
A

Load Balancing and Range Queries in P2P Systems using P-Ring

ADINA CRAINICEANU
United States Naval Academy
adina@usna.edu
PRAKASH LINGA
Moka5
plinga@mokafive.com
ASHWIN MACHANAVAJJHALA
Yahoo! Research
mvnak@yahoo-inc.com
JOHANNES GEHRKE
Cornell University
johannes@cs.cornell.edu
JAYAVEL SHANMUGASUNDARAM
Google Inc.
jayavel.shanmugasundaram@acm.org

In peer-to-peer (P2P) systems, computers from around the globe share data and can participate in dis-

tributed computation. P2P became famous, and infamous, due to file-sharing systems like Napster. However,
the scalability and robustness of these systems make them appealing to a wide range of applications.

This paper introduces P-Ring, a new peer-to-peer index structure. P-Ring is fully distributed, fault-
tolerant, provides load balancing and logarithmic search performance, while supporting both equality and

range queries. Our theoretical analysis as well as experimental results obtained both in a simulated envi-
ronment and on PlanetLab, show the performance of our system.

Categories and Subject Descriptors: H.2.2 [Physical Design]: Access Methods; H.2.4 [Systems]: Dis-
tributed Databases

General Terms: Algorithms, Management, Performance

Additional Key Words and Phrases: peer-to-peer systems, range queries, load balancing, indexing

1. INTRODUCTION
Over the last decade, peer-to-peer (P2P) systems have emerged as a new paradigm
for structuring large-scale distributed systems. P2P systems have very desirable
properties, such as scalability, due to resource-sharing among cooperating peers,
fault-tolerance, due to the symmetrical nature of peers, and robustness, due to self-
reorganization after failures. These advantages have made P2P systems suitable for
content distribution and service discovery applications [Ratnasamy et al. 2001; Stoica
et al. 2001; Datta et al. 2005]. We believe that future applications such as military
applications [JBI], digital libraries [Lagoze and de Sompel 2001] or resource discov-
ery on the grid will benefit from the above advantages and will require complex query
capabilities. One of the requirements would be to support range queries. For example,
in a large computing grid, where each node advertises its resources, one might need to
find all the nodes in the grid with Linux operating system and enough main memory
for a memory intensive application: ”Select * From AllNodes M Where M.OS = ’Linux’
and M.Memory > 3GB”.

Several P2P index structures have been proposed, both for equality and range
queries, each with certain limitations. Some systems, such as those described by Rat-
nasamy et al. [2001], Rowstron and Druschel [2001], Stoica et al. [2001] use hashing
and support only equality or keyword queries. Skip Graphs [Aspnes and Shah 2003]
and P-trees [Crainiceanu et al. 2004] can answer range queries, but only handle a
single data item per peer. The system proposed by Gupta et al. [2003] only provides

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

approximate answers to range queries, and can miss results. Mercury [Bharambe et al.
2004] and P-Grid [Aberer 2001; Datta et al. 2005] provide probabilistic (as opposed to
absolute) guarantees on search and load-balancing, even when the P2P system is fully
consistent. Baton [Jagadish et al. 2005] only provides search performance proportional
to log2P , where P is the number of peers; when P is large, the small base of the loga-
rithm can lead to excessive search cost. Baton* [Jagadish et al. 2006] provides search
performance proportional to logdP , but it does not prove any guarantees on load bal-
ancing. Moreover, the large amount of information maintained by every peer in Baton*
structure can be difficult to maintain in a dynamic, large-scale system.

We propose P-Ring, a new P2P range index. P-Ring provides exact answers to range
queries on arbitrary ordered domains, and scales to a large number of peers and items.
In large systems, balancing out data skew and/or execution skew is one important
concern. In this paper we focus on data skew, but our algorithms can be adapted to
deal with execution skew. P-Ring provides provable guarantees on load-balancing. For
any given constant ϵ > 0, P-Ring maintains a load imbalance factor of at most 2+ϵ in
a stable system. P-Ring provides search performance of O(logdP), where d is a tunable
parameter.

When designing P-Ring we were faced with two challenges. First, the data items
have to be distributed among peers such that range queries can be answered effi-
ciently, while still ensuring that all peers have roughly the same load. Techniques
developed for equality queries are not applicable as they distribute data items based
on their hash value; since hashing destroys the order of the items, range queries can-
not be answered efficiently. We need to devise a scheme that clusters data items by
their data value, and balances the number of items per peer, even in the presence of
highly skewed insertions and deletions. In this paper we introduce two load balancing
schemes: the basic scheme maintains a load imbalance of at most 2 between any two
owner peers in the system, but a few helper peers in the system are not assigned any
items. The helpers change over time and we present heuristics on how to reduce their
number. Our second load balancing scheme maintains a load imbalance of at most 2+ϵ
(for any given ϵ >0) between any two peers in the system, while achieving amortized
constant cost per insertion and deletion.

Our second challenge was to devise a content router that is robust to peer failures
and provides logarithmic search performance even in the presence of skewed data dis-
tributions. Our P-Ring router, called Hierarchical Ring (HR), is highly fault-tolerant,
and a router of order d provides guaranteed O(logdP +m) range search performance
in a stable system with P peers, where m is the number of peers with items in the
query range. Even in the presence of highly skewed insertions, we can guarantee a
worst-case search cost of O(r · d · logdP +m), where r is the number of peer joins per
stabilization unit of the router (formally defined later).

In an extensive experimental study, we evaluate the performance of P-Ring using
both simulations and a real distributed implementation deployed on PlanetLab [Plan-
etLab], a network of computers distributed around the world. We also compare the per-
formance of P-Ring to Skip Graphs [Aspnes and Shah 2003], Online Balancing [Gane-
san et al. 2004], Baton* [Jagadish et al. 2006], and to Chord [Stoica et al. 2001]. Our
performance results indicate that P-Ring router, Hierarchical Ring, outperforms Skip
Graphs in terms of both query and update cost. P-Ring offers the same (if order d of
HR is 2) or better (if d > 2) search performance than Chord, but at a higher cost, due
to the support of additional functionality (range queries as opposed to only equality
queries). P-Ring achieves a better load balance than Online Balancing or Baton*.

This paper is an extended version of ”P-Ring: An Efficient and Robust P2P Range
Index Structure” [Crainiceanu et al. 2007] published in SIGMOD 2007. This paper ex-
tends the previous paper in all areas: algorithms, theoretical analysis, and experimen-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

tal results. In particular, we introduce heuristics for reducing the number of helper
peers for our basic load balancing scheme, we present new theorems and complete
proofs for efficiency of our extended load balancing scheme, we experimentally eval-
uate both the basic and the extended load balancing scheme and show their relative
strengths and weaknesses, we discuss challenges posed by implementing a distributed
system that runs on a wide area network, we add more experimental results, and com-
pare our system not only with Skip Graphs, Online Balancing and Chord, but also with
Baton*.

The rest of the paper is organized as follows: we introduce the system model and
system architecture framework in Section 2. We present our load balancing schemes
in Section 3 and the routing structure and algorithms in Section 4. In Section 5 we
discuss related work. We discuss implementation issues and challenges in Section 6
and present experimental results in Section 7. We conclude in Section 8.

2. MODEL AND ARCHITECTURE
System Model. We assume that each peer in the system can be identified by an ad-
dress (IP address and port number), and peers can communicate through messages. A
peer can join a P2P system by contacting some peer that is already part of the system.
A peer can leave the system at any time without contacting any other peer. In this
paper we use P to denote the number of peers in the system. We assume that each
data item (or short, item) stored in a peer exposes a search key value from a totally
ordered domain that is indexed by the system. Without loss of generality, we assume
that search key values are unique. Duplicate values can transparently be made unique
by appending the address of the peer where the value originates and a version number.
We use N to denote the number of items in the system. Similar with other papers in
the literature [Ganesan et al. 2004; Jagadish et al. 2006], we focus on load imbalance
due to data skew. We assume that the query distribution is uniform, so the load of a
peer is determined by the number of data items stored at the peer. If the query distri-
bution is not uniform, we can define the load of a peer based on the query load, and
use replication of popular items in combination with the algorithms introduced in this
paper to balance the load. We define the load imbalance in a system to be the ratio
between the most loaded and the least loaded peer in the system.
System Architecture. We have implemented P-Ring in the context of a modular
framework that identifies and separates the different functional components of a
P2P index structure. This architecture allows us to reuse existing algorithms for
some components rather than implementing everything anew. We overview now the
relevant components of the framework, which is similar to the modular framework
of [Crainiceanu et al. 2004].
Fault Tolerant Ring: The Fault Tolerant Ring connects the peers in the system along
a ring, and provides reliable connectivity among these peers even in face of failures. For
a peer p, we can define the succ(p) (respectively, pred(p)) to be the peer adjacent to p in
a clockwise (resp., counter-clockwise) traversal of the ring. The Ring provides methods
to get the address of the successor or predecessor, insert a new successor, join the ring
or gracefully leave the ring (of course, a peer can just fail). The Ring also generates
events such as newSuccessor, and newPredecessorValue, that can be caught by higher
layers and processed either synchronously or asynchronously. In our implementation
of P-Ring, we use Chord’s Fault Tolerant Ring algorithms [Stoica et al. 2001].
Data Store: The Data Store, built on top of the Fault Tolerant Ring, is responsible for
distributing the items to peers. Ideally, the distribution should be uniform so that each
peer stores about the same number of items. The Data Store provides API methods to
insert and delete items into and from the system. The Data Store also generates events
such as rangeChange that can be caught by higher layers. One of the main contributions

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

of this paper is a new Data Store for P-Ring, which can effectively distribute items even
under skewed insertions and deletions.
Content Router: The Content Router, built on top of the Data Store, is responsible
for efficiently routing messages to peers that have items satisfying a given predicate.
The second major contribution of this paper is a new Content Router that can route
range queries efficiently.
Replication Manager: The Replication Manager, built on top of the Data Store, en-
sures that items assigned to a peer are not lost if that peer fails. We use the Replication
Manager algorithms proposed in CFS [Dabek et al. 2001], where the items stored at a
peer are replicated by its successors in the ring.

3. P-RING DATA STORE
The main challenge in devising a Data Store for P2P range indices is handling data
skew. We would like the items to be uniformly distributed among the peers so that the
load is nearly evenly distributed among the peers. Most existing P2P indices achieve
this goal by hashing. Items are assigned to peers based on the hash value of their
search key. Such an assignment has been shown to be close to a uniform distribu-
tion with high probability [Stoica et al. 2001]. However, hashing destroys the ordering
among the search key values, and thus cannot be used to process range queries effi-
ciently (for the same reason that hash indices are not used to handle range queries
efficiently in centralized databases). Even if locality-preserving hashing is used, the
resulting distribution is not always uniform [Cai et al. 2003].

For P-Ring to support range queries, we assign items to peers directly based on their
search key value, and the peer identifiers in the ring are based on the search key values
the peers store. In this case, the ring ordering is the same as the search key value
ordering, wrapped around the highest value. The problem is that now, even in a stable
P2P system with no peers joining or leaving, some peers might become overloaded due
to skewed data insertions and/or deletions. We need a way to dynamically reassign
and maintain the ranges associated to the peers. This section presents our algorithms
for handling data skew. All our algorithms guarantee correctness in face of concurrent
operations, as we can apply the techniques introduced by Linga et al. [2005].

