IT420: Database Management and
Organization

Class Exercise

SQL - SELECT
Chapter 2

= Division(Name, Building, OfficeNb)
= Department(DeptName, ChairName, WebAddress,
DivName)

Create tables

Modify Department to add a FK constraint for DivName
Create table Colleges with same structure as Division
Insert everything from Division into Colleges

Remove Division table

Find the name of the Chair of the ‘Math’ Department

Last Time vs. Today

= Last Time:
= CREATE, DROP, ALTER
= INSERT, DELETE, UPDATE
= SELECT
= Today: More about SELECT
= Joins, sub-queries
= Sorting, wild cards
= Arithmetic operations, aggregates
= Groups

The SQL SELECT Statement

= Basic SQL Query:
SELECT [DISTINCT] column_name(s) | *
FROM table_name(s)
[WHERE conditions]

SELECT from Two or More Tables

Find the names of students enrolled in IT420

SELECT SName
FROM Students S, Enrolled E
WHERE S.Snb = E.SNb AND E.Cid = ‘IT420’

SELECT - Conceptual Evaluation
Strateqy

Student COUTS‘Q
SNb SName Email Cid Chame CDept
190 Smith [jsmith@usna.edu 1T420 Database ComSci
§73 Do idoe@usna.edu T340 Networks Comsci
312 Doe doe2@usna.edu SMi21 Calculus1 Math
Enrolled

SNb Cid Semester

190 T340 Spring2006

312 1T420 Fall2005 5

= Semantics of an SQL query defined in terms of
the following conceptual evaluation strategy:
= Compute the cross-product of table_names
= Discard resulting rows if they fail condition
= Delete columns that are not in column_names
= If DISTINCT is specified, eliminate duplicate rows
= This strategy is probably the least efficient way
to compute a query!

= An optimizer will find more efficient strategies to
compute the same answers.

Example Conceptual Evaluation

Example Conceptual Evaluation

SELECT SName
FROM Students S, Enrolled E
WHERE S.Snb = E.SNb AND E.Cid = ‘IT420’

SELECT SName
FROM Students S, Enrolled E
WHERE S.Snb = E.SNb AND E.Cid = ‘IT420’

S.SNb SName Email E.SNb Cid Semester
190 Smith smith@usna.edu 190 T340 Spring2006
190 Smith jsmith@usna.edu 312 1T420 Fall2005
673 Doe doe@usna.edu 190 T340 Spring2006
673 Doe jdoe@usna.edu 312 1T420 Fall2005
312 Doe jdoe2@usna.edu 190 T340 Spring2006
312 Doe jdoe2@usna.edu 312 1T420 Fall2005

S.SNb SName Email E.SNb Cid Semester
190 Smith jsmith@usna.edu 312 1T420 Fall2005
673 Doe doe@usna.edu 190 T340 Spring2006
673 Doe jdoe@usna.edu 312 1T420 Fall2005
312 Doe jdoe2@usna.edu 190 T340 Spring2006

Example Conceptual Evaluation

Modified Query

SELECT SName SName
FROM Students S, Enrolled E

. Doe
WHERE S.Snb = E.SNb AND E.Cid = ‘IT420’

S.SNb SName Email E.SNb Cid Semester
190 Smith smith@usna.edu 312 1T420 Fall2005
673 Doe jdoe@usna.edu 190 T340 Spring2006
673 Doe jdoe@usna.edu 312 1T420 Fall2005
312 Doe jdoe2@usna.edu 190 T340 Spring2006

SELECT SNb
FROM Students S, Enrolled E
WHERE S.Snb = E.SNb AND E.Cid =IT420’

= Would the result be different with
DISTINCT?

10

Class Exercise

Sorting the Results

= Students(SNb, SName, Email)
= Courses(Cid,CName, Dept)
= Enrolled(SNb,Cid, Semester)

= Find the student number and name for
each student enrolled in ‘Spring2007’
semester

= Find the names of all students enrolled in
‘ComSci’ courses

SELECT [DISTINCT] column_name(s) | *
FROM table_name(s)
[WHERE conditions]
[ORDER BY column_name(s) [ASC/DESC]]

Example:
Students(SNb, SName, Email, Major)

SELECT SNb, SName
FROM Students
ORDER BY SName ASC, SNb DESC

WHERE Clause Options

Calculations in SQL

= AND, OR SELECT SNb, SName
! FROM Students
= IN, NOT IN, BETWEEN WHERE SNb LIKE ‘8%’ AND
= LIKE Major IN (‘SIT’, ‘SCS’)
Wild cards:

= SQL-92 Standard (SQL Server, Oracle, etc.):
= _ = Exactly one character
* % = Any set of one or more characters
= MS Access
= ? = Exactly one character
. = Any set of one or more characters
= Example:
Students(SNb, SName, Email, Major)
Find alpha and name of SCS or SIT students with SNb
starting with ‘8’

= Simple arithmetic
» Five SQL Built-in Functions:
= COUNT
= SUM
= AVG
= MIN
= MAX

