤ (2 + ε)sf

l0 = (1 +
ε

4
)sf

u0 = (2 +
3ε

4
)sf

Φr =
P

q∈P φr(q), where φr(q) = cr
sf

(|q.resp|)2, and con-
stants co and cr will be defined later.

We show that the increase in the potential Φ due to an insert or
delete is bounded by a constant, and the (maximum) cost of a re-
balancing operation is smaller than the (minimum) decrease in the
potential Φ due to re-balancing. These facts prove that the amor-
tized cost of an insert or delete operation is constant.
Insert: During insert operation, an item is inserted into p.own for
some p and inserted into q.resp for some q ∈ H(p) ∪ {p}. φr(q)
increases, while φo(p) increases if u0 ≤ |p.own| ≤ (2 + ε)sf,
and decreases if sf ≤ |p.own| ≤ l0. The maximum increase in Φ
occurs when both φr(q) and φo(p) increase and this increase is

∆insΦo =
co

sf
(|p.own|+ 1− u0)

2 − co

sf
(|p.own| − u0)

2

=
co

sf
(2|p.own|+ 1− 2u0)

≤ co

sf
(2(2 + ε)sf + 1− 2(2 +

3ε

4
)sf)

≤ co

sf
(
ε

2
sf + 1) ≤ c0ε

2
+ co

∆insΦr =
cr

sf
(|q.resp|+ 1)2 − cr

sf
(|q.resp|)2

=
cr

sf
(2|q.resp|+ 1)

≤ cr

sf
(2(2 + ε)sf + 1) ≤ 2(2 + ε)cr + cr

∆insΦ ≤ coε

2
+ 2(2 + ε)cr + co + cr (1)

Delete: During delete operation, an item is deleted from p.own
for some peer p and deleted from q.resp for some q ∈ H(p) ∪
{p}. Analogous to the insert case, we can show that the maximum
increase in potential to be

∆delΦ ≤ coε

2
+ 2(2 + ε)cr + co + cr (2)

We showed in 1 and 2 that the increase in the potential Φ due
to an insert or delete is bounded by a constant. We show now that
the maximum cost of a re-balancing operation (split, merge or re-
distribute, and usurp) is smaller than the minimum decrease in the
potential Φ due to that re-balancing operation.
Split: First let us look at the decrease in the ownership potential
∆splitΦo. During a split, a peer p owning |p.own| = (2 + ε)sf
items, gives half of its items to a helper peer q. After the split, both
p and q own (1+ ε

2
)sf items. Hence, the final ownership potentials

of p and q are 0. Also, the initial ownership potential of q is 0 since
before the split q was not an owner peer.

∆splitΦo ≥ co

sf
((2 + ε)sf− u0)

2 = co(
ε

4
)2sf

Next, consider the change in the responsibility potential. When
H(p) 6= ∅, q is chosen from H(p) and the helper peers are dis-
tributed amongst p and q evenly. In this case, the responsibili-
ties change only when the number of helpers apart from q (i.e.,
|H(p) \ {q}|) is odd, say 2h + 3. This is because the (1 + ε

2
)sf

items in p and q are distributed amongst h + 1 and h + 2 peers



respectively. In this case the decrease in Φr would be

∆splitΦr = (2h + 3)
cr
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∆splitΦr ≥ − cr(2 + ε)2

8
sf

When H(p) = ∅, p splits its items with a peer q, where q ∈
H(p2) for some p2. Let h2 = |H(p2)|, l2 = |p2.own|. We have,

∆splitφr(p) =
cr
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∀q2(6= q) ∈ H(p) ∪ {p2},
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Hence the minimum decrease in the potential due to a split is
∆splitΦ ≥ co(

ε
4
)2sf.

Now, we show that the cost of a split operation is at most (3 +
3ε
2

)sf. In the case when p, the splitting peer, has a helper q, the
cost is contributed by the transfer of (1 + ε

2
)sf items and the re-

distribution of items amongst p’s and q’s helpers. When p does not
have any helpers, p splits with the helper q of some other owner
peer p2. Here the cost involves transfer of items from p to q and the
re-distribution of items amongst p2’s remaining helpers.

In order to have the cost of split lower than the decrease in the
potential due to split, we need co and cr such that

co

� ε

4

�2

sf ≥
�

3 +
3ε

2

�
sf (3)

Redistribute: Analogous to the change in potential due to split, we
can prove that the minimum decrease in potential due to redistribute
is ∆redistΦ ≥ cosf

ε2

16
− crsf

�
ε
2

+ ε2

8

�
.