3.1. Handling Data Skew
In this section we introduce our basic load balancing scheme, LOADBALANCE.

The search key space is ordered on a ring, wrapping around the highest value. The
Data Store partitions this ring space into ranges and assigns each of these ranges to
a different peer. Let p.range = (p.lb, p.ub] denote the range assigned to p. p’s identifier
at the Fault Tolerant Ring level will be p.ub. All items in the system with search key
in p.range are said to be owned by p. Let p.own denote the list of all these items, and
let |p.own| be the size of this list. In our scheme, the number of ranges is less than
the total number of peers in the system therefore there are some peers which are not
assigned any range. Such peers are called helper peers. The others are called owner
peers. The system is initiated with one owner peer p that owns the entire indexing
domain (p.range = (v, v], where v is a value in the indexing domain). All other peers
join the system as helper peers, and become owner peers during load balancing. Let P
denote the set of all peers, and let O be the subset of owner peers in P. Using these
notations, the load imbalance is defined as maxp∈O|p.own|

minp∈O|p.own| . In this section, we present
algorithms to maintain the load imbalance at not more than two.

Analogous to B+-tree leaf page maintenance, the number of items in every range is
maintained between bounds ℓ = sf and u = 2 · sf, so the load imbalance is at most
u/ℓ = 2. sf (the ”storage factor”) is a parameter whose value depends on the average
load in the system (see Section 3.2 for details). Whenever the number of items in a

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

5

15

p
1

10

18

20

p
2

p
3

p
4

p
5

6 8

p
6

p
7

11

1619

25

5

15

p
1

10

18

20

p
2

p
3

p
4

p
5

6 8

p
6

p
7

11

1619

25

 7
5

15

p
1

10

18

p
2

p
3

p
4

p
5

6 8

p
6

p
7

11

16

25

Fig 1. Data Store (DS) Fig 2. DS After Split Fig 3. DS After Merge

Algorithm 1 : p.split()
1: p′ = getHelperPeer();
2: if p′ == null then return; end if
3: //execute the split
4: splitItems = p.own.splitSecondHalf();
5: splitV alue = p.own.lastValue();
6: splitRange = p.range.splitLast(splitV alue);
7: p′::joinRingMsgHandler(p,splitItems,splitRange);
8: p.ringNode.insertSuccessor(p′);

peer’s p Data Store becomes larger than u (due to many insertions into p.range), we say
that an overflow occurred. In this case, p tries to split its assigned range (and implicitly
its items) with a helper peer. Whenever the number of items in p’s Data Store becomes
smaller than ℓ (due to deletions from p.range), we say that an underflow occurred. Peer
p tries to acquire a larger range and more items from its successor in the ring. In this
case, the successor either redistributes its items with p, or gives up its entire range to
p and becomes a helper peer. Using this LOADBALANCE scheme, the load imbalance in
the system is bounded by 2, if we do not consider the few helper peers. In Section 3.4
we propose an extension to this basic scheme, EXTLOADBALANCE, where the helper
peers help balance the load among all the peers, to achieve true load balance.

Example Consider the Data Store in Fig 1 which shows the helpers p6 and p7, and
the ranges and search key values of items assigned to the other peers in the system
((5, 10] with items 6 and 8 are assigned to peer p1 etc.). Assume that sf is 1, so each
peer in the ring can have 1 or 2 items. When an item 7 is inserted into the system, it
will be stored at p1, leading to an overflow. As shown in Fig 2, the range (5, 10] is split
between p1 and the helper p6. p6 becomes the successor of p1 and p6 is assigned the
range (7, 10] with the item with search key 8.

Split Algorithm 1 shows the pseudo-code of the split algorithm executed by a peer
p that overflows. We use the notation p :: fn() for a remote call of function fn() at p,
p.fn() for a local call of fn() at p, and p.ringNode refers to the Fault Tolerant Ring
component of the P-Ring at p. During a split, peer p tries to find a helper p′ (see Sec-
tion 3.2) and transfer half of its items, and the corresponding range, to p′. After p′ is
found (line 1), half of the items are removed from p.own and p.range is split accordingly.
p then invites p′ to join the ring as its successor and maintain p′.range. The main steps
of the algorithm executed by the helper peer p′ are shown in Algorithm 2. Using the
information received from p, p′ initializes its index components and joins the ring.

Merge and Redistribution If there is an underflow at peer p, p executes the merge
algorithm shown in Algorithm 3. Peer p invokes the initiateMergeMsgHandler func-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Algorithm 2 : p′.joinRingMsgHandler(p, splitItems, splitRange)
1: p′.range = splitRange; p′.own = splitItems;
2: p′.ringNode.joinRing(p);

Algorithm 3 : p.merge()
1: //send message to successor and wait for result
2: (action, newRange, newItemsList) = p.ringNode.getSuccessor()::

initiateMergeMsgHandler(p, |p.own|);
3: p.own.add(newItemsList); p.range.add(newRange);

Algorithm 4 : p′.initiateMergeMsgHandler(p,numItems)
1: if numItems+ |p′.own| > 2 · sf then
2: //redistribute
3: nbItemsToGive = ceil((|p′.own| − numItems)/2);
4: splitItems = p′.own.splitFirst(nbItemsToGive);
5: splitV alue = splitItems.lastValue();
6: splitRange = p′.range.splitFirst(splitV alue);
7: return (redistribute,splitRange,splitItems);
8: else
9: //merge and leave the ring

10: splitItems = p′.own; splitRange = p′.range;
11: p′.ringNode.leaveRing(); p′.becomeHelperPeer();
12: return (merge, splitRange, splitItems);
13: end if

tion on its successor in the ring. The successor sends back the action decided, merge or
redistribute, a new range, and the list of items that are to be re-assigned to p (line
2). p appends the new range to p.range and the new items to p.own.

The outline of the initiateMergeMsgHandler function is given in Algorithm 4. The
invoked peer, p′ = succ(p), checks whether a redistribution of items is possible between
the two ”siblings” (line 1). If yes, it sends some of its items and the corresponding range
to p. If a redistribution is not possible, p′ gives up all its items and its range to p, and
becomes a helper peer.

It is easy to see that the above split and merge operations ensure that the load
imbalance between any two owner peers is not more than 2.
3.2. Managing Helper Peers
In this section we first discuss the pros and cons of using helper peers, over having ev-
ery peer in the system store data items, and then we present our solution for managing
the helper peers existing in the system.

The main advantage of using helper peers is the decrease in cost of re-balancing op-
erations. P. Ganesan, M. Bawa, and H. Garcia-Molina showed in [Ganesan et al. 2004]
that any efficient load-balancing algorithm that guarantees a constant imbalance ra-
tio, as our algorithm does, needs to use re-order operations. A highly loaded peer finds
a lightly loaded peer that gives its load to a neighbor peer, and take over some of the
load of the highly loaded peer. In all of the previous approaches to load balancing that
we are aware of [Ganesan et al. 2004; Jagadish et al. 2005; Jagadish et al. 2006],
the lightly loaded peer is already part of the index, so it needs to leave the indexing
structure before joining it in a new place. Leaving the index structure is an expensive
operation: new neighbors are established in the ring, the items of the peer are sent
to the neighbor(s), more replicas are created to compensate for the loss of the replicas

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

stored at the leaving peer, and finally, the routing structure adjusts for the change. By
using helper peers that are not part of the ring, all these costs are eliminated, leading
to more efficient and faster load balancing.

Using helper peers contradicts the symmetry of the P2P systems. However, the num-
ber of helpers is usually small, and they change over time. Moreover, Section 3.3 in-
troduces a heuristic for reducing the number of helpers, and Section 3.4 introduces a
scheme that uses the helper peers for balancing among all peers.

Now, let us see how we manage the helper peers. Recall that helper peers are ”con-
sumed” during split and are ”generated” during merge. There are three important
issues to be addressed. First, we need a reliable way of ”storing” and finding helper
peers. Second, we need to ensure that a helper peer exists when it is needed during
split. Finally, even though helper peers do not have a position on the ring, they should
be able to query the data in the system.

To solve the first issue, we create an artificial item (⊥, p′.address) for every helper
peer p′, where ⊥ is the smallest possible search key value. This item is inserted into
the system like any regular item. Storing or removing a helper peer is now similar to
inserting or resp. removing an item. When a helper peer is needed, an equality search
for ⊥ is issued. As there are much fewer helper peers than regular items, managing
helper peers does not significantly increase the load on the peers storing them. Using
the HR router from Section 4, the cost of inserting, deleting, or finding a helper peer is
O(logdP), where d is the order of the HR.

To ensure that a helper peer exists when an overflow occurs, we set sf =
max(1,⌈N/P ⌉). The number of items N and the number of peers P can be dynamically
estimated by each peer at no additional message cost (see Section 6.3). Lemma 3.1
proves that a helper peer exists whenever a split is needed.

Finally, in order to allow helper peers to answer user queries, each helper maintains
a list of owner peers to which it can forward any query to be processed. The mainte-
nance of this list is similar with the maintenance of successor list.

LEMMA 3.1. If sf = max(1,⌈N/P ⌉), whenever algorithm LOADBALANCE performs
the split operation, there exists a helper peer in the system.

PROOF. Suppose there are no helper peers when LOADBALANCE needs to perform a
split. If a split is needed, there is a peer with 2sf+1 items, and all the other peers own
at least sf items. The total number of items in the the system, N , is therefore at least
(P − 1)sf+ 2 · sf+ 1. sf before the split is max(1,⌈(N − 1)/P ⌉), so (N − 1)/P ≤ sf, i.e.
N−1 ≤ Psf. From the two inequalities we obtain that N ≥ Psf+sf+1 ≥ N−1+sf+1
or sf ≤ 0 which is a contradiction.

3.3. Reducing the Number of Helper Peers
In this section we estimate the number of helper peers existing in the system and
provide heuristics for reducing the number of helper peers.

Let us assume that sf= max(1,⌈N/P ⌉), as set in Section 3.2. If N > P (the usual
case) and all peers are at minimum occupancy (|p.own| = sf, ∀ p ∈ O), then there are
no helpers. If instead each owner peer is full (|p.own| = 2 · sf,∀ p ∈ O), then half of the
peers are helpers. B+ trees typically maintain 67% space occupancy [Ramakrishnan
and Gehrke 2003]. Maintenance of ranges by our load balance algorithm resembles
the maintenance of leafs in B+ trees, so we assume that the typical occupancy for
peers in our system will be about 67%. In this case, the percentage of helpers in the
system is around 25.3% (number helpers = P - |O| = P −N/((2N/P) ·0.67) = 34/134 ·P).
Let us see now if can reduce this percentage, while still ensuring that imbalance ratio
is below 2.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

The number of helpers in the system is correlated with the average number of items
stored at a peer: for a fixed number of items and peers, the more items are stored at
owner peers, the more helpers exist in the system. To reduce the number of helpers,
we propose to decrease sf, and consequently the bounds on the number of items stored
at a peer, by a factor rhf ≤ 1 called the reduce helpers factor. We define the new
sf=max(1,⌈N/P ⌉)·rhf . To ensure that there is enough space at the peers to store all the
items in the system, rhf needs to be ≥ 0.5. Assuming a typical occupancy of 67%, we
can tune the value of rhf to maintain the desired number of helpers. For example, for
the number of helpers to be zero, we would set rhf to 0.74. However, we need helpers
to be able to split when needed, so we need a higher rhf . If rhf = 0.8, the estimated
percentage of helpers is 6.7. The results in Section 7.2.1 show that the numbers we
obtained from experiments are very close to these estimates, so our heuristic works
well in practice.

