
Indexes: Tree Based and

Hash Based

B+-tree

Linear Hashing

B+ Tree: The Most Widely Used Index

• Insert/delete at _____ cost
– keep tree height-balanced. (F = fanout, N = # leaf

pages)

• Minimum 50% occupancy (except for root).
– Each node contains d <= m <= 2d entries.

– The parameter d is called the order of the tree.

• Supports equality and range-searches efficiently.
Index Entries

Data Entries

("Sequence set")

(Direct search)

ICE: Inserting 35* …

Root

17 24 30

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

7*

ICE: Deleting 29*
Root

30

5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27

2* 3*

135

17

ICE: Composite Search Keys

• B+-tree index on (Age, Salary)

• Which can you answer efficiently using a B+-
tree?
– Age = 20

– Age > 20

– Age = 20, Salary = 100000

– Age > 20, Salary = 100000

– Age = 20, Salary > 100000

– Age > 20, Salary > 100000

• Assume B+-tree index on (Age, Salary, Bonus);
which can you answer efficiently?
– Age = 20, Salary = 100000, Bonus > 5000

– Age = 20, Salary > 100000, Bonus > 5000

Extendible Hashing

• Main idea: If bucket (primary page) becomes full,
why not re-organize file by doubling # of buckets?

• But reading and writing all buckets is expensive!
– Idea: Use directory of pointers to buckets,

– Double # of buckets by doubling the directory, splitting
just the bucket that overflowed!

– Directory much smaller than file, so doubling it is much
cheaper.

– No overflow pages!

Essentially “splitting” buckets

ICE: Insert h(r)=20

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

DIRECTORY

GLOBAL DEPTH

Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21*13*

32* 16*

10*

15* 7* 19*

4* 12*

Comments on Extendible
Hashing

• If directory fits in memory, equality search
answered with _____ I/O; else _____

– 100MB file, 100 bytes/rec, 4K pages contain 1,000,000
records (as data entries) and 25,000 directory elements;

chances are high that directory will fit in memory.

• Directory grows in spurts, and, if the distribution of

hash values is ________, directory can grow large

Linear Hashing

• This is another dynamic hashing scheme, an

alternative to Extendible Hashing

• LH handles the problem of long overflow

chains without using a directory, and

handles duplicates

• Main idea:

Overview of LH File

• In the middle of a round.

Levelh

Buckets that existed at the

beginning of this round:

this is the range of

Next

Bucket to be split

of other buckets) in this round

Levelh search key value)(

search key value)(

Buckets split in this round:

If

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in

created (through splitting

`split image' buckets:

ICE: Inserting h(r) = 43

2

hh

3

(This info

is for illustration

only!)

Level=2, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=0

PRIMARY

PAGES

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

Inserting h(r) = 50 (End of a
Round)

2hh3

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=2

PRIMARY

PAGES
OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

Summary - Hashing

• Hash-based indexes: best for ______ searches,
cannot support _____ searches.

• Static Hashing can lead to ________________.

• Extendible Hashing uses directory doubling to avoid

– Duplicates may require ________________

• Linear hashing avoids directory by splitting in rounds
– Naturally handles ______________

– Uses overflow buckets (but not very long in practice)