The cost of the redistribute operation, is at most (3+ 5ε
4

)sf. The
cost involves transfer of ε

4
sf items and the redistribution of the

final set of items owned by the two peers involved in the transfer
amongst their helpers.

The cost-potential equation for a redistribute operation becomes:

cosf
ε2

16
− crsf

�
ε

2
+

ε2

8

�
≥

�
3 +

5ε

4

�
sf (4)

Merge: Again analogous to the split case, we can prove that
the minimum decrease in potential due to merge is ∆mergeΦ ≥
co

�
ε
4

�2
sf− 2cr

�
1 + ε

4

�
sf

The cost of a merge is at most (3 + ε
2
)sf, since the cost only

involves transfer of sf items to the more loaded peer and redistri-
bution of at most (2 + ε

2
)sf items amongst the new set of helper

peers.
The cost-potential equation for a merge operation becomes:

co

� ε

4

�2

sf− 2cr

�
1 +

ε

4

�
sf ≥

�
3 +

ε

2

�
sf (5)

Usurp: We can prove that the minimum decrease in potential due
to an usurp operation is ∆usurpΦ ≥ 2crδ

κ2
h
sf, where κh = (4 +

ε)(4(2 + ε)
√

1 + δ − 1) (κh is the maximum number of helper
peers assigned to an owner peer).

The usurp operation costs `1 + `2 ≤ 2(2 + ε)sf, where the two
non free peers involved own `1 and `2 items respectively. The cost
arises due to the redistribution amongst the new set of helpers. The
cost-potential equation for an usurp operation becomes:

2crδ

κ2
h

sf ≥ 2(2 + ε)sf (6)

Solving equations 3, 4, 5, 6, we get

co
ε2

16
≥ cr

�
1 + ε +

ε

4

�
+

�
3 +

3ε

2

�
cr ≥ (2 + ε)κ2

h

δ

By setting the constants cr and co to values as shown above, we can
prove that the amortized cost of inserts and deletes is a constant
when sf does not change. The proof for the amortized constant
cost for insert/delete in the case where sf does change due to the
change in the number of items in the system, is omitted here due to
space constraints.

4. P-RING CONTENT ROUTER
The goal of our Content Router is to efficiently route messages

to peers in a given range. The main challenge is to handle skewed
distributions. Since the search keys can be skewed, the peer ranges
may not be of equal length.

We devise a new Content Router called Hierarchical Ring (or
short, HR) that can handle highly skewed distributions. In this sec-
tion we describe the content router, the routing algorithm and the
maintenance algorithms. We then give analytical bounds for the
search performance in a stable system and under heavily skewed
insertion patterns.

4.1 Hierarchical Ring
The HR is based on the simple idea of constructing a hierarchy

of rings. Let d be an integer > 1, called the order of HR. At
the lowest level, level 1, each peer p maintains a list of the first
d successors on the ring. Using the successors, a message could
always be forwarded to the last successor in the list that does not
overshoot the target, “skipping” up to d-1 peers at a time. For in-
stance, Figure 6 shows a hierarchy of rings with order (d) 2. As
shown, peer p1 is responsible for the range (5, 10], p2 is responsi-
ble for (10, 15] and so on. Each peer knows its successor on the
ring: succ(p1) = p2, succ(p2) = p3, and so on. At level 1 in the
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HR, each peer maintains a list of 2 successors, as shown. Suppose
p1 needs to route a message to a peer with value 20. p1 will route
the message to p3 and p3 will forward the message to p5, the final
destination.

At level 2, we again maintain a list of d successors. However,
a successor at level 2 corresponds to the dth successor at level 1.
Using these successors, a message can always be routed to the last
successor in the list that does not overshoot the target, ”skipping”
up to d2 − 1 peers at a time. Figure 7 shows the content of level
2 nodes at each peer in the ring. If p1 needs to route a message
to a peer with value 20, p1 will route the message directly to p5

(the final destination), using the list at level 2. The procedure of
defining the successor at level l+1 and creating a list of level l+1
successors is iterated until no more levels can be created. In Figure
7, for peer p1, succ3(p5) = p4, which overshoots p1, so no more
levels can be constructed for p1.

Note that we are conceptually indexing positions in the ring
(i.e. at level l, a peer p has pointers to peers that are dl peers away)
instead of values, which allows HR to perform well, regardless of
the data distribution.