3.4. Load Balancing using Helper Peers
The load-balancing scheme proposed maintains the number of items stored by each
owner peer within strict bounds. However, the helper peers do not store any items, so
there is no ”true” load balance among peers. We propose now an extension to the basic
scheme, which uses the helper peers to ”truly” balance the load. The extended scheme
is provably efficient, i.e., every insert and delete of an item has an amortized constant
cost. Also the load imbalance is bounded by a small constant.

Observe that if we somehow assign items to helper peers too while maintaining
the bounds ℓ and u on the number of items assigned, we are able to bound the load
imbalance by u

ℓ . We now extend the functionality of helper peers. Every helper peer
is obliged to ”help” an owner peer already on the ring. A helper peer helps an owner
peer by managing some part of the owner peers range and some of its load. If owner
peer p has a set H(p) of k helpers q1, q2, . . . , qk, p.range = (lb, ub] is divided into (lb =
b0, b1], (b1, b2], . . . , (bk, ub] such that each sub-range has equal number of items. Peer p
is now responsible for (bk, ub]. Each of p’s helpers, qj , becomes responsible for one of
the other ranges, say (bj−1, bj]. Let q.resp be the list of items peer q is responsible for
and q.rangeresp be the corresponding range. q participates in routing and all queries
dealing with q.rangeresp will reach q. However, p still owns all the items in (lb, ub] and
is responsible for initiating and participating in the load balance operations. Also, any
insert or delete that reaches a helper peer is forwarded to the owner peer, who will
ensure that the items owned are evenly divided among itself and the helpers. In this
context, the definition of the load imbalance becomes maxp∈P |p.resp|

minp∈P |p.resp| . In this section, we
provide algorithms to maintain the load imbalance at not more than 2+ϵ, for any given
ϵ > 0.

The extended scheme, EXTLOADBALANCE, is similar to the basic scheme, but it has
three load balancing operations: split, merge, and an additional usurp operation. We
discuss each of these next.

Split As before, the split operation enforces an upper bound on the number of items
owned by an owner peer. An owner peer p splits when |p.own| ≥ u, i.e. the number
of items owned by p reached the upper bound u. The peer splits its items and range
with a helper peer. The existence of a helper peer is guaranteed by Lemma 3.2. In
Algorithm 1, only few steps change. If p already has helpers, then p chooses one of the
helpers p′ to perform the split. Otherwise, p issues a search for a helper peer. When
a split is performed, not only the range and items of p are split, but also p’s helpers.
Finally, at the end of the split, p redistributes the new p.own with its now reduced set
of helpers. The join ring algorithm changes slightly to include the distribution of the
new items among the received set of helpers.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Algorithm 5 : p.mergeExt()
1: p1 = p.ringNode.getSuccessor(); p2 = p.ringNode.getPredecessor();
2: if p1::getOwnSize() ≥ u

2 then
3: p′ = p1; op = REDISTRIBUTE;
4: else if p2::getOwnSize() ≥ u

2 then
5: p′ = p2; op = REDISTRIBUTE;
6: else
7: p′ = p2; op = MERGE;
8: end if
9: if op = REDISTRIBUTE then

10: transfer u
4 − ℓ

2 items from p′.own to p.own;
11: redistribute new p.own among H(p);
12: redistribute new p′.own among H(p′);
13: else
14: p′::processMergeMsgHandlerExt(p.range,p.own,H(p) ∪ p);
15: p.ringNode.leaveRing();
16: end if

Algorithm 6 : p′.processMergeMsgHandlerExt(newRange, newItemsList, newHelpers)
1: p′.range.add(newRange); p′.own = p′.own.add(newItemsList);
2: H(p′) = H(p′) ∪ newHelpers; redistribute p′.own among new H(p′);

Merge The merge operation ensures a lower bound on the number of items owned
by a peer. An owner peer p merges when |p.own| ≤ ℓ; i.e., the number of items owned
by p reached the lower bound ℓ. The peer either tries to get some items from one of
its owner neighbors (successor or predecessor) (redistribute), or gives up its items and
range to its predecessor and becomes a helper peer (merge). Redistribute happens if
p has a neighbor p′ on the ring which owns at least u

2 items. If so, items are moved
from p′.own to p.own such that both peers own at least ℓ items. The items in p′.own and
respectively p.own are re-distributed among the helper peers of p′ and respectively p.
Merge happens when neither of p’s neighbors have at least u

2 items. If so, the range
and all the data items are moved from p to its predecessor and p and all the associated
helpers leave the ring and start helping p’s former predecessor. The complete merge
algorithm is shown in Algorithm 5.

Usurp The split and merge bound the number of items owned by owner peers, with-
out taking into account the helper peers. To bound the load imbalance in the system
by a constant, we need to bound the imbalance in the number of items each peer is
responsible for. The usurp operation bounds the load imbalance between two peers p
and q, where at least one of them is a helper peer, by 2 + ϵ, for a given ϵ > 0. Al-
gorithm 7 shows the pseudo-code of the usurp algorithm executed by an owner peer
p. During usurp, an owner peer p can usurp, or take over, a helper peer q of another
owner peer p′, if |p.resp| ≥ (2 + ϵ)|q.resp|, for a given constant ϵ > 0. The helper peer q
starts helping p, so |p.resp| is reduced. The getLeastLoadedHelperPeer() function can
be implemented by using the HR (Section 4.1) to maintain information about the least
loaded peer. Note that usurp operations do not change p.own for any owner peer p.

Before proving the formal properties of the load balancing algorithms, we discuss
next setting the bounds on the number of items at each peer. In LOADBALANCE, we
set ℓ = sf and u = 2sf. Since we needed helper peers to exist whenever a peer needed
to split, we set sf= ⌈N/P ⌉ i.e., P (d − 1) < N ≤ Pd, for some integer d > 0 implies
sf = d. If due to inserts, N > Pd, sf should be updated to (d+ 1) and if due to deletes,

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Algorithm 7 : p.usurp()
1: //find least loaded helper peer and its ”master”
2: (q,p′) = getLeastLoadedHelperPeer();
3: if |p.resp| ≥ 2

√
1 + δ|q.resp| then

4: p.setHelperPeer(q);
5: redistribute p.own among new H(p)
6: redistribute p′.own among new H(p′);
7: end if

N ≤ P (d − 1), sf should be updated to (d − 1). In algorithm EXTLOADBALANCE, for
efficiency reasons (see Theorem 3.10), we need u > 2sf, so we set u = (2 + ϵ)sf for a
given ϵ > 0. If due to inserts, N > Pd, we set sf to (d + 1). But, for efficiency reasons,
we do not update sf to (d − 1) until N ≤ P (d − 1 − γ), for a given 0 < γ < 1

2 . In this
case, ℓ = d implies P (d − 1 − γ) ≤ N ≤ Pd. This change still ensures the existence of
helper peers whenever they are needed for split.

LEMMA 3.2. If ϵ > 0, 0 < γ < 1
2 , and bounds ℓ and u are set such that ℓ = d implies

P (d− 1− γ) ≤ N ≤ Pd and u = (2 + ϵ)d, then whenever algorithm EXTLOADBALANCE
needs to perform the split operation, there exists a helper peer.

PROOF. Similar with proof for Lemma 3.1.
We show in the next section that the split, merge, and usurp algorithms bound the

load imbalance in the system by (2+ϵ), for a given ϵ > 0, at an amortized constant cost
for item insertions and deletions.

3.5. Correctness and Efficiency of Load Balancing Algorithms
In this section we analyze the properties of the load balancing operations defined in
Section 3.4, in terms of correctness and efficiency. In order to characterize the state
of the system, we introduce the notion of system configuration, and we define a valid
configuration as being the configuration of a balanced system. We than show that the
system returns to a valid configuration after any sequence of inserts and deletes. More-
over, the amortized cost of load balancing is constant.

Henceforth, we assume that l = d and u = (2 + ϵ)d for given ϵ > 0 and d > 0 such
that P (d− 1− γ) ≤ N ≤ Pd, where 0 < γ < 1

2 .

Definition 3.3 (Configuration). We define a configuration of the Data Store as a tu-
ple (P,R, ρ, ψ), where P is a set of P peers, R is a partition of the ring ordered key
space that defines the owner ranges, ρ : R → P is a 1-1 map defining the assignment
of ranges to owner peers, and ψ : H → O is a function defining the helper peer assign-
ments (O = (ρ(R)) is the set of owner peers in the system and H = P \ O is the set of
helper peers). We assume that if owner peer p has k helpers, p.range is divided among
p and its helpers such that each peer is responsible for the same number of items.

Definition 3.4 (Valid Configuration). A configuration described by the tuple
(P,R, ρ, ψ) is said to be a valid configuration, if for a given ϵ > 0, the ownership and
responsibility assignments defined by the configuration satisfy:

(1) Ownership Property: ℓ < |p.own| < u for all owner peers p ∈ O, and
(2) Responsibility Property: If H ̸= ∅ and q ∈ H is the helper peer responsible for the

least number of items, any peer p ∈ P is such that |p.resp| ≤ (2 + ϵ)|q.resp|.

THEOREM 3.5 (LOAD IMBALANCE). In a valid configuration, the load imbalance is
at most 2 + ϵ.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

PROOF. The theorem follows directly from the definition of load imbalance, valid
configuration, and definition for u and l.

THEOREM 3.6 (CORRECTNESS). Starting from any initial valid configuration
(P,R, ρ, ψ), for every insert or delete operation, algorithm EXTLOADBALANCE performs
a finite sequence of split, merge and usurp operations and results in a valid configura-
tion.

PROOF. The initial configuration (P,R, ρ, ψ) satisfies Properties 1 and 2. If an insert
violates Property 1, there is one peer p with |p.own|=u = (2 + ϵ)d. After a split is
performed, |p.own|=(1 + ϵ

2)d and a helper peer q is added to the ring with the same
number of items. The new configuration satisfies Property 1.

Similarly, if a delete causes an ownership violation, a merge or redistribute is per-
formed and the new configuration satisfies Property 1.

Violations of Property 2 are fixed by usurp. To prove that the number of usurp op-
erations required is finite, we first define a potential function Φ associated with any
configuration. We show that the decrease in Φ due to an usurp operation, ∆usurpΦ, is
greater than 0 and ∆usurpΦ is a fraction of d. Since any attainable configuration has a
potential linear in d, and every usurp decreases this potential by a fraction of d, and
the potential of the resulting valid configuration is positive, after a constant number
of usurp operations we reach a valid configuration.