Simple Arithmetic
= SELECT NbHours* Charge
HourlyRate AS 150
Charge 400
FROM FlightEvents 50
400
= SELECT SFirstName (No column name)
+ '’ + SLastName John Doe
FROM Students Brad Johnson
Jessica Smith
Mary Davis

Aggregate Operators

= SELECT COUNT(*)
FROM Students

= SELECT COUNT(DISTINCT SName)
FROM Students
WHERE SNb > 700

= SELECT AVG(Age)
FROM Students
WHERE SNb LIKE '08 '

Aggregate Operators Limitations

= Return only one row
= Not in WHERE clause

Select oldest students and their age

= SELECTS:SNam (Age) .@
FROM nts S

= SELECT S.SName, S.Age /-
FROM Students S /@
WHERE S.AGE = (SELECT MAX(Age)

_—"FROM Students)

18

Select students with age higher
than average

» SELECT *
FROM Students
WHERE Age > (SELECT AVG(Age)
FROM Students)

Class Exercise

= Students(SNb, SName, Email)
= Courses(Cid,CName, Dept)
= Enrolled(SNb,Cid, Semester)

= List SNb of all students enrolled in ‘1T420’
or ‘IT340’, ordered by SNb

20

Grouping rows

= Find the age of the youngest student for
each class year

= SELECT MIN (S.Age)
FROM Students S
WHERE S.ClassYear = 2007

(no column
name)

21

21

GROUP-BY Clause

= SELECT [DISTINCT] column_name(s) |
aggregate_expr
FROM table_name(s)
[WHERE conditions]
GROUP BY grouping_columns

ClassYear| (no column
= Example: name)
SELECT ClassYear, MIN(Age)[2007 21
FROM Students 2010 17
GROUP BY ClassYear 2009 18
2008 20 =22

Conceptual Evaluation

= Semantics of an SQL query defined as follows:
= Compute the cross-product of tables in FROM
(table_names)
= Discard resulting rows if they fail WHERE conditions
= Delete columns that are not in SELECT or GROUP
BY(column_names or grouping-columns)
= Remaining rows are partitioned into groups by the
value of the columns in grouping-columns
= One answer row is generated per group
= Note: Does not imply query will actually be
evaluated this way!

23

HAVING Clause

= SELECT [DISTINCT] column_name(s) |
aggregate_expr
FROM table_name(s)
[WHERE conditions]
GROUP BY grouping_columns
HAVING group_conditions

= GROUP BY groups the rows

= HAVING restricts the groups presented in the
result

24

Example- HAVING

Conceptual Evaluation

= SELECT ClassYear, MIN(Age)
FROM Students
WHERE MajDeptName = ‘ComSci’
GROUP BY ClassYear
HAVING COUNT(*) > 20

25

= SQL query semantics:
= Compute the cross-product of table_names
= Discard resulting rows if they fail conditions

= Delete columns that are not specified in
SELECT, GROUP BY

= Remaining rows are partitioned into groups by
the value of the columns in grouping-columns

= One answer row is generated per group

= Discard resulting groups that do not satisfy
group_conditions

26

Example

Class Exercise

= SELECT Class, MIN(Age)
FROM Students
WHERE MajDeptName = ‘ComSci’
GROUP BY Class
HAVING COUNT(*) > 2

27

= Students(SNb, SName, Email)
= Courses(Cid,CName, Dept)
= Enrolled(SNb,Cid, Semester)

= List all course names, and the number of
students enrolled in the course

28

Subqueries

Subqueries in FROM Clause

= SELECT *
FROM Students
WHERE Age > (SELECT AVG(Age)
FROM Students)

= Second select is a subquery (or nested query)

= You can have subqueries in FROM or HAVING
clause also

30

= Find name of students enrolled in both ‘IT420’ and ‘T334’

= SELECT FName + ‘'’ + LName AS StudentName
FROM Students, (SELECT Alpha
FROM Enroll
WHERE CourselD = ‘IT420°
AND Alpha IN
(SELECT Alpha
FROM Enroll
WHERE CourselD = ‘IT334’)

) AS ResultAlphaTable
WHERE Students.Alpha = ResultAlphaTable.Alpha

31

Subqueries Exercise

= Students(Alpha, LName, FName, Class,
Age)

= Enroll(Alpha, CourselD, Semester,
Grade)

1. Find alpha for students enrolled in both
‘IT420’ and ‘IT334’

2. Find name of students enrolled in both
‘IT420" and ‘IT334’

32

Class Exercise

= Students(Alpha, LName, FName, Class,
Age)
= Enroll(Alpha, CourselD, Semester, Grade)

= Find the name of students enrolled in
‘T420°

= Usual way
= Use subqueries

33

Class Exercise

= What does this query compute:
= SELECT FName, LName
FROM Students S, Enroll E1, Enroll E2
WHERE S.Alpha = E1.Alpha
AND S.Alpha = E2.Alpha
AND E1.CourselD = ‘1T420’
AND E2.CourselD = ‘IT344’

34

Summary

= SELECT [DISTINCT] column_name(s) |
aggregate_expr
FROM table _name(s)
WHERE conditions
GROUP BY grouping _columns
HAVING group_conditions
ORDER BY column_name(s) [ASC/DESC]

35