Formally, the data structure for a HR of order d is a dou-
bly indexed array node[level][position], where 1 ≤ level ≤
numLevels and 1 ≤ position ≤ d. The HR is defined to be
consistent if and only if at each peer p:

• p.node[1][1] = succ(p)

• p.node[1][j + 1] = succ(p.node[1][j]), 1 ≤ j < d

• p.node[l + 1][1] = p.node[l][d],

• p.node[l + 1][j + 1] = p.node[l + 1][j].node[l + 1][1],
1 ≤ l < numLevels, 1 ≤ j < d

• The successor at numLevels of the last peer in the list at
numLevels level ”wraps” around, so all the peers are in-
deed indexed:
p.node[numLevels].lastPeer.node[numLevels][1] ∈
[p, p.node[numLevels].lastPeer)

From this definition, it is easy to see that a consistent HR of order
d, has at most dlogd P e levels, and the space requirement for the
HR at each peer is O(d · logd P ).

4.2 Maintenance
Peer failures and insertions, as well as splits and merges at the

Data Store level (perceived as peer insertions, and respectively de-
partures, at the Content Router level), disrupt the consistency of the
HR. We have a remarkably simple Stabilization Process that runs
periodically at each peer and repairs the inconsistencies in the HR.
The algorithm guarantees that the HR structure eventually becomes
fully consistent after any pattern of concurrent insertions and dele-
tions, as long as the peers remain connected at the ring level.

Algorithm 6 : p.Stabilize()
1: i = 1;
2: repeat
3: root=p.StabilizeLevel(i);
4: i + +;
5: until (root)
6: p.numLevels = i− 1;

Algorithm 7 : p.StabilizeLevel(int i)
1: succEntry = p.node[i][1];
2: p.node[i] = succEntry.node[i];
3: INSERT(i, succEntry);
4: if p.node[i].lastPeer.node[i][1] ∈

[p, p.node[i].lastPeer) then
5: return true
6: else
7: p.node[i + 1][1] = p.node[i][d];
8: return false;
9: end if

The stabilization process is important for the performance of the
queries, but not for their correctness. As long as the peers are con-
nected at the ring level, queries can be processed by forwarding
them along the successor pointers. The stabilization process fixes
the inconsistencies in the HR in order to provide logarithmic search
performance for queries. We chose to have a periodic stabilization
process that repairs the inconsistencies in the HR over performing
reactive repairs, as the latter can lead to high maintenance costs in
case of high churn [20]. Using a periodic stabilization mechanism
is similar to most other P2P index structures [4, 19, 21, 23].

The algorithm executed periodically by the Stabilization Process
is shown in Algorithm 6. The algorithm loops from the lowest
level to the top-most level of the HR until the highest (root) level
is reached (as indicated by the boolean variable root). Since the
height of the HR data structure could actually change, we update
the height (p.numLevels) at the end of the function.

Algorithm 7 describes the Stabilization Process within each level
of the HR structure at a peer. The key observation is that each peer
needs only local information to compute its own successor at each
level. Thus, each peer relies on other peers to repair their own suc-
cessor at each level. When a peer p stabilizes a level, it contacts its
successor at that level and asks for its entries at the corresponding
level. Peer p replaces its own entries with the received entries and
inserts its successor as the first entry in the index node (lines 2 and
3). The INSERT procedure inserts the specified entry at the begin-
ning of the list at given level, and it ensures that no more than d
entries are in the list and none of the entries in the list overshoots
p (if the list does wraps around, this should be the last level). Line
4 checks whether this level should be the last level in the HR. This
is the case if all the peers in the system are already covered. If this
level is not the root level, the stabilization procedure computes the
successor at the higher level (line 7) and returns.

The periodic Stabilization Process runs independently at each
peer, without the need for synchronization. Regardless of the order
in which the Stabilization Process is run at different peers (stabi-
lization of some level i in the HR structure at some peers might
occur before the stabilization at level i−1 at some other peers), the
Stabilization Process will move the HR structure towards a more
consistent state. Eventually, the entire HR becomes consistent, as
shown in Theorem 2.
Definition We define a stabilization unit (su) to be the time needed



to run the StabilizeLevel procedure at some level in all peers.

THEOREM 2 (STABILIZATION TIME). Given that at time t
there are P peers in the system, the fault tolerant ring is con-
nected and the successor pointers are correct, and the stabiliza-
tion procedure starts running periodically at each peer, at time
t + (d − 1)dlogd P esu the HR is consistent with respect to the
P peers, if no peers fail.

Due to space constraints, we omit the proof here; full proofs for
all theorems are given in the technical report [7].

4.3 Storage Factor Estimation
The algorithms in Section 3 have one parameter: the storage fac-

tor sf or `, the required minimum number of items stored by a
peer. sf depends on N

P
(N = number of items and P = number

of peers). Each peer estimates N and P as follows. Each entry p′

in the HR at a peer p stores two additional counters to estimate the
number of peers and the number of items in the range (p, p′]. These
counters are aggregated bottom-up and the highest-level values are
used as estimates for N and P . Maintaining the counters does not
increase the number of messages in the system, as we piggyback
the numbers on the HR stabilization messages. Our experiments
show that P-Ring achieves a load imbalance of approximately two,
even in a dynamic system, which proves that the estimated sf is
accurate.