Definition 3.7 (Potential). We define for each configuration (P,R, ρ, ψ) a potential
Φ = Φo +Φr as follows:
The Ownership Potential Φo =

∑
p∈P ϕo(p), where

ϕo(p) =

0 p ̸∈ O (helper peer)
co
d (l0 − |p.own|)2 d ≤ |p.own| ≤ l0
0 l0 ≤ |p.own| ≤ u0
co
d (|p.own| − u0)

2 u0 ≤ |p.own| ≤ (2 + ϵ)d

l0 = (1 +
ϵ

4
)d, u0 = (2 +

3ϵ

4
)d

The Responsibility Potential Φr =
∑

q∈P ϕr(q), where ϕr(q) = cr
d (|q.resp|)

2 and positive
constants co and cr will be defined later (see Theorem 3.10).

We now compute the change in potential due to usurp.
Usurp: During usurp, the ownership mappings do not change, so the decrease in own-
ership potential is 0. The responsibility potential, however, decreases in this operation.
Let p1 ∈ O with |p1.own| = o1 and |H(p1)| = h1. Let q be the helper peer usurped by p1.
If p2 = ψ(q), |p2.own| = o2, and |H(p2)| = h2 ≥ 1, then o1

1+h1
≥ (2 + ϵ) o2

1+h2
.

∀q1 ∈ H(p1) ∪ {p1},∆usurpϕr(q1) =
cr
d

((
o1

1 + h1

)2

−
(

o1
2 + h1

)2
)

∀q2(̸= q) ∈ H(p2) ∪ {p2},∆usurpϕr(q2) =
cr
d

((
o2

1 + h2

)2

−
(
o2
h2

)2
)

∆usurpϕr(q) =
cr
d

((
o2

1 + h2

)2

−
(

o1
2 + h1

)2
)

∆usurpΦr =
cr
d

(
o21

1 + h1
− o21

2 + h1
+

o22
1 + h2

− o22
h2

)
≥ cr

d

(
o21

2(1 + h1)2
− 2o22

(1 + h2)2

)
≥ cr

d

(
(2 + ϵ)o22
(1 + h2)2

− 2o22
(1 + h2)2

)
≥ crϵ

(1 + h2)2
d2

d
≥ crϵ

(1 + κh)2
d

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

∆usurpΦ ≥ crϵ

(1 + κh)2
d (1)

where κh is the maximum number of helpers assigned to an owner peer, which is
bounded by a constat (see Lemma 3.9).

To show that κh is bounded by a constant, we show first that κh is bounded by a con-
stant in a valid configuration. We show then that any configuration satisfies a modified
Property 2, and using that we show that κh is bounded by a constant in any configura-
tion.

LEMMA 3.8. In a valid configuration, the number of helper peers assigned to an
owner peers is at most κvalidh = 2(2 + ϵ)uℓ − 1.

PROOF. Consider an owner peer p owning o = |p.own| items and having h helpers.
p and each of its helpers are responsible for o

1+h items. From Property 2, we have
that any other peer in the system is responsible for at most o

1+h (2 + ϵ) items, so N ≤
(P − h− 1) o

1+h (2 + ϵ) + o. From hypothesis, N ≥ P (ℓ− 1− γ). From the two equations,
we get h < o

ℓ−2 (2 + ϵ) ≤ 2(2 + ϵ)uℓ

LEMMA 3.9. Starting from any initial valid configuration, in any configuration at-
tained during the execution of EXTLOADBALANCE, the number of helper peers assigned
to an owner peers is at most κh ≤ (2 + ϵ

2)κ
valid
h ≤ (2 + ϵ

2)(2(2 + ϵ)uℓ − 1).

PROOF. By considering all the possible executions of the EXTLOADBALANCE after
an insert or delete, we can show that starting from any initial valid configuration
(P,R, ρ, ψ), any configuration attained during the execution of EXTLOADBALANCE
satisfies a variant of Property 2, namely

(2’) If H ̸= ∅ and q ∈ H is the helper peer responsible for the least number of items, any
peer p ∈ P is such that |p.resp| ≤ (2 + ϵ

2)(2 + ϵ)|q.resp|.

Based on this inequality and using the same argument as in Lemma 3.8, we obtain
that κh ≤ (2 + ϵ

2)κ
valid
h .

We give now our efficiency result. Our cost model has three major components: 1.
Data movement: We model the cost involved in moving the items between peers during
load balancing as being linear in the number of items moved. 2. Distributing items
among helper peers: Whenever the set of items owned by a peer p or the set of helpers
H(p) changes, some items might need to be moved, so the items are evenly distributed
among p and its helpers. |p.own| is a very conservative estimate on the number of
items moved. 3. Load information: Our usurp algorithm requires non-local information
about the least loaded helper peer. This information needs to be updated when data is
moved from a peer to another, so we assume that this cost can be included in the data
movement cost. Our cost model is similar to the one used by Ganesan et al. [2004].

THEOREM 3.10 (EFFICIENCY). Starting from an initial configuration defined by
(P,R, ρ, ψ), for every sequence σ of item inserts and deletes, if ϵ > 0 and ℓ, u such that
ℓ = d implies P (d − 1 − γ) ≤ N ≤ Pd, and u = (2 + ϵ)d, for some positive constant
γ < 1

2 , the sequence of split, merge and usurp operations performed by algorithm EXT-
LOADBALANCE for any prefix of σ is such that the amortized cost of an insert or a delete
operation in that prefix of σ is a constant.

PROOF. We use the same potential defined above and show that the decrease in the
potential Φ due to an insert or delete is bounded by a constant, and the maximum cost
of a load balancing operation is smaller than the minimum decrease in the potential

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

due to re-balancing. These facts prove that the amortized cost of an insert or delete
operation is a constant.
Insert: During insert operation, an item is inserted into p.own for some p and in-
serted into q.resp for some q ∈ H(p) ∪ {p}. ϕr(q) increases, while ϕo(p) increases if
u0 ≤ |p.own| ≤ (2 + ϵ)d, and decreases if d ≤ |p.own| ≤ l0. The minimum decrease in Φ
occurs when both ϕr(q) and ϕo(p) increase and this decrease is

∆insΦo =
co
d
(|p.own| − u0)

2 − co
d
(|p.own|+ 1− u0)

2 = −co
d
(2|p.own|+ 1− 2u0)

≥ −co
d
(2(2 + ϵ)d+ 1− 2(2 +

3ϵ

4
)d) ≥ −co

d
(
ϵ

2
d+ 1) ≥ −coϵ

2
− co

∆insΦr =
cr
d
(|q.resp|)2 − cr

d
(|q.resp|+ 1)2 = −cr

d
(2|q.resp|+ 1) ≥ −2(2 + ϵ)cr − cr

∆insΦ ≥ −coϵ
2

− 2(2 + ϵ)cr − co − cr (2)

Delete: Similar with the insert, we obtain

∆delΦ ≥ −coϵ
2

− 2(2 + ϵ)cr − co − cr (3)

From equations (2) and (3), the decrease in the potential Φ on an insert or a delete is
at least − ϵ

2co − 2(2 + ϵ)cr − co − cr, which is a constant given co and cr. We will set the
constants co and cr such that the minimum decrease in Φ is greater than the maximum
cost of a load balancing operation.

Let us consider now the change in potential and the cost of load balancing.
Split: Similar with the usurp operation, we obtain ∆splitΦ ≥ co(

ϵ
4)

2d− crd
(2+ϵ)2

4

The cost of a split operation is at most (3 + 3ϵ
2)d. When p, the splitting peer, has a

helper q, the cost represents the transfer of (1+ ϵ
2)d items and the rearranging of items

among p’s and q’s helpers. When p does not have a helper, p takes away q from some
other owner peer p2. Here the cost comes from transfer of items from p to q and the
rearranging of items among p2’s remaining helpers. We need co and cr such that

co

(ϵ
4

)2
d− crd

(2 + ϵ)2

4
≥
(
3 +

3ϵ

2

)
d (4)

Redistribute: Similar with the usurp, we obtain ∆redistΦ ≥ co
(
ϵ
4

)2
d− crd

(
ϵ
2 + ϵ2

8

)
The cost of the redistribute is at most (3 + 5ϵ

4)d, so we need

cod
ϵ2

16
− crd

(
ϵ

2
+
ϵ2

8

)
≥
(
3 +

5ϵ

4

)
d (5)

Merge: Similar with the usurp, we obtain ∆mergeΦ ≥ co
(
ϵ
4

)2
d− 2crd

(
1 + ϵ

4

)2.
The cost of a merge is at most (3 + ϵ

2)d, so we need

co

(ϵ
4

)2
d− 2cr

(
1 +

ϵ

4

)2
d ≥

(
3 +

ϵ

2

)
d (6)

Usurp: Finally, the usurp operation costs at most 2(2 + ϵ)d. From equation (1),
crϵ

(1 + κh)2
d ≥ 2(2 + ϵ)d (7)

Solving equations 4, 5, 6, 7, we get

co
ϵ2

16
≥ cr

(
2

3
+

5ϵ

6
+

5ϵ2

24

)
+

(
3 +

3ϵ

2

)
, cr ≥ 2(2 + ϵ)(1 + κh)

2

ϵ

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

5

15

10,p2

10

18

20

p3
p4

p6

p1

15,p3
1

p2 15,p3 18,p4
1

18,p4 19,p5
1

19,p5 20,p6
1

 24,p7 5,p1
1

19

24

p5

p7

20,p6 24,p7
1

 5,p1 10,p2
1

5

15

10,p2

10

18

20

p3
p4

p6

p1

15,p3
1

15,p3 19,p5
2

p2

15,p3 18,p4
1

18,p4 20,p6
2

18,p4 19,p5
1

19,p5 24,p7
2

19,p5 20,p6
1

 20,p6 5,p1
2

 24,p7 5,p1
1

 5,p1 15,p3
2

19,p5
3

 20,p6
3

24,p7
3

 5,p1
3

15,p3
3

19

24

p5

p7

20,p6 24,p7
1

24,p7 10,p2
2

10,p2
3

 5,p1 10,p2
1

10,p2 18,p4
2

18,p4
3

Fig 4. HR Level 1 Fig 5. HR Levels 1, 2, and 3
By setting the constants cr and co to values as shown above, we showed that the amor-
tized cost of inserts and deletes is a constant when ℓ does not change. We can show
that by charging each insert/delete an extra constant cost of co

γ

(
2 + 3ϵ

4

) (
3 + ϵ

4

)
, we can

pay for the operations caused by the change in ℓ also.
4. P-RING CONTENT ROUTER
The goal of our Content Router is to efficiently route messages to peers in a given
range. The main challenge is to handle skewed data distributions. Since the search
keys can be skewed, the peer ranges may not be of equal length. Consequently, in-
dex structures that assume uniform data distribution in the indexing domain such as
Chord [Stoica et al. 2001] and Pastry [Rowstron and Druschel 2001] cannot be applied
in this case.

