Submission Sheet

IT420 Fall 2007 Project 2
Database backed company website
Entire Project Due: Wednesday, 25 April, 2007 in class
Partial Deadlines: see Deliverables
Team:__

Team Member Names:___

This is a Programming Project. For this project, midshipmen will work in groups of three or four. The individual grade for the project will be based on the team grade and the individual performance on completing the project. You may not discuss the project with anyone outside of your group. You may seek clarifications pertaining to system requirements from either Dr. Crainiceanu or Capt Balazs.

Submission requirements (each team will have one submission):
· Electronic submission: The team manager uploads all files created for the project and the project report to Project 2 on Blackboard.
· Hard copy: Hard copies of the files created for each part of the project, and the project report, stapled to this submission sheet.
Project Description

In this project you will develop a real database application for your company.

In the first project you designed and implemented a database for your company. In this project you will develop a web based interface for the database you created in Project 1. You will use PHP and MySQL for this project.
Design Specifications (from Project 1)

Here are the specifications for the database you created in Project 1 and you will use in Project 2.

Every company has many members, each with a rank. Members of the company are divided into midshipmen, who have an alpha, and active duty (i.e. company officer, senior enlisted) who have a previous assignment. Each midshipman has a position in the company. There are two types of positions: command and non-command. Each midshipman has either a command position or a non-command position. Each command position is held by exactly one midshipman. Non-command positions can be held by multiple midshipmen. Command positions command a least one other position.

Midshipmen also belong to groups. These groups include, but are not limited to, sports, ECAs, and year groups. Each midshipman in a company should have a biography that includes personal (but not sensitive) information and an official photo. (See Appendix A for an example Bio form)
Companies maintain libraries of photos, videos and audio files of interest to company members, as well as forms and policy letters disseminated to company members. Each of these items should be stored in the database (all database systems have some data type that can store either text or binary data), together with the item creation date, file name, file type (img, doc, txt, etc.), and a description of the item.

Next requirements are optional for groups of 3 people:

Companies maintain a calendar of events, with event name, location, and time. These events include, but are not limited to, company meetings, ECA meetings, sporting events, and social events. These events are either optional or mandatory. Mandatory events can be mandatory for all midshipmen or for just a group of the midshipmen in a company.

Companies also have scheduled watches. Each watch duty has a specific date, time, place, responsibilities, and midshipman assigned to it, as well a midshipman organizing the watch, and a number of hours prior to watch a mid can still reschedule the watch. (See Appendix B for an example watch notification report).

Overall Requirements for Project 2
When finished, your system should support the following functionality:

1. Company members can login into the website. A member can be either a regular midshipman, a midshipman with a command position, or active duty personnel. Only members with valid login/password information can access the website.
2. Upon login, one of two menus are presented:

2.1. “Regular menu” has the following options

· Change password

· Add/Update Bio

· Search files in the company library

· (Required only for teams of 4 people) Search events

· (Required only for teams of 4 people) Search watches
· Logout

2.2. “Administrator menu” has the following options

· Change password

· Add/Update Bio

· Search bios

· Add file to company library

· Search files in the company library

· (Required only for teams of 4 people) Add event

· (Required only for teams of 4 people) Search events

· (Required only for teams of 4 people) Add watch

· (Required only for teams of 4 people) Search watches

· Logout

The “Regular menu” and its options should be accessible to regular midshipmen. The “Administrator menu” and its options should be accessible only to midshipmen in command positions and to active duty personnel.

3. Each option in the menu should link to a script that performs the appropriate action(s). Note that all scripts should execute only if a valid member with the appropriate level of privilege is logged in.

4. Upon logout, no information on the website is available, other than the page asking for login information.

5. You have to add one innovative (not mentioned in the requirements) feature to your company website.

More Details
0. Database preparation:

a) Create tables: In Project 1, you created a database for your company. If you wrote SQL statements to create the database for SQL Server, you will have to translate them to work for MySQL. There are two things that you should pay attention to:

- The data types in SQL Server and MySQL might be different, so you need to change data types as appropriate.

- Surrogate keys in MySQL are declared using the AUTO_INCREMENT keyword. If you have any surrogate keys in your SQL Server company database declared using IDENTITY(1,1), you have to change the declaration to use AUTO_INCREMENT.

b) Create MEMBERS table: The login information (username, password, and user type) should be stored in the database.

- If you don’t have a MEMBERS table or something similar, you should create one now, to store the username, password, and user type. You can use the email address as the username. Make sure the “password” column is declared as “char(40)”, so is it big enough to store encrypted passwords. You should always store only encrypted passwords. The “type” should have three possible values (for regular midshipmen, command midshipmen and active duty)
- Make sure that there is some way in your database to get the First Name and Last Name corresponding to a username. This can be accomplished if you have the username as a column in your MIDS and ACTIVE_DUTY tables (or whatever tables you created in Project1).

c) Insert members information: Insert some rows into the MEMBERS table, so you can test your programs. Insert one regular midshipman, one midshipman in a command position, and one active duty personnel into the MEMBERS table. You can assign them any password you want (just make sure you remember the password).
Have ONE SQL script that sets up the database as described above. You will have to turn in this script as part of the project submission. Your instructor should be able to execute the script to set up the tables needed by your application.