4.4 Routing
The Content Router component supports the

sendReceive(msg,range) primitive. We assume that
each routing request originates at some peer p in the P2P system.
For simplicity of presentation, we assume that the range has the
form (lb, ub].

The routing procedure shown in Algorithm 8 takes as input
the lower-bound (lb) and the upper-bound (ub) of the requested
range, the message to be routed, and the address of the peer where
the request originated. rangeMin(p) denotes the low end value
of p.range, and p.node[i][j].iV alue and p.node[i][j].peer de-
note the value, and respectively the address of the peer stored
in the HR entry p.node[i][j] (we used p.node[i][j].iV alue =
rangeMin(p.node[i][j].peer)). Each peer selects the farthest
away pointer that does not overshoot lb and forwards the request
to that peer. Once the algorithm reaches the lowest level of the HR,
it traverses the successor list until the value of a peer exceeds ub
(lines 8-9). Note that every peer which is responsible for a part of
(lb, ub] is visited during the traversal along the ring. At the end of
the range scan, a RoutingDoneMessage is sent to the originator
(line 11).

Example: Consider a routing request for the range (18, 25] that
is issued at peer p1 in Figure 7. The routing algorithm first de-
termines the highest HR level in p1 that contains an entry whose
value is between 5 (value of p1) and 18 (the lower bound of the
range query). In the current example, this corresponds to the first
entry at the second level of p1’s HR nodes, which points to peer p3

with value 15. The routing request is hence forwarded to p3. p3

follows a similar protocol, and forwards the request to p4 (which
appears as the first entry in the first level in p3’s HR nodes). Since
p4 is responsible for items that fall within the required range, p4

processes the routed message and returns the results to the origina-
tor p1 (line 6). Since the successor of p4, p5, might store items in
the (18, 25] range, the request is also forwarded to p5. p5 processes
the request and sends the results to p1. The search terminates at p5

as the value of its successor (5) does not fall within the query range.

Algorithm 8 : p.routeHandler(lb, up, msg, originator)
1: // find maximum level that contains an
2: // entry that does not overshoot lb.
3: find the maximum level l such that ∃ j > 0

such that p.node[l][j].iV alue ∈ (rangeMin(p), lb].
4: if no such level exists then
5: //handle the message and send the reply
6: send(p.handleMessage(msg), originator);
7: if rangeMin(succ(p)) ∈ (rangeMin(p), ub] then
8: // if successor satisfies search criterion
9: send(Route(lb,ub,msg,originator,requestType),

succ(p));
10: else
11: send(RoutingDoneMessage,originator);
12: end if
13: else
14: find maximum k such that

p.node[l][k].iV alue ∈ (rangeMin(p), lb];
15: send(Route((lb,ub,msg,originator),

p.node[l][k].peer));
16: end if

In a consistent state, the routing will go down one level in the
HR every time a routing message is forwarded in line 15. This
guarantees that we need at most dlogd P e steps to find lb, if the
HR is consistent. If the HR is inconsistent, the routing cost may
be more than dlogd P e. Even if the HR is inconsistent, it can still
route requests by using the entries to the maximum extent possible,
and then sequentially scanning along the ring. In Section 6.4, we
show that the search performance of HR does not degrade much
even when the index is temporarily inconsistent.

It is important to note that in a P2P system we cannot guarantee
that every route request terminates. For example, a peer p could
crash in the middle of processing a request, in which case the orig-
inator of the request would have to time out and try the routing
request again. This model is similar to that used in most other P2P
systems. [19, 21, 23].

We can formally prove the following properties of routing in Hi-
erarchical Ring.

THEOREM 3 (SEARCH PERFORMANCE IN STABLE STATE).
In a stable system of P peers with a consistent HR structure of
order d, range queries take at most dlogd P e + m hops, where m
is the number of peers in the requested range.

PROOF. From the definition of HR data structure, a consistent
HR of order d for P peers has dlogd P e levels. In a consistent
HR, the routing procedure goes down one level every time a rout-
ing message is forwarded to another peer. The peer with the low-
est value in the requested range is found once the lowest level is
reached. After the first answer is found, all the other answers are
found by following the successor links. This ensures that the max-
imum number of hops needed to answer a range query in a stable
HR is dlogd P e + m, where m is the number of peers in the re-
quested range.

