IT420 Lab 9: Views, Triggers, Stored Procedures

DUE: March 27, 2007, BEFORE start of lab
This lab should get you familiarized with creating and using views, triggers, and stored procedures. We will use SQL Server for this lab, since there is plenty of documentation available, both online and in the textbook (Chapter 11).
Preliminaries:
1. For this lab we are not going to use our usual Online Midshipmen Store database. Instead, we will use a new database that stores information about performers, and concerts. The statements to create the appropriate tables and to insert some data in them are in the IT420_S07_Lab9_sqlserver_arena.sql file on the course website. Download the file and save it as sqlserver_arena.sql in the IT420 folder on your M drive.

2. Connect to CS-SQLSRVR server: Start(All Programs(Microsoft SQL Server 2005 (SQL Server Management Studio. Fill out the server name to be “cs-sqlsrvr.cs.usna.edu”, authentication “Windows Authentication”. Click “connect”.

3. Open the downloaded file: From File menu(Open(File(browse for sqlserver_arena.sql(Open. Click “connect” if the connection dialog shows up again (make sure CS-SQLSRVR is the server you are connecting to). Study the content of the sqlserver_arena.sql file to get familiar with the tables. Execute the statements in the file by clicking on the “! Execute” button.
4. You should be able to view the tables you created in the object explored (Object Explorer pane (Databases (select your database from the list of databases shown in the Object Explorer(Tables).

The tables created have the following schemas (with the primary keys underlined):

Activities (ActivityID, ActivityName)

Performers (PerformerID, PerformerName, Street, City, State, Zip, ActivityID)

Arenas (ArenaID, ArenaName, City, ArenaCapacity)

Concerts (PerformerID, ArenaID, ConcertDate, TicketPrice)

Requirements:

PART 1: Views
Write SQL queries to accomplish the following tasks. Save all answers for PART 1 in a file called yourlastname_lab9_SQLViews.sql Write a comment “/* Exercise xx */”, where xx is the exercise number, before each answer. If the answer is not an SQL statement, place the answer between /* … */.
Exercise 1: Write a SQL query to list all the performers’ name and the name of the activity the performer is involved in.
Exercise 2: Write a SQL statement to create a view called Act_perf based on the query in Exercise 1.

Run the SQL statement.

Check in the Object Explorer that the view was created.
Exercise 3: Unlike a query, a virtual table or view can be used as if it is a table in the database. Now write a SQL query against the view as if it was a table: select everything from the view.
Exercise 4: IMPORTANT: The view does not store any data. The data is stored just in the tables used in the definition of view. When a query that uses Act_perf is executed, the system first evaluates the query that defines Act_perf, and then performs further evaluation of the query that uses Act_perf.

To demonstrate this, do the following:

a) Insert a row in Performers table (use INSERT INTO … VALUES …).

b) Execute SELECT * FROM Act_perf again.

Did the results changed? Why?
Exercise 5: (Updates on views)

Run the following query:

UPDATE Act_perf

SET PerformerName = 'Harry Chapinn'

WHERE PerformerName = 'Harry Chapin'

Does the query succeed? Why?

Execute “SELECT * FROM Performers” and check whether the name of Harry Chapin was changed to Harry Chapinn.
One reason to use the views: Hide complexity and simplify queries when frequently using the results of a complex query.

Example: In C++, would you rather write the code to compute a square root instead of using sqrt()? Of course not, and the same idea applies to SQL. Hide complexity and present a simple “replacement” of the complex query.

Exercise 6: Create a view called Perf_Income to show the name of the performer, the arena name, the date of the concert, and total_income. total_income represents the total payment received by a performer for a concert and is based on the fraction of ticket price that goes to the performer, and the total number of tickets sold. We assume that the artist receives 10% of the face value of each ticket and the number of tickets sold is always considered to be 80% of the arena capacity.
Exercise 7: SQL has a keyword “TOP n” that allows you to display only the first n rows in the result of a select query. For example “SELECT TOP 5 * FROM Performers” will display the first 5 rows from Performers table.

Write the SQL query on the Perf_Income view to show the top 8 concerts based on total income in order of highest income to lowest income.
Exercise 8: Write the SQL query to achieve the same result as above, but without using the Perf_Income view (you can still use TOP n). This query should look more complicated than the query in the previous exercise.
Exercise 9 (Extra credit): Write the SQL query to find the total money made by all of the artists during all the concerts (use the view).
Exercise 10 (Extra credit): Write the SQL statement (use the view) to update the total_income for ‘Jimmy Buffett’ to be $100,000. Run the query.
Does the query succeed? Why?

PART 2: TRIGGERS

Write SQL code/queries to accomplish the following tasks. Save all answers for PART 2 in a file called yourlastname_lab9_Triggers.sql. If the answer is not an SQL statement, place the answer between /* … */.
Exercise 11: Create a trigger called deletePerformer that prevents the last performer for a particular activity to be deleted from the database. The trigger should be associated with a delete operation on the Peformers table: if the performer to be deleted is the last one for his/her particular ActivityID, then the performer cannot be deleted. Otherwise, the performer should be deleted.
a) Write and execute the code to create the trigger.

b) Write and execute a DELETE statement that tries to delete the last performer for a particular activity from the database (look at the data in tables to find such a performer). Check the remaining rows in the Performers table. Is the performer you tried to delete still in Performers? Why?

c) Write and execute a DELETE statement that tries to delete a performer from the database, when the performer is not the last one for the particular activity (look at the data in tables to find such a performer). Check the remaining rows in the Performers table. Is the performer you tried to delete still in Performers? Why?

PART 3: STORED PROCEDURES

Write SQL code/ queries to accomplish the following tasks. Save all answers for PART 3 in a file called yourlastname_lab9_StoredProcedures.sql. If the answer is not an SQL statement, place the answer between /* … */.
Exercise 12: Create a stored procedure called spInsertConcert that inserts a new concert into the database, under some conditions. The stored procedure has as input parameters performer id, arena id, concert date, and ticket price. The stored procedure should insert a row in the Concerts table only if the following conditions are true:
a. there is no other concert by the same performer on the same date (in that case, the performer is already busy) AND
b. there is no other concert in the same arena for that date (arena is busy).

If the above conditions are not true, the procedure should print an explicative message and terminate.
Turn in (due before start of lab on March 27, 2007):

Electronic:

1. Upload the files yourlastname_Lab9_SQLViews.sql, yourlastname_Lab9_Triggers.sql, and yourlastname_Lab9_StoredProcedures.sql with all your answers to the Lab 9 assignment on the blackboard.
Hard-copies:

1. The completed assignment coversheet. Your comments will help us improve the course.

2. A hard copy of each file created for this assignment: yourlastname_Lab9_SQLViews.sql, yourlastname_Lab9_Triggers.sql, and yourlastname_Lab9_StoredProcedures.sql. Do not forget the “/* Exercise xx */” comment before the answer for each exercise in PART 1.