1. Login: login.htm should ask a user for login information: username and password. login.php processes the information received from login.htm. If the information received from the user matches the information in the database, the appropriate menu is displayed, otherwise some error message is displayed to the user. The username and the type of user should be stored in session variables, so you can use them later. Remember that all pages on the website should be accessible only to the valid user.
2. Here are some details about what each option in the menus presented to the user should accomplish:
· Change password: changePassword.htm and changePassword.php allow a user to change his/her password. changePassword.htm should ask the user for the old and new password. The new password should be entered twice. changePassword.php processes the information received from changePassword.htm. If the old password matches the password in the database, and the 2 new passwords are identical, then the password in the database should be updated to the new password, and a confirmation message should be displayed to the user. If for some reason the password cannot be changed, an explicative error message should be displayed to the user.

· Add/Update Bio: This option should allow a user to add or update the bio information. The form should be populated with the data already in the database (if any exists), and allow the user to modify his/her bio. The latest data should be recorded in the appropriate tables in the database. Note that you have to support some way of allowing the user to add new sports, ECAs, hobbies, if his/her sport, ECA, hobby is not already in the database.

 [image: image1.png]
· Search bios: Allow the user to search for bio information, based on some criteria (it is your choice of what kind of criteria you want to support). If no criteria are used, all information from all bios should be displayed.
· Add file to company library: Allow a user to upload files to the company library. The file information should be stored in the database, so it can be retrieved later. The files themselves can either be stored in the database (if you designed your database to support this), or can be stored on the web server.
· Search files in the company library: Allow the user to search for files, based on some criteria (it is your choice of what kind of criteria you want to support). If no criteria are used, all information about all files should be displayed. Links to files should be displayed if user wants to see the file content.
· (Required only for teams of 4 people) Add event: Allow a user to add events (see Project 1 and your database for what kind of event information is needed). Information about events should be stored in the database, so it can be retrieved later.

· (Required only for teams of 4 people) Search events: Allow the user to search for events, based on some criteria (it is your choice of what kind of criteria you want to support). If no criteria are used, all information about all events should be displayed.

· (Required only for teams of 4 people) Add watch: Allow the user to add information about a new watch. The watch information should be stored in the database, so it can be retrieved later.
[image: image2.png]
· (Required only for teams of 4 people) Search watches: Allow the user to search for watch info, based on some criteria (it is your choice of what kind of criteria you want to support). If no criteria are used, all information about all watches should be displayed.
· Logout: After logout, no pages on the website should be accessible (even if the user hits the back button), except the login.htm page.
For all forms, you have to check that all required fields are filled out, and correct information is entered (what “correct” means depends on the form). If there is an error on the page, an explicative message should be displayed to the user, and the page with the filled information should be re-displayed.
Project Responsibilities
1. For this project, each person will have leadership responsibilities for some part/aspect of the project. Choose a person to fill each of the following positions:

a. Project manager: The project manager will be the instructor’s point of contact with your team. The project manager is also responsible for ensuring that work is distributed in a fair manner to each team member and that the work is getting done.
b. Quality control manager: Ensure that the website provides the functionality required by the project and is error free. If there is no re-usability manager, the quality control manager also ensures that the code is well documented and similar tasks use the same code (use functions, objects, files).

c. Appearance manager: Ensure that all pages of the website have an attractive and consistent look.

d. Re-usability manager (ONLY for teams of 4 people): ensures that the code is well documented and similar tasks use the same code (use functions, objects, files included whenever needed). Ensures that the code is easy to modify to be used on a different web server, different database server, and/or different database user and password.
2. Read through the project description and divide up the project in sections of responsibility (database preparation, login/logout, create/update bio, view bios, etc.). Each team member should be responsible for some section of the project. Responsibility for a section of the project does not mean that the team member is to do that section of the project alone; it simply means that the member will supervise that section and is responsible for its completion.

3. Record the team member name for each of the project positions. Record the team member name(s) responsible for each part of the project.
Send email to your instructor with information in Point 3 above. Turn in a hard copy with the same information. This section of the project is due 4 April, 2007, before class.

Deliverables
Wednesday, 4 April, 2007 before class: email and hard copy of project roles and responsibilities
Tuesday, 10 April, 2007 during lab: Demo to your instructor how a user can login into the system, the appropriate menu is displayed and the user can change the password.

Tuesday, 17 April, 2007 during lab: Demo to your instructor how a user can insert/update bio, view all bios.

Wednesday, 25 April, 2007 Complete Project Due, presentations in class

Cover sheet: The coversheet should be filled out

Report: Write a project report, addressed to your final client, the company officer, explaining your work in Project 2. Include a description of your innovative feature, any extra credit, and any requirements that you did not meet. The project report should also serve as a user manual on how to use the software you wrote, so screen shots and step-by-step instructions should be included. The project report should be clear and well organized: have an introduction, main content, and conclusions.
Presentation: Your team should be prepared to present your system in class.