THEOREM 4 (SEARCH PERFORMANCE DURING INSERTIONS).
If we have a stable system with a consistent HR of order d and we
start inserting peers at the rate r peers/stabilization unit, range
queries take at most dlogd P e + 2r(d − 1)dlogd P e + m hops,
where P is the current number of peers in the system, and m is the
number of peers in the requested range.



PROOF. Let t0 be the initial time and P0 be the number of peers
in the system at time t0. For every i > 0 we define ti to be ti−1 +
(d − 1)dlogd(Pi−1)e · su and Pi to be the number of peers in the
system at time ti. We call an old peer to be a peer that can be
reached in at most dlogd P e hops using the HR. If a peer is not old,
we call it new. At any time point, the worst case search cost for
equality queries is dlogd P e+ x, where dlogd P e is the maximum
number of hops using the HR to find an old peer and x is the number
of new peers. x is also the maximum number of hops to be executed
using the successor pointers to find any one of the new x peers (the
worst case is when all new peers are successors in the ring).

We show by induction on time that the number of new peers in
the system at any time is at most 2r(d− 1)dlogd P e, which proves
the theorem.

As the base induction step we prove that at any time point in the
interval [t0, t1] there are no more than 2r(d−1)dlogd P e new peers
and at time t1 there are no more than rddlogd P e new peers. From
hypothesis, at t0 the HR is consistent, so there are no new peers.
At the insertion rate of r peers/su, at any time point in [t0, t1], the
maximum number of peers inserted is r(d− 1)dlogd(P0)e, which
is smaller than r(d − 1)dlogd P e. This proves both statements of
the base induction step.

We prove now that if the maximum number of new peers at time
ti is rddlogd P e, than, at any time point in [ti, ti+1] the maxi-
mum number of new peers is 2r(d − 1)dlogd P e and the maxi-
mum number of new peers at time ti+1 is r(d−1)dlogd P e, where
i ≥ 1. The maximum number of peers inserted between ti and ti+1

is r(d − 1)dlogd(Pi)e which is smaller than r(d − 1)dlogd P e.
From the induction hypothesis, at time ti there were at most
r(d− 1)dlogd P e new peers. Between ti and ti+1, some old peers
can become new and new peers can become old, due to changes
in the HR structure. However, the total number of entries in the
HR structure does not decrease, so the number of old peers be-
coming new cannot be higher than the number of new peers be-
coming old. Out of the peers in the system at time ti, at most
r(d−1)dlogd P e of them are new at any time between ti and ti+1.
Adding the peers inserted since ti we get that at any time point in
[ti, ti+1] the maximum number of new peers is 2r(d−1)dlogd P e.
From Theorem 2, at time ti+1, all the peers existing in the system
at time ti are integrated into the HR structure. This means that all
peers existing at time ti are/became old peers at time ti+1, which
leaves the maximum number of new peers at time ti+1 to be at most
r(d− 1)dlogd P e (the peers inserted between ti and ti+1).

From induction it follows that at any time, the maximum number
of new peers is no more than 2r(d − 1)dlogd P e, which means
that equality queries take at most dlogd P e + 2r(d − 1)dlogd P e
hops.

5. RELATED WORK
Most of the indexing techniques developed for distributed

databases (e.g., [16, 17, 18]) are not designed for highly dynamic
peers and therefore are not appropriate for a P2P environment.

CAN [19], Chord [23], Pastry [21] and Tapestry [24] implement
distributed hash tables to provide efficient lookup of a given key
value. Since a hash function destroys the ordering in the key value
space, these structures cannot process range queries efficiently.

Gupta et al. [12] present a technique for computing range queries
using order-preserving hash functions. This system provides ap-
proximate answers to range queries, as opposed to the exact an-
swers provided by P-Ring. The performance of the system pro-
posed by Daskos et al. [9] depends on certain heuristics for in-
sertion, and does not offer any performance guarantees. Sahin et
al. [22] propose a caching scheme for queries, but no performance

guarantees are provided for range queries which were not previ-
ously asked.

