
(from Chapter 25 of the text)

IT350 Web and Internet Programming

Fall 2007

SlideSet #12: Perl

Things we’ll learn and do

• XHTML – basics, tables, forms, frames

• Cascading Style Sheets

• JavaScript

• Dynamic HTML

• CGI

F
L

A
S
H

B
A

C
K

CGI – What does it all look like?

CGI Script Basics

• Common Gateway Interface (CGI)

– “Common”: Not specific to any operating system or language

• Output file generated at runtime:

1. When a program executed as a CGI script, “standard output” is

redirected to client Web server

2. Web server then redirects output to client's browser

How can CGI get data from user?

Technique #1: Forms

• User enters data via a form, submits

• Form directs results to a CGI program

• Script receives data in one of two ways:

1. Method = “GET”

2. Method = “POST”

Use language-specific method to get these inside CGI program

Technique #2: URL with parameters

Seminars

The Big Example Part 1 (the form)

(standard header stuff…)

<body>

<h1> Survey </h1>

<form method="GET" action="lect_form.pl">

<p> Favorite food: <input type="text" name="food" /> </p>

<p> Favorite color:

<input type="radio" name="color" value="blue" /> Blue

<input type="radio" name="color" value="red " /> Red

<input type="radio" name="color" value="yellow" /> Yellow

</p>

<input type="submit" value="Vote!" />

</form>

</body>

</html>

form.html

The Big Example Part 2 (CGI to receive)
use CGI qw(:standard);

print(header());

print(start_html());

Get inputs from browser user

$favFood = param("food");

$favColor = param("color");

Save result in file. Use colon as separator

open (OUTFILE, ">>perl/favorites.txt");

print OUTFILE "$favFood : $favColor" . "\n";

close (OUTFILE);

Thank user and display what was received.

print "<h1> Thank you </h1> \n";

print "<p> Your responses have been recorded as follows</p> \n";

print " \n";

print li("Favorite food: $favFood");

print li("Favorite color: $favColor");

print "\n";

print (end_html());

lect_form.pl

The Big Example Part 3 (CGI to process)
use CGI qw(:standard);

print(header());

print(start_html());

print h1("Results so far");

$redCount = 0;

open (INFILE, "perl/favorites.txt");

while ($aLine= <INFILE>) {

chomp ($aVal);

Split lines wherever we see a colon

@myArray = split (/:/, $aLine);

Print out the various parts

print "Food: $myArray[0] Color: $myArray[1]
";

if ($myArray[1] =~ /red/i) {

$redCount++;

}

}

close (INFILE);

print h2("Found $redCount matches for 'red'.");

print (end_html());

Perl Basics

use CGI qw(:standard);

print(header());

$x = 2 + 3;

$y = $x * 4;

if ($x == 5.0) {

print ("x is five");

}

for ($i = 0; $i < 3; $i++) {

$squared = $i * $i;

print ("
 \$i = $i, squared is $squared");

}

$pet1 = "dog";

$pet2 = "ll" . "ama";

Single quotes vs. double quotes

print ("
I have a $pet1 and a $pet2.");

print ('
I have a $pet1 and a $pet2.');

$comp1 = ($pet1 eq "dog");

print ("
 comp1: $comp1");

Exercise #1

• Write Perl code that will, given the URL provided

below, generate HTML that looks like the

screenshot
http://www.lmcdowel.it350.cs.usna.edu/perl/ex1.pl?maxNumber=5

(extra space)

Exercise #2: What does this code do?
use CGI qw(:standard);

print(header());

print(start_html());

$index = 0; $sum = 0;

open (MYFILE, "numbers.txt");

while ($aNum = <MYFILE>) {

chomp $aNum;

if ($aNum > 0) {

$myArray[$index] = $aNum;

$sum += $aNum;

$index++;

}

}

close (MYFILE);

$myArray[$index] = $sum;

$index++;

$size = @myArray;

open (MYFILE, ">numbers.txt");

for ($i = 0; $i < $size; $i++) {

print br() . $myArray[$i];

print MYFILE $myArray[$i] . "\n";

}

close (MYFILE);

print (end_html());

lect_io_array.pl

Exercise #3: Write Perl code that accepts two numbers from
browser user, prints error if num2 is zero, otherwise outputs

num1/num2.

Perl Stuff

“Scalar” variables:

$x = 3;

$y = "Hello";

“Array” variables:

@list = (3, 7, "dog", "cat");

@list2 = @list1; # copies whole array!

A single element of an array is a “scalar:

print “Second item is: $list[1]”; # Don’t use @

Get array length by treating whole array as scalar:

$lengthOfList2 = @list2;

File operations

open (MYFILE, "input.txt");

open (MYFILE, “>output.txt");

open (MYFILE, “>>LOG.txt");

File Access

• Ownership: Input/Output
files usually NOT owned
by “Web Server”.

– Operating system may
enforce read, write, and/or
modify restrictions on I/O
files

– For file output/append, may
need to create file prior to
first use

– File permissions need set
for access by the “web
server” account (Right-click
on file, pick Properties, then
set permissions like
example on right)

File Access

• File Path/Naming

– CGI Script may NOT run within script’s location

• May need to provide full or relative path information

– All CGI processes on cs-websrvr are run from the top

directory of the account and require path information to

Input/Output file’s location

– E.g. “Lab10/LOG.txt” or “perl/results.txt”