We devise a new Content Router called Hierarchical Ring (or short, HR) that can
handle highly skewed data distributions. In this section we describe the content router,
the routing algorithm and the maintenance algorithms, and we give analytical bounds
for the search cost in a stable system and under skewed insertions.
4.1. Hierarchical Ring
The HR is based on the simple idea of constructing a hierarchy of rings. Let d be an
integer > 1, called the order of HR. At the lowest level, level 1, each peer p maintains a
list of the first d successors on the ring. Using the successors, a message could always
be forwarded to the last successor in the list that does not overshoot the target, ”skip-
ping” up to d-1 peers at a time. For instance, Fig 4 shows a hierarchy of rings with order
(d) 2. As shown, peer p1 is responsible for the range (5, 10], p2 is responsible for (10, 15]
and so on. Each peer knows its successor on the ring: succ(p1) = p2, succ(p2) = p3,
and so on. At level 1 in the HR, each peer maintains a list of 2 successors, as shown.
Suppose p1 needs to route a message to a peer with value 19. p1 will route the message
to p3 and p3 will forward the message to p5, the final destination.

At level 2, we again maintain a list of d successors. However, a successor at level
2 corresponds to the dth successor at level 1. Using these successors, a message can
always be routed to the last successor in the list that does not overshoot the target,
”skipping” up to d2 − 1 peers at a time. The procedure of defining the successor at level
i+1 as the dth successor at level i and creating a list of level i+1 successors is iterated
until no more levels can be created. Figure 5 shows the content of level 1, 2, and 3
lists at each peer in the ring. If p1 needs to route a message to a peer with value 19,
p1 will route the message directly to p5 (the final destination), using the list at level 3.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

In Figure 5, for p1, the successor at level 3 of p5 is p2, which overshoots p1, so no more
levels can be constructed for p1.

Note that HR is similar with a higher base Chord finger table, but we are conceptu-
ally indexing positions in the ring instead of values (i.e. at level i, a peer p has point-
ers to peers that are di peers away), which allows HR to perform well, regardless of
the data distribution. Also, the maintenance algorithm for HR is very different than
Chord’s maintenance.

Formally, the data structure for a HR of order d is a doubly indexed array
node[level][position], where 1 ≤ level ≤ numLevels and 1 ≤ position ≤ d. The HR is
defined to be consistent if and only if at each peer p:
— p.node[1][1] = succ(p)
— p.node[1][j + 1] = succ(p.node[1][j]), 1 ≤ j < d
— p.node[i+ 1][1] = p.node[i][d], (we define succi+1(p) = p.node[i][d])
— if p1 = p.node[i+ 1][j] then p.node[i+ 1][j + 1] = p1.node[i+ 1][1], 1 ≤ i < numLevels,

1 ≤ j < d (p.node[i+ 1][j + 1] = succi+1(p.node[i+ 1][j]))
— The successor at numLevels of the last peer in the list at numLevels level ”wraps”

around, so all the peers are indeed indexed:
if lp = p.node[numLevels].lastPeer then lp.node[numLevels][1] ∈ [p, lp)

From this definition, it is easy to see that a consistent HR of order d, has at most
⌈logd P ⌉ levels, and the space requirement for the HR at each peer is O(d · logd P).
4.2. Maintenance
Peer failures and insertions, as well as splits and merges at the Data Store level (per-
ceived as peer insertions, and respectively departures, at the Content Router level),
disrupt the consistency of the HR. We have a remarkably simple Stabilization Process
that runs periodically at each peer and repairs the inconsistencies in the HR. The algo-
rithm guarantees that the HR structure eventually becomes fully consistent after any
pattern of concurrent insertions and deletions, as long as the peers remain connected
at the ring level.

The stabilization process is important for the performance of the queries, but not for
their correctness. As long as the peers are connected at the ring level, queries can be
processed by forwarding them along the successor pointers. The stabilization process
fixes the inconsistencies in the HR in order to provide logarithmic search performance
for queries. We chose to have a periodic stabilization process that repairs the incon-
sistencies in the HR over performing reactive repairs, as the latter can lead to high
maintenance costs in case of high churn [Rhea et al. 2004]. Using a periodic stabiliza-
tion mechanism is similar to most other P2P index structures [Bharambe et al. 2004;
Rowstron and Druschel 2001; Stoica et al. 2001].

The algorithm executed periodically by the Stabilization Process is shown in Algo-
rithm 8. The algorithm loops from the lowest level to the top-most level of the HR
until the highest (root) level is reached (as indicated by the boolean variable root).
Since the height of the HR data structure could actually change, we update the height
(p.numLevels) at the end of the function.

Algorithm 9 describes the Stabilization Process within each level of the HR structure
at a peer. The key observation is that each peer needs only local information to compute
its own successor at each level. Thus, each peer relies on other peers to repair their own
successor at each level. When a peer p stabilizes a level, it contacts its successor at that
level and asks for its entries at the corresponding level. Peer p replaces its own entries
with the received entries and inserts its successor as the first entry in the index node
(lines 2 and 3). The INSERT procedure inserts the specified entry at the beginning of
the list at given level, and it ensures that no more than d entries are in the list and
none of the entries in the list overshoots p (if the list does wraps around, this should
be the last level). Line 4 checks whether this level should be the last level in the HR.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Algorithm 8 : p.Stabilize()
1: i = 1;
2: repeat
3: root=p.StabilizeLevel(i); i++;
4: until (root)
5: p.numLevels = i− 1;

Algorithm 9 : p.StabilizeLevel(int i)
1: succEntry = p.node[i][1];
2: p.node[i] = succEntry.node[i];
3: INSERT(i, succEntry);
4: if p.node[i].lastPeer.node[i][1] ∈ [p, p.node[i].lastPeer) then
5: return true;
6: else
7: p.node[i+ 1][1] = p.node[i][d]; return false;
8: end if

This is the case if all the peers in the system are already covered. If this level is not
the root level, the stabilization procedure computes the successor at the higher level
(line 7) and returns.

The periodic Stabilization Process runs independently at each peer, without the need
for synchronization. Regardless of the order in which the Stabilization Process is run
at different peers (stabilization of some level i in the HR structure at some peers might
occur before the stabilization at level i− 1 at some other peers), the Stabilization Pro-
cess will move the HR structure towards a more consistent state. Eventually, the entire
HR becomes consistent, as shown in Theorem 4.2.

Definition 4.1. We define a stabilization unit (su) to be the time needed to run the
StabilizeLevel procedure at some level in all peers.

THEOREM 4.2 (STABILIZATION TIME). Given that at time t there are P peers in the
ring, the successor pointers are correct, and the stabilization procedure starts running
periodically at each peer, at time t+ (d− 1)⌈logd P ⌉su, the HR is consistent with respect
to the P peers, if no peers fail.

PROOF. The stabilization starts at time t by stabilizing level 1 which already has
the correct first entry (p.node[1][1] = succ(p), for any p). After at most su, each peer
stabilizes with its successor, and the second entry p.node[1][2] at each peer p is correct.
After running again the Algorithm 9 at level 1, the next entry becomes correct, and so
on. After d − 1su, each peer has level 1 in HR and the first entry in level 2 consistent.
Since there are ⌈logd P ⌉ levels, after (d−1)⌈logd P ⌉ su, the HR is consistent with respect
to the P peers.
4.3. Routing
The Content Router component supports the sendReceive(msg,range) primitive. We
assume that each routing request originates at some peer p in the P2P system. For
simplicity of presentation, we assume that the range has the form (lb, ub].

The routing procedure shown in Algorithm 10 takes as input the lower-bound (lb)
and the upper-bound (ub) of the requested range, the message to be routed, the ad-
dress of the peer where the request originated, and a flag to specify if the first peer
in the range was already found. rangeMin(p) denotes the low end value of p.range, and
p.node[i][j].peer and p.node[i][j].iV alue denote the address, and respectively the low end
value of the peer stored in the HR entry p.node[i][j] . To find the first peer in the range,

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

Algorithm 10 : p.routeHandler(lb, up, msg, originator, firstPeerFound)
1: if !firstPeerFound then
2: // find maximum level that contains an entry that does not overshoot lb
3: find the maximum l such that ∃ j > 0: p.node[l][j].iV alue ∈ (rangeMin(p),lb]
4: if level l exists then
5: find maximum k such that p.node[l][k].iV alue ∈ (rangeMin(p), lb];
6: send(Route((lb,ub,msg,originator,firstPeerFound), p.node[l][k].peer));
7: else
8: //this is the first peer in the range
9: firstPeerFound = true;

10: end if
11: end if
12: if firstPeerFound then
13: //handle the message and send the reply
14: send(p.handleMessage(msg), originator);
15: if rangeMin(succ(p)) ∈ (rangeMin(p), ub] then
16: // forward to successor if it satisfies search criterion
17: send(Route(lb,ub,msg,originator,true), succ(p));
18: else
19: send(RoutingDoneMessage,originator);
20: end if
21: end if

each peer selects the farthest away pointer that does not overshoot lb and forwards the
request to that peer. Once first peer in the range was found, the algorithm traverses
the successor list until the value of a peer exceeds ub (lines 15-17). Note that every peer
which is responsible for a part of (lb, ub] is visited during the traversal along the ring.
At the end of the range scan, a RoutingDoneMessage is sent to the originator (line 19).

In a consistent state, the routing will go down one level in the HR every time a
routing message is forwarded in line 6. This guarantees that we need at most ⌈logd P ⌉
steps to find lb, if the HR is consistent. If the HR is inconsistent, the routing cost may be
more than ⌈logd P ⌉. Even if the HR is inconsistent, it can still route requests by using
the entries to the maximum extent possible, and then sequentially scanning along the
ring. Our experimental results in Section 7.3.2 show that the search performance of
HR does not degrade much even when the index is temporarily inconsistent.

We can formally prove the following properties of routing in Hierarchical Ring.

THEOREM 4.3 (SEARCH PERFORMANCE IN STABLE STATE). In a stable system of P
peers with a consistent HR structure of order d, range queries take at most ⌈logd P ⌉+m
hops, where m is the number of peers in the requested range.

PROOF. It follows from the definition of Hierarchical Ring.

THEOREM 4.4 (SEARCH PERFORMANCE DURING INSERTIONS). If we have a stable
system with a consistent HR of order d and we start inserting peers at the rate r
peers/stabilization unit, range queries take at most ⌈logd P ⌉ + 2r(d − 1)⌈logd P ⌉ + m
hops, where P is the current number of peers in the ring, and m is the number of peers
in the requested range.

PROOF. Let t0 be the initial time and P0 be the number of peers at t0. For every i > 0
we define ti to be ti−1 + (d− 1)⌈logd(Pi−1)⌉ · su and Pi to be the number of peers in the
ring at time ti. We call an old peer to be a peer that can be reached in at most ⌈logd P ⌉
hops using the HR. If a peer is not old, we call it new. At any time point, the worst

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

case search cost for equality queries is ⌈logd P ⌉ + x, where ⌈logd P ⌉ is the maximum
number of hops using the HR to find an old peer and x is the number of new peers. x is
also the maximum number of hops to be executed using the successor pointers to find
any one of the new x peers (the worst case is when all new peers are successors in the
ring). Based on the rate of insertions and Theorem 4.2, we can show that the number
of new peers in the system at any time is at most 2r(d − 1)⌈logd P ⌉, which proves the
theorem.
5. RELATED WORK
In the distributed databases community, there has been work in developing distributed
index structures. However, most of the indexing techniques developed for distributed
databases (e.g., [Litwin et al. 1993; 1994; Lomet 1996]) are not designed for highly
dynamic systems where peers can join and more importantly leave the system at any
time and therefore are not appropriate for a P2P environment.