Skip Graphs [3] are a randomized structure based on skip lists. P-
Tree [5] is a P2P index structure based on the B+ trees. Skip Graphs
and P-Tree support routing of range queries, but, as opposed to
P-Ring, they do not support multiple items per peer. Online Bal-
ancing [11] is a load balancing scheme for distributing items to
peers with a provable bound of 4.24 for load imbalance with con-
stant amortized insertion and deletion cost. The P-Ring Data Store
achieves a better load balance with a factor of 2 + ε, while keep-
ing the amortized insert/delete cost constant. Additionally, we also
propose a new content router, the Hierarchical Ring. Mercury [4]
is a randomized index structure determined by a sampling mech-
anism. P-Grid [2, 10] is a randomized trie-based index. Unlike
P-Ring, Mercury and P-Grid provide only probabilistic guarantees
even when the index is fully consistent. BATON [14] is a binary
balanced tree with nodes distributed to peers in a P2P network. The
P-Ring content router is more flexible, by allowing the application
to choose higher values for d, the order of the HR, and thus to de-
crease the search cost, and the P-Ring Data Store provides provable
guarantees on the load balance. BATON* [13] is extension of BA-
TON, that provides search performance proportional to logdP , but
does not prove any guarantees on load balancing.

6. EXPERIMENTAL EVALUATION
We evaluate our system both using a simulation and a real imple-

mentation running on PlanetLab. We focus on two main aspects.
First, we evaluate the performance of the P-Ring Data Store. As a
baseline, we compare it with the hash-based Chord Data Store. In
PlanetLab, we also compare it with Online Balancing [11]. Sec-
ond, we evaluate the performance of the P-Ring Content Router,
and compare it with Skip Graphs and Chord. We also consider the
interaction between the two components in the presence of peer in-
sertions and deletions (system “churn”). In all experiments, all the
components of the index (Fault-tolerant Ring, Data Store, Repli-
cation, Content Router) are implemented and working, but we are
only measuring the metrics of interest for the particular experiment.

6.1 Simulation Setup
We developed a simulator in C++ to evaluate the index struc-

tures. We implemented the P-Ring Data Store (Section 3.1), Hier-
archical Ring (Section 4.1), Skip Graphs [3], and Chord [23]. Since
Skip Graphs was originally designed for only a single item per peer,
we extended it to use the P-Ring Data Store so that it could scale
to multiple items per peer. For all the approaches, we implemented
the same Fault Tolerant Ring [23] and Replication Manager [8].

We use three performance metrics: 1. index message cost - the
average number of messages per minute (60 simulator time units)
required for maintaining the index; 2. index bandwidth cost - the
average number of bytes per minute required for maintaining the
index; 3. search cost - the number of messages required to evaluate
a range query, averaged over 100 random searches. Since the main
variable component in the cost of range queries is finding the item
with the smallest qualifying value (retrieving the other values has a
fixed cost of traversing the relevant successor peers), we only report
that cost. This also enables us to compare against Chord.

We varied the following parameters: InsertionRate (similarly,
DeletionRate) is the rate of item insertions (deletions) into the sys-
tem (default is 4 operations per second). ItemInsertionPattern (sim-
ilarly, ItemDeletionPattern), specifies the skew in the values in-
serted (deleted) into the system. A value of ip for this parameter
means that all insertions are localized within a fraction ip of the
search key space (default is 1). NumPeers is the number of peers



 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10  12  14  16

N
u
m

b
e
r 

o
f 
m

e
s
s
a
g
e
s
 p

e
r 

m
in

u
te

Item Insertion Rate

PRing - Order 2
PRing - Order 10

Chord

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

N
u

m
b

e
r 

o
f 

m
e

s
s
a

g
e

s
 p

e
r 

m
in

u
te

Item Insertion Pattern

PRing - Order 2
PRing - Order 10

Chord

Figure 8. Item Insertion Rate Figure 9. Insertion Pattern

in the system (default is 2000). For each experiment we vary one
parameter and use the default values for the rest. We first evaluate
the Data Store and Content Router components in a stable system
configuration (without peer joins/failures); we then investigate the
effect of peer churn.

6.2 Experimental Results: Data Store
The performance of the Data Store partially depends on the per-

formance of the Content Router (when inserting/deleting items or
searching for helper peers). To isolate these effects, we fix the P-
Ring Content Router to have orders 2 and 10 for this set of experi-
ments and investigate different orders in next section. As a baseline
for comparison, we use Chord, which is efficient due to hashing,
but does not support range queries.

Varying Item Insertion Rate Figure 8 shows the index mes-
sage cost as a result of varying InsertionRate. The message cost
increases linearly with InsertionRate because each item insertion
requires a search message to locate the peer that should store the
item. The message cost increases faster for the P-Ring Data Store
than for Chord because the P-Ring additionally needs to split and
merge due to item skew, while Chord simply hashes the items. This
difference quantifies the overhead of supporting range queries (us-
ing the P-Ring Data Store) as opposed to simple equality queries
(using the Chord Data Store). Finally, the message cost for the P-
Ring Data Store decreases as we use a Content Router of higher
order because the search becomes more efficient with higher order
Content Routers. The graph showing the index bandwidth cost is
similar and is not shown. We also obtained similar results by vary-
ing ItemDeletionPattern.