Feedback and Peer Evaluation: You will have to fill out an on-line survey to provide feedback on the project and evaluate your team members. Peer evaluations will be kept confidential.
Electronic submission: the project manager need to upload all files related to the project to Project 2 assignment on Blackboard.
Tips/Clarifications (updated as project progresses)

1) How to upload a file to the server and store it as a BLOB in the database:
Here is the code of the upload.php script that is executed when a form that wants to upload a file is submitted:
<?php

/*HTML FORM that submits to this script must indicate a file is coming along with the form data by declaring “enctype” attribute with value “multipart/form-data”, have a hidden field indicating the maximum file size,
and have an input field of type “file” to specify the filename to be uploaded
 like this:

<form enctype="multipart/form-data" action="upload.php" method="post">

<input type="hidden" name="MAX_FILE_SIZE" value="1000000000" />

<input type = "file" name = "uploadfile"/>

…

</form>

The super-global variable $_FILES is created and an "uploadfile" array within it. "uploadfile" is the name of the input field in the form (you can use any name you want for the file input field)
*/

$file = $_FILES['uploadfile']['tmp_name'];
//name of the file on the web server

$type = $_FILES['uploadfile']['type'];

//MIME type of file uploaded

$filename = $_FILES['uploadfile']['name']; //name of file on user's machine

if ($_FILES['uploadfile']['error']>0)

//if there is an error there will be a non-zero value

{

switch ($_FILES['uploadfile']['error'])

{

case 1: echo " File exceeds max size</h1>
\n"; break;

case 2: echo " File exceeds max size</h1>
\n"; break;

case 3: echo " File only partially uploaded</h1>
\n"; break;

case 4: echo " No file uploaded</h1>
\n"; break;

}

exit;

}

if (is_uploaded_file($file))
//if the file was successfully uploaded to the temp directory

{

$newfile="./uploads/".$filename;

//new location of file

if (move_uploaded_file($file, $newfile))

//move file to newfile

{

//FILE IS NOW ON THE WEB SERVER in the uploads/ directory.

// You have the file.

//the rest is to put the file in the DB as a BLOB

$fp = fopen($newfile, 'rb');

//create pointer to file

$content = fread($fp, filesize($newfile));
//read file named newfile, keep it in contents variable

$content = addslashes($content);

fclose($fp);

unlink($newfile);

//delete file ... now it is only in contents

$db = new mysqli('cs-mysqlsrvr', 'username', 'Cr4z13P455', 'schema');

if (mysqli_connect_errno()){

echo "<p>Error: Could not connect to database.</p>";

exit;

}

else

{

$query = "INSERT INTO FILETABLE (file, filetype, filename) values('$content', '$type', '$filename')";

//puts contents of file into DB as a BLOB. Also saves the name and MIME type for sending back to

//when requested.

//This table also inserts a file id (surrogate key)

$result=$db->query($query);

if ($result && ($db->affected_rows == 1))

{

echo "<h1> File Uploaded</h1>\n";

}

else

{

echo "<h1>".$db->error."</h1>\n";

}

}

$db->close();

}

}

else

{

echo "<h1>Could not upload file to server</h1>\n";

}

?>

2) How to display the content of a file stored in the database as a BLOB.

Here is the content of the displayfile.php script that is executed to display the content of a file stored in the database (FILETABLE table)
<?php

/* assumes: form submitted a file id via get */

$fileID=$_GET['fileid'];

$query = "SELECT file, filetype, filename FROM FILETABLE WHERE id=$fileid";

$result = $db->query($query);

if ($result && ($result->num_rows == 1)){

$row=$result->fetch_assoc();

$content = $row['file'];

$type = $row['filetype'];

$name = $row['filename'];

$content = stripslashes($content);

header("Content-type: $type");

header("Content-Disposition: attachment; filename=$name");

echo $content;

}
?>

3) How to display and process an array of checkboxes.
In the form (you will have to dynamically generate the form based on data in the database):

<form action=”insertBio.php” method = “post”>

<label>Choose your ECAs:</label>

<label><input value=”1” type=”checkbox" name="ECAs[]" />YPSquadron</label>
<label><input value=”2” type=”checkbox" name="ECAs[]" />Glee Club</label>

<label><input value=”4” type=”checkbox" name="ECAs[]" />Martial Arts Club</label>

<label><input value=”8” type=”checkbox" name="ECAs[]" />Marathon Club</label>

</form>
In the insertBio.php file:

<?php

$activities = array(); //initialize an array

$activities = $_POST[‘ECAs’]; //now activities holds values of all checked ECA checkboxes

foreach($activities as $ecaID){

//do something with the ECAs chosen.

//You probably have to insert it into the database.

//This code will just echo back the id

echo “<p>Chosen ECA $ecaID</p>”;
}

?>

4) How to have default values for input fields in forms:
For any type of input field in HTML, there is some way to provide a default value. For example:

<?php

echo "<input type=’text’ name=’firstName’ size=’50’ maxlength=’200’ value=’$firstName’/>”;

?>

The echo line in the PHP code will produce an input text field. The text field will be pre-filled with the content of $firstName variable. If the variable is empty, the text field will be empty.