In the P2P academic community, there has been extensive work in creating index
structures for P2P systems. CAN [Ratnasamy et al. 2001], Chord [Stoica et al. 2001],
Pastry [Rowstron and Druschel 2001] and Tapestry [Zhao et al. 2001] implement dis-
tributed hash tables to provide efficient lookup of a given key value. Since a hash
function destroys the ordering in the key value space, these structures cannot process
range queries efficiently.

Gupta et al. [2003] present a technique for computing range queries using order-
preserving hash functions. Their system provides approximate answers to range
queries, as opposed to the exact answers provided by P-Ring. The performance of the
system proposed by Daskos et al. [2003] depends on heuristics for insertion, and does
not offer any performance guarantees. Unlike P-Ring, the search performance can be
linear in the worst case even after the index becomes fully consistent. Sahin et al.
[2004] propose a caching scheme for queries, but no performance guarantees are pro-
vided for new range queries.

Skip Graphs [Aspnes and Shah 2003] and SkipNet [Harvey et al. 2003] are random-
ized structures based on skip lists. P-Tree [Crainiceanu et al. 2004] is a P2P index
structure based on the B+ trees. Skip Graphs and P-Tree support routing of range
queries, but, as opposed to P-Ring, they do not support multiple items per peer. Online
Balancing [Ganesan et al. 2004] is a load balancing scheme for distributing items to
peers with a provable bound of 4.24 for load imbalance with constant amortized inser-
tion and deletion cost. The P-Ring Data Store achieves a better load balance with a
factor of 2+ ϵ, ϵ > 0, while keeping the amortized insert/delete cost constant. Addition-
ally, we also propose a new content router, the Hierarchical Ring. Mercury [Bharambe
et al. 2004] is a randomized index structure determined by a sampling mechanism.
P-Grid [Aberer 2001; Datta et al. 2005] is a randomized trie-based index. Unlike P-
Ring, Mercury and P-Grid provide only probabilistic guarantees even when the index
is fully consistent. Baton [Jagadish et al. 2005] is a binary balanced tree with nodes
distributed to peers in a P2P network. The P-Ring content router is more flexible, by
allowing the application to choose higher values for d, the order of the HR, and thus to
decrease the search cost, and the P-Ring DS provides provable guarantees on the load
balance. Baton* [Jagadish et al. 2006] is an extension of Baton, that provides O(logdP)
search performance, but does not prove any guarantees on load balancing.
6. IMPLEMENTATION ISSUES
In Section 1 we described the challenges faced when designing an index structure that
offers support for range queries in peer-to-peer systems. We faced different types of
challenges when implementing the algorithms. The algorithms proposed in this pa-
per, as well as the other P2P indexes evaluated, are designed to be used in a P2P
setting, and we wanted to test them in a P2P setting. To have a full implementation

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

of the P2P indexes, one needs to implement more than just the load balancing and
query routing mechanisms. We implemented a periodic manager to manage the main-
tenance procedures that are periodically invoked by the different instantiations of the
P2P indexing framework, and a locking mechanism to control the access to shared
objects in the multi-threaded implementation. As actual P2P index components, we
implemented the Chord Fault Tolerant Ring [Stoica et al. 2001], the CFS Replication
Manager [Dabek et al. 2001], three different Data Store algorithms (P-Ring, Online
Balancing [Ganesan et al. 2004] and Chord) and three Content Router algorithms (P-
Ring, Skip Graphs [Aspnes and Shah 2003] and Chord). The total number of lines of
code for our implementation is more than 30,000. We discuss next some of the issues
addressed.

6.1. Locks
One of the most complex problems that needs to be addressed in a distributed environ-
ment implementation is the concurrency problem. The implementation of each compo-
nent in the P2P indexing framework requires multiple threads to run concurrently (for
example, Ping Process, Stabilization Process, and processing of routing requests for HR
run concurrently), so access to shared objects needs to be protected. We implemented a
lock manager, and for each shared resource, the thread accessing the resource acquires
first a read (shared) lock or a write (exclusive) lock on the resource. The order in which
locks are acquired and released is important for correctness, and to avoid deadlocks.
The decision regarding locks placement is complicated by the interaction of the differ-
ent components in the indexing framework. Each component can communicate with
the components at higher layers through the events it generates. Each component can
communicate with the component below it in the indexing framework by using the API
provided. This two way interaction can create cycles in the locks-dependency graph,
even if there are no cycles within any of the single components.

Example: Assume that peer p in the ring receives a stabilization message from its
new predecessor (the old predecessor failed). In the Chord ring, when a peer fails, its
successor in the ring takes over its range and items. The Ring component at p gen-
erates a newPredecessorValue event to notify the Data Store component of the new
predecessor value, so the Data Store can adjust the range accordingly. Assume that
the Ring component holds a read lock on the successor and a write lock on prede-
cessor while raising the event, and the Data Store needs to acquire a write lock on
the range in order to process the event. Concurrently, assume that peer p is over-
loaded and it splits its range and items with a peer p′′. The Data Store invokes the
insertSuccessor(p′′) API method in the Ring, to insert the new peer as successor. As-
sume that the Data Store holds a write lock on range, and the Ring needs a write lock
on the successor in order to complete the insertSuccessor call. This situation leads to
a deadlock, due to the interaction between components: the stabilization thread has a
lock on successor in the Ring, and waits for a lock on range in Data Store, while the
thread that performs the split has a lock on range in the Data Store and waits for the
lock on successor in the Ring.

Another deadlock possibility comes from the interaction between the same compo-
nent at different peers, for example in a ring with only two peers trying to first get a
write lock on the successor list to stabilize with each other.

To eliminate deadlocks, we tried to follow these guidelines: (1) There is a total order
of resources and locks are acquired in that order. (2) No write locks are held while a
synchronous event is raised by any of the components. (3) No write locks are held while
a message is sent and an answer is expected. (4) No locks are held while a message
is sent and an answer is expected, for resources that can be updated by incoming

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

messages. (5) No two possibly concurrent threads try to upgrade the locks on the same
resource.

Due to the complex interaction between layers, it was not always possible to follow
the first rule. Moreover, even following these rules, deadlocks involving multiple peers
can arise. To solve the problem, we constructed the dependency graph for all possible
executions of each thread, analyzed it for cycles, and eliminated all cycles. We either
modified the sequence in which locks are acquired or released, or the type of locks held.
Note that it is not always possible to design a deadlock-free locks schedule without
modifying the algorithms. To solve a deadlock as presented above, we modified the
ring stabilization algorithms such that peers do not hold any locks while sending the
message. To keep the correctness of the results, each peer makes a copy of the resource
value before sending the message. Upon receiving the message results, a lock on the
resource is requested, and the results are processed only if the resource value did not
change.
6.2. Timeouts
Another issue in the deployment of distributed algorithms in wide area network is
finding appropriate values for the timeout parameters: how long should a thread wait
before deciding that the answer will never come? These values need to be carefully cho-
sen, as they can have a big impact on the correctness and performance of the system.
If a reply for a message does not arrive in the specified interval, it is assumed that the
message was lost or the destination machine is down. In this case, the sender will re-
send the message, or take other appropriate actions. If the timeout values are too high,
the system might become slow because it takes a very long time to detect the failure of
a peer, and the information in the index structure becomes stale. If we set a low value
for the message receive timeout, and the destination machine is up and processing the
message, but the processing just takes a long time, we can have inconsistencies in the
index structure.

Example: In the P-Ring split protocol (see Section 3.1), assume that a peer p wants
to split its range (lb, ub] and items with a helper peer q, remaining with the range
(lb,mid] and associated items, while q should become responsible for range (mid, ub]
and the remaining items. If the split message times-out before it is processed at peer
q, peer p will remain responsible for the entire range (lb, ub] (the split is ’rolled-back’,
so the reliability of the system is not compromised). If the message was processed at
peer q, but not in time for the acknowledgement to be received by p, q also becomes
responsible for (mid, ub]. Now we have the situation that two peers are responsible
for the range (mid, ub], and both peers have the same ring value ub. This leads to
permanent inconsistencies in the underlying ring, unless the protocols are modified to
handle two peers with the same ring value (for example, by ”merging” the two peers).
Permanent inconsistencies in the ring could decrease the reliability of the system, as
the items are not replicated to the successors, due to incorrect successor pointers.

In our PlanetLab experiments, we evaluated the trade-offs for different timeout val-
ues and we found that a timeout value of three minutes, both for the search timeout
and sender receive timeout works fine.
6.3. Storage Factor Estimation
The algorithms in Section 3 have one parameter that needs to be known by all peers:
the storage factor sf or ℓ, the required minimum number of items stored by a peer.
sf depends on N

P . Each peer estimates N and P as follows. Each entry p′ in the HR
at a peer p stores two additional counters to estimate the number of peers and the
number of items in the range (p, p′]. These counters are aggregated bottom-up and
the highest-level values are used as estimates for N and P . Maintaining the counters
does not increase the number of messages in the system, as we piggyback the numbers

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

on the HR stabilization messages. Our experiments show that P-Ring achieves a load
imbalance of approximately two, even in a dynamic system, which proves that the
estimated sf is accurate.
7. EXPERIMENTAL EVALUATION
We evaluate our system using both a simulated environment and a real implemen-
tation running on PlanetLab [PlanetLab]. We focus on two main aspects. First, we
evaluate the performance of our two load balancing algorithms for the P-Ring Data
Store, and show that the P-Ring algorithms achieve good load balance, at a low cost,
both in a stable system and during churn, regardless of the data distribution. In Plan-
etLab, we also compare the performance of the basic P-Ring Data Store with Online
Balancing [Ganesan et al. 2004], Baton* [Jagadish et al. 2006], and Chord [Stoica et
al. 2001]. Second, we evaluate the search performance and maintenance cost of the
P-Ring Content Router, and compare it with Skip Graphs, Baton*, and Chord. In our
experiments, all the components of the index (Fault-tolerant Ring, Data Store, Repli-
cation, Content Router) are working, but we are only measuring the metrics of interest
for the particular experiment.
7.1. Simulation Setup
We developed a simulator in C++ to evaluate the index structures. We implemented
the Basic P-Ring Data Store (Section 3.1), The Extended P-Ring Data Store (Sec-
tion 3.4), Hierarchical Ring (Section 4.1), Skip Graphs [Aspnes and Shah 2003], and
Chord [Stoica et al. 2001]. For all the approaches, we implemented the same Fault Tol-
erant Ring [Stoica et al. 2001] and Replication Manager [Dabek et al. 2001], so we can
isolate the differences among Data Stores and Content Routers.
7.2. Experimental Results: Data Store
In this section we evaluate the Basic and Extended P-Ring Data Store algorithms.