Varying Item Insertion Pattern Figure 9 shows the index mes-
sage cost as a result of varying ItemInsertionPattern from 0 - highly
skewed distribution, to 1 - uniform distribution. For the Chord Data
Store, as expected, we do not observe any significant variation in
message cost. The message cost also remains relatively stable for
P-Ring Data Store. This suggests that the P-Ring Data Store ef-
fectively manages item skew by splitting and merging as required.
The surprising fact is that for P-Ring, the cost for uniform distri-
bution is higher than for highly skewed distributions. The reason
is that the cost of finding helper peers for split is included in the
index cost. In skewed cases, most inserts happen close to 0, so
most splits happen at peers close to 0. Since the helper peers are
stored as items with search key value ⊥ (see Section 3.2), they are
also stored close to 0, so the search cost for finding a helper peer
is very low, compared with the uniformly random case. The graph
showing the index bandwidth cost is similar, and we also obtained
similar results by varying ItemDeletionPattern.

6.3 Experimental Results: Content Router
We now investigate the performance of the P-Ring Content

Router, and compare it with Skip Graphs and Chord.
Varying Number of Peers Figure 10 shows the search cost

when varying the number of peers. As expected, the search cost
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increases logarithmically with the number of peers (note the log-
arithmic scale on the x-axis) for all the Content Routers. How-
ever, the search cost for the different Content Routers varies signif-
icantly. In particular, Skip Graphs has significantly worse search
cost because the index structure of order d has search performance
O(d× logd P ) (where P is the number of peers in the system). In
contrast, Chord has search cost O(log2 P ) and a P-Ring of order d
has search cost O(logd P ). Due to the large base of the logarithm,
the P-Ring of order 10 significantly outperforms the other index
structures.

Varying Order Figure 12, Figure 13, and Figure 14 summa-
rize the results of varying the order of the Hierarchical Ring. As
expected, the search cost is O(logd P ). The index message cost
decreases with order because there are fewer levels in the HR that
need to be stabilized (recall that the number of levels in a HR of
order d is logd P ). However, the index bandwidth cost decreases
slightly and then increases because, at higher orders, more informa-
tion has to be transferred during index stabilization. Specifically,
each stabilization message in a HR of order d has to transfer O(d)
information (the entries at one level). Hence, the total bandwidth
requirement is O(d · logd P ), which is consistent with the experi-
mental results. This shows the tradeoff between maintenance cost
and search cost - a higher value of d improves search but increases
bandwidth requirements.

6.4 Experimental Results: System Churn
Figure 11 shows the effect of peer insertions and failures on in-

dex performance, for 4 insertions/failures per second (the results
with other rates is similar), starting with a system of 2000 peers.
The basic tradeoff is between search cost and index bandwidth cost.
When the Content Router is stabilized at a high rate, bandwidth cost
is high due to many stabilization messages, but the search cost is
low since the Content Router is more consistent. On the other hand,
when the Content Router is stabilized very slowly, the bandwidth
cost decreases but the search cost increases. For P-Ring and Chord,
the increase in search cost is small, even if the Content Router is
temporarily inconsistent.

As shown in Figure 11, the P-Ring Content Router always dom-
inates Skip Graphs due to its superior search performance. Chord
outperforms P-Ring of order 2 because Chord does not have the
overhead of dealing with splits and merges. However, P-Ring of
order 10 offers a better search cost, albeit at a higher bandwidth
cost, while also supporting range queries. We obtained similar re-
sults for search cost vs. index message cost.

6.5 Results from PlanetLab
We present preliminary results from our PlanetLab deployment.

We implemented P-Ring, Online Balancing Fibbing algorithm [11],
and Chord. The code base has more than 35,000 lines of C++ code
and uses TCP/IP as communication protocol. We deployed our sys-
tem on 50 random machines in PlanetLab [1], a network of com-
puters distributed around the world.



 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35  40

S
e

a
rc

h
 C

o
s
t

Order

PRing

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40

N
u
m

b
e
r 

o
f 
m

e
s
s
a
g
e
s
 p

e
r 

m
in

u
te

Order

PRing

 0

 50

 100

 150

 200

 0  5  10  15  20  25  30  35  40

B
a
n
d
w

id
th

 (
b
y
te

s
/s

e
c
)

Order

PRing

Figure 12. Search Cost vs. HR Order Figure 13. Message Cost Figure 14. Bandwidth Cost

Item Churn In a first set of experiments, we study the performance
of the system as items are inserted and deleted from the system
(item churn). To see the effect of items insertions and deletions on
the load balance, we start the system by inserting 50 peers and no
data items. Then, we randomly insert/delete items in three phases:
insert only, insert and delete, and delete only. In each phase we exe-
cute 2000 operations, at a rate of 1 operation/second. The items are
inserted according to a Zipfian distribution with domain [1, 65536]
and a skew parameter of 0.5. The items to be deleted are chosen
uniformly at random from the existing items.

