PHP Tutorial (mostly from http://www.w3schools.com/php/default.asp)
A few years ago the need for embedded server-parsed scripting languages was apparent, and Microsoft went after this hunger with their ASP, or Active Server Pages, technology. The concept behind ASP, and all other embedded server-parsed languages, is premised upon embedding programming code within the HTML that makes up a web page. The web server interprets and executes this code, replacing the code with its results, and delivering the resulting web page to the browser. Popular though ASP became, many developers continued wanting for a more stable and less proprietary solution: PHP, an open-source server-parsed embedded scripting language. PHP has native connections available to many database systems including MySql. Finally, since both PHP and MySql are collaborative in nature, there's always plenty of support from documentation and mailing lists. Bugs are fixed rapidly, and requests for features are always heard, evaluated, and if feasible, implemented.
Most of the information in this tutorial is taken from http://www.w3schools.com/php/default.asp. A good manual with many examples can also be found at http://us3.php.net/manual/en/index.php
1. PHP Tutorial: Let’s create your first simple PHP-enabled page just to get an idea of how PHP works with HTML. Create a file named hello.php and save it to W drive.

	Example 1. Your first PHP script: hello.php
<html>
 <head>
 <title>PHP Test</title>
 </head>
 <body>
 <?php echo '<p>Hello World</p>'; ?>
</body>
</html>
Use your browser to access using //localhost/hello.php. If everything is configured correctly, this file will be parsed by PHP and the following output will be sent to your browser:

<html>

 <head>

 <title>PHP Test</title>

 </head>

 <body>

 <p>Hello World</p>

 </body>

</html>

The server interpreted the php code but sent pure HTML to your browser. This example is extremely simple and you really did not need to use PHP to create this page. All the script does is display Hello World using the PHP echo statement. Note that the file does not need to be executable or special in any way. The server finds out that this file needs to be interpreted by PHP because you used the ".php" extension, which the server is configured to pass on to PHP. Think of this as a normal HTML file which happens to have a set of special tags available to you that do a lot of interesting things.

The point of the example is to show the special PHP tag format. In this example we used <?php to indicate the start of a PHP tag. Then we put the PHP statement and left PHP mode by adding the closing tag, ?>. You may jump in and out of PHP mode in an HTML file like this anywhere you want.

Now that you have successfully created a working PHP script as a brief intro and overview, you must now do the more pedantic work of learning some of the details of PHP. During SI204 and IT221 you may have often wondered “I am not going to be a programmer so why am I learning this?” You will be happy to see that your C++ background will make learning PHP relatively easy. Google can provide a plethora of sites on PHP should you elect not to purchase a reference book.

1(a). Variables in PHP
All variables in PHP start with a $ sign symbol. Variables may contain strings, numbers, or arrays. Modify your PHP “hello world” script as shown below by assigning the string to a variable named $text then print the value of $txt. Notice there is no “data type” declaration for the variable. PHP figures out the type based on what is on the right side of the assignment statement.

$txt="Hello World";

echo $txt;

To concatenate two or more variables together you can use the dot (.) operator. For example, modify and run your script by doing something like:

$txt1="Hello World";

$txt2="1234";

echo $txt1 . " " . $txt2 ;

1(b). PHP Operators
This section lists the different arithmetic and logical operators used in PHP. They are the same as what you used in C++.

· Arithmetic Operators
	Operator
	Description
	Example
	Result

	+
	Addition
	x=2
x+2
	4

	-
	Subtraction
	x=2
5-x
	3

	*
	Multiplication
	x=4
x*5
	20

	/
	Division
	15/5
5/2
	3
2.5

	%
	Modulus (division remainder)
	5%2
10%8
10%2
	1
2
0

	++
	Increment
	x=5
x++
	x=6

	--
	Decrement
	x=5
x--
	x=4

· Assignment Operators
	Operator
	Example
	Is The Same As

	=
	x=y
	x=y

	+=
	x+=y
	x=x+y

	-=
	x-=y
	x=x-y

	*=
	x*=y
	x=x*y

	/=
	x/=y
	x=x/y

	%=
	x%=y
	x=x%y

· Comparison Operators
	Operator
	Description
	Example

	==
	is equal to
	5==8 returns false

	!=
	is not equal
	5!=8 returns true

	>
	is greater than
	5>8 returns false

	<
	is less than
	5<8 returns true

	>=
	is greater than or equal to
	5>=8 returns false

	<=
	is less than or equal to
	5<=8 returns true

· Logical Operators
	Operator
	Description
	Example

	&&
	and
	x=6
y=3 (x < 10 && y > 1) returns true

	||
	or
	x=6
y=3 (x==5 || y==5) returns false

	!
	not
	x=6
y=3 !(x==y) returns true

1(c). If (else) Statement. Again, the code is the same as C++. If you prefer to use a “Switch” statement then it too is the same as C++.
Syntax
	if (condition)

code to be executed if condition is true;
else

code to be executed if condition is false;