7.2.1. Item Churn. We first study the system as items are inserted and deleted (item
churn). We start by inserting 256 peers and no items. Then, we randomly insert/delete
items in three phases: insert only, insert and delete, and delete only. In each phase we
execute 500000 operations, at the rate of 1 operation/second. The default distribution
of the inserted items is Zipfian distribution with skew parameter 1 (Zipf 1). For all our
distributions, the domain is [1, 65536]. The items to be deleted are chosen uniformly
at random from the existing items.

Data Skew Our main claim is that P-Ring achieves good load balance regardless
of the data skew. To prove it, we evaluate three different distributions for the items
inserted: uniform (no skew), Zipf 0.5 (some skew), and Zipf 1 (very skewed).

Fig 6, 7, and 8 show the load imbalance measured every minute (60 simulated oper-
ations) for the Basic P-Ring DS and the Extended P-Ring DS with ϵ = 0.1, for different
data distributions, as the system evolves over time. The three figures are very similar,
showing that regardless of the data skew, the system maintains its load balance, with
an imbalance ratio below 2, for the Basic P-Ring DS, and below 2.1 for the Extended
P-Ring DS. The Extended P-Ring DS seems to achieve the best load balance. However,
the Extended P-Ring DS has a higher load imbalance in terms of ”own” data, since the
bound ensured is 2 + ϵ.

Fig 9 shows the cumulative number of load balancing operations performed by our
algorithms and Fig 10 shows the corresponding data movement cost (number of items
moved), for the Zipf 1 distribution. Very similar results were obtained for the other
distributions. The number of load balancing operations (and subsequently the cost)
increases at the beginning, as the ranges need to adapt to the data distribution. The
ranges adapt quickly and very few load balancing operations are needed after that.
Nevertheless, there are a few load balancing operations, and because the number of

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

Nb Operations (x 1000)

L
o

a
d

 I
m

b
a

la
n

c
e

Insert Insert/Delete Delete Phase

Basic P−Ring DS
Extended P−Ring DS
Extended P−Ring DS Own

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

Nb Operations (x 1000)
L

o
a

d
 I
m

b
a

la
n

c
e

Insert Insert/Delete Delete Phase

Basic P−Ring DS
Extended P−Ring DS
Extended P−Ring DS Own

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

Nb Operations (x 1000)

L
o

a
d

 I
m

b
a

la
n

c
e

Insert Insert/Delete Delete Phase

Basic P−Ring DS
Extended P−Ring DS
Extended P−Ring DS Own

Fig 6. Imbalance - Uniform Fig 7. Imbalance - Zipf 0.5 Fig 8. Imbalance - Zipf 1

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

10000

12000

Nb Operations (x1000)

N
b

.
R

e
−

b
a

la
n

c
in

g
 I
n

v
o

c
a

ti
o

n
s

Insert Insert/Delete Delete PhaseBasic P−Ring DS

Extended P−Ring DS

0 500 1000 1500
0

5

10

15

20

25

30

35

Nb Operations (x1000)

C
u

m
m

u
la

ti
v
e

 C
o

s
t

(x
1

0
0

0
)

Insert Insert/Delete Delete Phase

Basic P−Ring DS
Extended P−Ring DS

0 500 1000 1500
0

500

1000

1500

2000

2500

Nb Operations (x1000)
C

u
m

m
u

la
ti
v
e

 C
o

s
t

(x
1

0
0

0
)

Insert Insert/Delete Delete Phase

Uniform
Zipf 0.5
Zipf 1

Fig 9. Nb Balancing - Zipf 1 Fig 10. Data Movement - Zipf 1 Fig 11. Total Data Movement Cost
for Extended P-Ring DS

data items per peer is large (2000-4000), each load balancing operation leads to a large
data movement cost noticeable as ”steps” in Fig 10. At the very end, load balancing
operations are needed again, as only few items exist in the system and deletion of a few
items can more easily upset the balance. Fig 11 shows the total cost of load balancing
and distribution of items to helpers for the Extended P-Ring DS. As expected from
Section 3.4, the cumulative cost is linear with the number of operations (the amortized
cost per operation is constant), because most insertions/ deletions lead to an item being
inserted/ deleted from a helper.

Our experiments show that even for skewed data, the Basic and Extended P-Ring
DS ensure a low load imbalance (2 or 2 + ϵ), and a low amortized cost per insertion
or deletion, with ranges adapting quickly to the data distribution. For the Extended
P-Ring DS, the cost of load balancing is dominated by the cost of distributing the items
to helpers.

Number of Helpers The Basic P-Ring DS ensures a load imbalance below 2, but
the helpers do not store any items. In Section 3.3 we introduced the reduce-helpers
factor (rhf), a heuristic to reduce the number of helpers. We study now the effects of
different values for rhf on load balancing.

Fig 12 shows the imbalance for different values of rhf . Except for rhf = 0.7, the load
imbalance is below 2. For rhf = 0.7, the number of helpers becomes zero (Fig 13). With-
out a helper, we cannot split, so the system becomes unbalanced. The load imbalance is
still low (below 3), because by the time the number of helpers becomes zero, the ranges

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

4

Nb Operations (x 1000)

L
o

a
d

 I
m

b
a

la
n

c
e

Insert Insert/Delete Delete Phase

Rhf 0.7
Rhf 0.8
Rhf 0.9
Rhf 1

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Nb Operations (x 1000)
P

e
rc

e
n

ta
g

e
 o

f
H

e
lp

e
r

P
e

e
rs

Insert Insert/Delete Delete Phase

Rhf 0.7
Rhf 0.8
Rhf 0.9
Rhf 1

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

3.5

Nb Join/Leave

L
o

a
d

 I
m

b
a

la
n

c
e

Join Join/Leave Leave

Basic P−Ring DS
Extended P−Ring DS
Extended P−Ring DS Own

Fig 12. Load Imbalance for Basic
P-Ring DS

Fig 13. Nb Helpers for Basic
P-Ring DS Fig 14. Imbalance - Churn

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

x 10
4

Nb Join/Leave

N
b

.
R

e
−

b
a

la
n

c
in

g
 I
n

v
o

c
a

ti
o

n
s

 Join Join/Leave Leave
Basic P−Ring DS
Extended P−Ring DS

10
1

10
2

10
3

10
4

0

5

10

15

Number of Peers

S
e

a
rc

h
 C

o
s
t

PRing Order 2
PRing Order 10
SkipGraphs Order 2
SkipGraphs Order 10
Chord

50 100 150 200 250 300
2

4

6

8

10

12

14

16

18

Bandwidth

S
e

a
rc

h
 C

o
s
t

PRing Order 2
PRing Order 10
SkipGraphs Order 2
SkipGraphs Order 10
Chord

Fig 15. Nb Balancing - Churn Fig 16. Search Performance Fig 17. Performance vs. Cost
are almost adapted to the data distribution. The lower rhf is, the fewer helpers exist.
We would like to use a value for rhf that allows a few helpers to be in the system. The
experiments confirm our rough analysis in Section 3.3 and show that rhf=0.8 satisfies
these requirements.

Our experiments show that in practice, using the Basic P-Ring DS with rhf < 1
provides good load balance with a low number of helpers, and avoids the cost of dis-
tributing the items to the helpers incurred by the Extended P-Ring DS.

7.2.2. Peer Churn. We now study the performance of the P-Ring DS during peer churn.
We start by inserting 1 peer and 500000 items. Then, we allow peers to randomly join
and leave the system in three phases: join only, join and leave, and leave only. In each
phase we execute 4096 operations.

Fig 14 shows the load imbalance for the Basic P-Ring DS and Extended P-Ring DS
(ϵ=0.1). Compared with load imbalance during item churn (Fig 8), the line is not so
”smooth”: a peer joining or leaving has a greater effect on load balance than an item
being inserted or deleted, because each peer stores a large number of items. However,
the load imbalance is below the theoretical bound.

Fig 15 shows the cumulative number of balancing operations as system evolves. The
data movement cost follows a similar curve. Like in the item churn case (see Fig 9),
there are more balancing operations at the beginning and end, as peers join the system,
and then as most peers leave the system. In the join/leave phase, the number of load
balancing operations is higher than in the item insert/delete phase because even if

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

Table I. Hierarchical Ring Performance Vs. Order

Order 2 4 6 10 20 40
Search Cost 5.20 3.48 3.09 2.69 2.09 1.94

Bandwidth Cost 121.60 115.16 120.19 129.72 170.62 194.8
Message Cost 21.81 15.61 14.59 13.55 13.44 12.52

ranges are adapted to the data skew, ranges change significantly when a peer leaves
or joins, so load balancing operations might be needed .

The experiments show that P-Ring effectively balances the load both in a stable
system and under peer churn.
7.3. Experimental Results: Content Router
We now investigate the performance of the P-Ring Content Router, HR, and compare
it with Skip Graphs and Chord. We measure: message cost - the average number of
messages per minute (60 simulator time units) required for maintaining the router;
bandwidth cost - the average number of bytes per minute required for maintaining
the router; search cost - the number of messages required to evaluate a range query,
averaged over 100 random searches. The main variable component in the cost of range
queries is finding the item with the smallest qualifying value, so we only report that
cost. This also enables us to compare with Chord.

7.3.1. Stable System. Scalability Fig 16 shows the search cost when varying the
number of peers. As expected, the search cost increases logarithmically (note the log-
arithmic scale on the x-axis). Skip Graphs has significantly worse search cost because
the index structure of order d has search performance O(d× logd P). Chord has search
cost O(log2 P) and a P-Ring of order d has search cost O(logd P). Due to the large base
of the logarithm, the P-Ring of order 10 significantly outperforms the other indexes.

Varying Order Table I summarizes the results of varying the order of HR in a sta-
ble system of 2000 peers. As expected, the search cost is O(logd P). The index message
cost decreases with order because there are fewer levels in the HR that need to be
stabilized. The index bandwidth cost decreases slightly and then increases because, at
higher orders, more information has to be transferred during index stabilization. Each
stabilization message has to transfer O(d) information (the items at one level). The to-
tal bandwidth requirement is O(d · logd P), which is consistent with the experimental
results. This shows the tradeoff between maintenance cost and search cost - a higher
value of d improves search but increases bandwidth requirements.

7.3.2. Peer Churn. Fig 17 shows the effect of peer joins and failures on index perfor-
mance, for 4 joins/failures per second (the results with other rates is similar), starting
with a system of 2000 peers. As in [Li et al. 2005], we consider the basic tradeoff be-
tween search cost and bandwidth cost. When the Content Router is stabilized at a
high rate, bandwidth cost is high due to many stabilization messages, but the search
cost is low since the Content Router is more consistent. When the Content Router is
stabilized very slowly, the bandwidth cost decreases but the search cost increases. For
P-Ring and Chord, the increase in search cost is small, even if the Content Router is
temporarily inconsistent.