Figure 15 shows the load imbalance for P-Ring and Online Bal-
ancing during the course of the experiment. The load imbalance
is measured each minute The load imbalance for P-Ring is almost
always close to 2, while for Online Balancing, the load imbalance
is above 2, but below 4.24 for the most part. The load imbalance is
temporarily higher at the beginning of the insert phase, and at the
end of the delete phase. There are two reasons for this. First, since
we start and end with no data items, the average number of items is
very low at the beginning and at the end. So inserting or deleting a
few items can make a big difference in the load imbalance. Second,
the ranges assigned to peers need to adapt to the change in data dis-
tribution. We see that the ranges adapt quickly, so after only a few
minutes, the load imbalance is below the theoretical bound. This
figure also shows that our method of estimating the storage factor
for P-Ring gives correct results, as the load imbalance is indeed
close to the theoretical one.

Figure 16 shows the average message cost for the maintenance
of the Data Store component for Chord, P-Ring and Online Balanc-
ing. Similar trends were obtained for the bandwidth cost. We ex-
pected the maintenance cost for P-Ring and Online Balancing to be
clearly higher than for Chord Data Store, due to the load-balancing
operations. However, the differences in message costs are not big,
especially during the insert/delete phase since there are very few
re-balancing operations and the ranges have already adapted to the
data distribution. Moreover, the item insert and delete message
cost is similar for all structures (we used HR of order 2 for P-Ring
and Online Balancing), and this cost is the major component of the
maintenance cost. Note that for Online Balancing, the cost of main-
taining an additional index on the load of the peers was not taken
into consideration.

Figure 17 shows the evolution of load imbalance for P-Ring for
different skew parameters. We see that regardless of how skewed
the distribution is, the ranges adapt to the distribution using the
re-balancing operations. A similar graph was obtained for Online
Balancing.

Peer Churn In a second set of experiments, we study the effects
of peer insertions and failures on load balancing. For these experi-

ments we start the system by inserting 1 peer and 2000 data items
with indexing attribute values following a Zipfian distribution with
domain [1, 65536] and skew parameter 0.5. Then, peers randomly
join/leave the system, in three phases: join only, join and leave,
and leave only. In each phase we execute 50 operations, at the 0.02
operations/second rate.

Figure 18 shows the evolution of load imbalance for P-Ring and
Online Balancing, as peers join and leave the system. Both algo-
rithms adapt to the changes in the system, however the load imbal-
ance is more variable than in the item churn case (see Figure 15).
This is due to the fact that changes in the set of peers in the system,
where each peer stores many data items, have a bigger impact on
the number of items temporarily stored at each peer, and therefore
on the load imbalance (when a peer fails/leaves the system, all the
items previously stored by the failed peer will be recovered by its
successor, since items are replicated, and that peer will temporarily
be very overloaded; similarly, peer insertions could lead to under-
flow). As expected, the load imbalance is lower for P-Ring, than
for Online Balancing.

Figure 19 shows the average message cost (results for bandwidth
cost are similar) for maintaining the Data Store component for P-
Ring, Online Balancing and Chord. The average number of mes-
sages is higher at the beginning as the 2000 items are inserted into
the system, and there are only a few peers into the system. After
the items are inserted, the average number of messages decreases.
Figure 20 shows the details of the average message cost, with the
highest values eliminated. Once all the items were inserted, the
Data Store message cost for Chord is close to zero. This is because
the Chord Data Store does not try to re-balance the ranges associ-
ated to the peers even during churn. The difference in cost between
Chord and P-Ring and Online Balancing comes from the load bal-
ancing operations effectuated by P-Ring and Online Balancing, and
represents the cost associated with providing extra functionality:
explicit load balance, as opposed to the implicit load balance pro-
vided by hashing.

7. CONCLUSIONS
We have introduced P-Ring, a novel fault-tolerant P2P index

structure that efficiently supports both equality and range queries
in a dynamic P2P environment. P-Ring effectively balances items
among peers even in the presence of skewed data insertions and
deletions and provides provable guarantees on search performance.
Our experimental evaluation shows that P-Ring outperforms exist-
ing index structures, sometimes even for equality queries, and that
it maintains its excellent search performance with low maintenance
cost in a dynamic P2P system.
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