1(d) Looping. Very often when you write code, you want the same block of code to run a number of times. You can use looping statements in your code to perform this. In PHP we have the following looping statements:

· while - loops through a block of code if and as long as a specified condition is true

· do...while - loops through a block of code once, and then repeats the loop as long as a special condition is true

· for - loops through a block of code a specified number of times

· foreach - loops through a block of code for each element in an array

· While syntax

	while (condition)

code to be executed;

· do..while syntax
	do

{

code to be executed;

}

while (condition);

· for-loop Syntax
	for (initialization; condition; increment)

{

 code to be executed;
}

· The foreach Statement. This is a bit different than anything you’ve seen in C++. Take a look at the syntax and the example. The foreach Loops over an array. On each loop, the value of the current element is assigned to $value and the array pointer is advanced by one - so on the next loop, you'll be looking at the next element.

Syntax
	foreach (array as value)

{

 code to be executed;
}

	<html>

<body>

<?php

$arr=array("one", "two", "three");

foreach ($arr as $value)

{

echo "Value: " . $value . "
";

}

?>

</body>

</html>

Practice: Practice a little php programming. Create an array containing the following values: (1900, 2000, 2004, 2005). Use the array in a “foreach” loop to test if the value is a leap year. If it is a leap year print “XXXX is a leap year” or “XXXX is not a leap year”. A year is a leap year if it is divisible by 4. If the year is also divisible by 100 then it is NOT a leap year unless it also divisible by 400. Thus, 1900 is not a leap year (divisible by 100 but not 400) while 2000 is a leap year (divisible by 400).
2. PHP Form Handling. The most important thing to notice when dealing with HTML forms and PHP is that any form element in an HTML page will be available to your PHP scripts.
	<html>

<body>

<form action="welcome.php" method="post">

Enter your name: <input type="text" name="name" />

Enter your age: <input type="text" name="age" />

<input type="submit" />

</form>

</body>

</html>

The example HTML page above contains two input fields and a submit button. When the user fills in this form and hits the submit button, the "welcome.php" file is called. The "welcome.php" file looks like this:

	<html>

<body>

Welcome <?php echo $_POST["name"]; ?>.

You are <?php echo $_POST["age"]; ?> years old!

</body>

</html>

A sample output of the above script may be:

	Welcome John.

You are 28 years old!

Here is how it works: The $_POST["name"] and $_POST["age"] variables are automatically set for you by PHP. The $_POST contains all POST data.

3. PHP Files.

The fopen() function is used to open files in PHP.

Opening a File
The fopen() function is used to open files in PHP.

The first parameter of this function contains the name of the file to be opened and the second parameter specifies in which mode the file should be opened:

	<html>

<body>

<?php

$file=fopen("welcome.txt","r");

?>

</body>

</html>

The file may be opened in one of the following modes:

	Modes
	Description

	r
	Read only. Starts at the beginning of the file

	r+
	Read/Write. Starts at the beginning of the file

	w
	Write only. Opens and clears the contents of file; or creates a new file if it doesn't exist

	w+
	Read/Write. Opens and clears the contents of file; or creates a new file if it doesn't exist

	a
	Append. Opens and writes to the end of the file or creates a new file if it doesn't exist

	a+
	Read/Append. Preserves file content by writing to the end of the file

	x
	Write only. Creates a new file. Returns FALSE and an error if file already exists

	x+
	Read/Write. Creates a new file. Returns FALSE and an error if file already exists

Note: If the fopen() function is unable to open the specified file, it returns 0 (false).

Example
The following example generates a message if the fopen() function is unable to open the specified file:

	<html>

<body>

<?php

$file=fopen("welcome.txt","r") or exit("Unable to open file!");
?>

</body>

</html>

Closing a File
The fclose() function is used to close an open file:

	<?php

$file = fopen("test.txt","r");

//some code to be executed

fclose($file);

?>

Check End-of-file
The feof() function checks if the "end-of-file" (EOF) has been reached. IMPROTANT: the feof() function returns true only if an attempt to read past EOF was already made.

The feof() function is useful for looping through data of unknown length.

Note: You cannot read from files opened in w, a, and x mode!

	if (feof($file)) echo "End of file";

Reading a File Line by Line
The fgets() function is used to read a single line from a file.

Note: After a call to this function the file pointer has moved to the next line.

Example
The example below reads a file line by line, until the end of file is reached:

	<?php

$file = fopen("welcome.txt", "r") or exit("Unable to open file!");
//Output a line of the file until the end is reached

while(!feof($file))

 {

 echo fgets($file). "
";

 }

fclose($file);

?>

Reading a File Character by Character
The fgetc() function is used to read a single character from a file.

Note: After a call to this function the file pointer moves to the next character.

Example
The example below reads a file character by character, until the end of file is reached:

	<?php

$file=fopen("welcome.txt","r") or exit("Unable to open file!");

while (!feof($file))

 {

 echo fgetc($file);

 }

fclose($file);

?>