As shown in Fig 17, P-Ring always dominates Skip Graphs due to its superior search
performance. Chord outperforms P-Ring of order 2 because Chord does not have the
overhead of dealing with splits and merges. However, P-Ring of order 10 offers a better
search cost, albeit at a higher bandwidth cost, while also supporting range queries. We
obtained similar results for search cost vs. index message cost.
7.4. Results from PlanetLab
We present now results from our PlanetLab deployment. We implemented P-Ring,
Online Balancing [Ganesan et al. 2004], a load balancing scheme for distributing

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

0 50 100 150
0

5

10

15

Simulation Time (minutes)

Im
b

a
la

n
c
e

 R
a

ti
o

Join Phase Join/Leave Leave Phase

PRing
OnlineHR
Baton*

0 50 100 150
0

5

10

15

20

25

30

35

Simulation Time (minutes)
D

a
ta

 S
to

re
 M

e
s
s
a

g
e

 C
o

s
t

Join Phase Join/Leave Leave Phase

PRing
OnlineHR
Chord
Baton*

0 50 100 150
0

1

2

3

4

5

6

Simulation Time (minutes)

S
e
a
rc

h
 C

o
s
t

Join Phase Join/Leave Leave Phase

PRing Order 2
SkipGraphs Order 2
Chord
Baton* Fanout 2

Fig 18. Load Imbalance - Churn Fig 19. DS Cost - Churn Fig 20. Search Performance
data items to peers, with a provable bound of at most 4.24 for load imbalance, and
Chord[Stoica et al. 2001]. We used the Fibbing algorithm for Online Balancing, as this
provides a better load balance than the Doubling algorithm [Ganesan et al. 2004]. We
used the Basic P-Ring DS with a rhf = 0.8, as this usually ensures that a small num-
ber of helpers exist when overloaded peers need to split. The code base has more than
30,000 lines of C++ code and uses TCP/IP as communication protocol. We have also
obtained Baton* [Jagadish et al. 2006] from its authors. We deployed our system on
50 random machines in PlanetLab [PlanetLab], a network of computers distributed
around the world, used by the research community for testing distributed algorithms
in real network environments.

We evaluated the system under item churn, and under peer churn. All results lead
to the same conclusion, so we only show the results for peer churn.

We start the system by inserting 1 peer (3 peers for Baton*) and 2000 data items
following Zipf 0.5. Then, peers randomly join/leave the system, in three phases (two
phases for Baton*): join only, join and leave, and leave only. In each phase we execute
50 operations, at the 0.02 operations/second rate.

Fig 18 shows the evolution of load imbalance for P-Ring, Online Balancing, and Ba-
ton*, as peers join and leave the system. All algorithms adapt to the changes in the
system, however the load imbalance is more variable than in the item churn case. The
reason is the same as during simulations: since each peer stores many items, changes
in the peer set have a big impact on number of items temporarily stored at each peer,
and therefore on the load imbalance. As expected, the load imbalance is lower for P-
Ring, than for Online Balancing and Baton*. The load imbalance for Chord (not shown)
is higher, due to the fact that Chord does not re-balance based on the data items dis-
tribution (items are assigned to peers based on their hashed value), and ensuring a
roughly uniform number of items for each peer requires running O(logP) virtual peers
at each physical peer.

Fig 19 shows the average message cost (per peer, measured every minute) for main-
taining the Data Store component for P-Ring, Online Balancing, Baton*, and Chord,
after 2000 items are inserted. Similar trends were obtained for bandwidth cost. Once
all the items were inserted, the DS message cost for Chord is close to zero. This is
because the Chord Data Store does not try to re-balance the ranges associated to the
peers even during churn. The cost for Baton* is also low, because it performs fewer
load balancing operations that P-Ring and Online Balancing, but the imbalance ratio
is higher. The difference in cost between Chord and P-Ring, Online Balancing, and
Baton* comes from the cost of load balancing operations and represents the cost asso-
ciated with providing extra functionality: explicit load balance and range queries, as

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

opposed to the implicit load balance provided by hashing and support for only equality
queries.

Fig 20 shows the search cost of Hierarchical Ring of order 2, Skip Graphs of order
2, Baton* of fanout 2 and Chord, in a dynamic system. The search cost of Hierarchical
Ring of order 2 is lower that the cost of Skip Graphs order 2 and approximately equal
to the cost of Baton* of fanout 2 and Chord. Since Hierarchical Ring of order 2 gives
the worst search performance among Hierarchical Ring of different orders, while the
Skip Graphs of order 2 provides the best search performance among Skip Graphs of
different orders, we can conclude that in general, the search performance of Hierar-
chical Ring is better than the search performance of Skip Graphs. The height of the
Baton* tree is same as for Hierarchical Ring, logdP , where d is the order of HR or the
fanout for Baton*. The search performance for the two indexes is similar. Hierarchical
Ring provide the same or better performance than Chord, while supporting a larger
class of queries.

7.5. Experiments Summary
We tested P-Ring both in a simulated environment and wide-area network. We have
also compared P-Ring with Online Balancing, Baton*, Skip Graphs, and Chord. For the
P-Ring Data Store, both the basic and the extended schemes adapt to skewed data dis-
tributions and achieve a load imbalance bounded by 2, for the basic scheme, and 2+ϵ,
ϵ > 0, for the extended scheme. During churn, the load imbalance can be temporarily
higher. In the basic load balancing scheme, the helper peers do not store any data, and
we introduced a heuristic that effectively reduces the number of such peers. In the ex-
tended scheme, the helper peers store data and participate in routing. The amortized
cost per insertion and deletion is a constant, but the cost of the extended scheme is
higher than the cost of the basic scheme. When compared with other indexes, P-Ring
achieves the best load balance, at a cost similar or lower than the cost of Online Bal-
ancing. The cost for Chord Data Store is the lowest, since it does not perform explicit
load balancing operations. The cost of Baton* is also low, but the imbalance is higher
than for P-Ring and Online Balancing. The search cost for P-Ring Content Router, Hi-
erarchical Ring, is O(logdP), similar with the cost of Baton* with fanout d. The search
cost for Skip Graphs is higher, O(dlogdP), and the search cost for Chord is O(log2P).
Range queries are supported by P-Ring, Baton*, and Skip Graphs, but not by Chord.

8. CONCLUSIONS
We have introduced P-Ring, a novel fault-tolerant P2P index structure that efficiently
supports both equality and range queries in a dynamic P2P environment. P-Ring effec-
tively balances items among peers even in the presence of skewed data insertions and
deletions and provides provable guarantees on search performance. Our experimen-
tal evaluation shows that P-Ring outperforms existing index structures such as Skip
Graphs, Online Balancing, Baton* and Chord, sometimes even for equality queries,
and that it maintains its excellent search performance with low maintenance cost in a
dynamic P2P system.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF Grant 0133481, by AFOSR under Grants F49620-
02-1-0233 and FA9550-10-1-0202, by the Naval Academy Research Council and ONR under Grants
N0001406WR20137 and N0001408WR40063, by the iAd Project funded by the Research Council of Norway,
and by the New York State Foundation for Science, Technology, and Innovation under Agreement C050061.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

REFERENCES
ABERER, K. 2001. P-grid: A self-organizing access structure for p2p information systems. In CoopIS.
ASPNES, J. AND SHAH, G. 2003. Skip graphs. In SODA.
BHARAMBE, A. R., AGRAWAL, M., AND SESHAN, S. 2004. Mercury: supporting scalable multi-attribute

range queries. SIGCOMM Comput. Commun. Rev. 34, 4.
CAI, M., FRANK, M., CHEN, J., AND SZEKELY, P. 2003. Maan: A multi-attribute addressable network for

grid information services. In Journal of Grid Computing.
CRAINICEANU, A., LINGA, P., GEHRKE, J., AND SHANMUGASUNDARAM, J. 2004. Querying peer-to-peer

networks using p-trees. In WebDB.
CRAINICEANU, A., LINGA, P., MACHANAVAJJHALA, A., GEHRKE, J., AND SHANMUGASUNDARAM, J. 2004.

An indexing framework for peer-to-peer systems. In WWW (poster).
CRAINICEANU, A., LINGA, P., MACHANAVAJJHALA, A., GEHRKE, J., AND SHANMUGASUNDARAM, J. 2007.

P-ring: An efficient and robust p2p range index structure. In SIGMOD.
DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. 2001. Wide-area cooperative

storage with CFS. In SOSP.
DASKOS, A., GHANDEHARIZADEH, S., AND AN, X. 2003. Peper: A distributed range addressing space for

p2p systems. In DBISP2P.
DATTA, A., HAUSWIRTH, M., JOHN, R., SCHMIDT, R., AND ABERER, K. 2005. Range-queries in trie-

structured overlays. In P2P Computing.
GANESAN, P., BAWA, M., AND GARCIA-MOLINA, H. 2004. Online balancing of range-partitioned data with

applications to peer-to-peer systems. In VLDB.
GUPTA, A., AGRAWAL, D., AND EL ABBADI, A. 2003. Approximate range selection queries in peer-to-peer

systems. In CIDR.
HARVEY, N., JONES, M., SAROIU, S., THEIMER, M., AND WOLMAN, A. 2003. Skipnet: A scalable overlay

network with practical locality properties. In USITS.
JAGADISH, H., OOI, B. C., TAN, K.-L., VU, Q. H., AND ZHANG, R. 2006. Speeding up search in peer-to-peer

networks with a multi-way tree structure. In SIGMOD.
JAGADISH, H., OOI, B. C., AND VU, Q. H. 2005. Baton: A balanced tree structure for peer-to-peer networks.

In VLDB.
JBI. http://www.rl.af.mil/programs/jbi/.
LAGOZE, C. AND DE SOMPEL, H. V. 2001. The open archive initiative: Building a low-barrier interoperabil-

ity framework. In JCDL.
LI, J., STRIBLING, J., MORRIS, R., KAASHOEK, M. F., AND GIL, T. M. 2005. A performance vs. cost frame-

work for evaluating dht design tradeoffs under churn. In INFOCOM.
LINGA, P., CRAINICEANU, A., GEHRKE, J., AND SHANMUGASUNDARAM, J. 2005. Guaranteeing correctness

and availability in p2p range indices. In SIGMOD.
LITWIN, W., NEIMAT, M.-A., AND SCHNEIDER, D. A. 1993. Lh* - linear hashing for distributed files. In

SIGMOD.
LITWIN, W., NEIMAT, M.-A., AND SCHNEIDER, D. A. 1994. Rp*: A family of order preserving scalable

distributed data structures. In VLDB.
LOMET, D. B. 1996. Replicated indexes for distributed data. In PDIS.
PLANETLAB. www.planet-lab.org.
RAMAKRISHNAN, R. AND GEHRKE, J. 2003. Database Management Systems. McGraw Hill.
RATNASAMY ET AL., S. 2001. A scalable content-addressable network. In SIGCOMM.
RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J. 2004. Handling churn in a dht. In USENIX

Annual Tech Conference.
ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location, and routing for

large-scale peer-to-peer systems. In Middleware.
SAHIN, O. D., GUPTA, A., AGRAWAL, D., AND EL ABBADI, A. 2004. A p2p framework for caching range

queries. In ICDE.
STOICA ET AL., I. 2001. Chord: A scalable peer-to-peer lookup service for internet applications. In SIG-

COMM.
ZHAO, B. Y., KUBIATOWICZ, J., AND JOSEPH, A. 2001. Tapestry: an infrastructure for fault-tolerant wide-

area location and routing. In Technical Report, U.C.Berkeley.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

