Evaluating Relational
Operations:
Part |

(From Chapter 14)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Relational Operators

= Select

= Project

= Join

= Set operations (union, intersect, except)
= Aggregation

Database Systems, R. is| and Johannes Gehrke

Select Operator

SELECT *
FROM Sailor S
WHERE S.Age =25
AND S.Salary > 100000

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Select Operator

Three cases:

= Case 1:
= Case 2:

= Case 3:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Case 1:

= Assume that select operator is applied
over a relation with N tuples stored in P
data pages

= What is the cost of select operation in this
case (in terms of # 1/0Os)?

Database Systems, R. is| and Johannes Gehrke

Select Operator

Three cases:

= Case 1:
= Case 2:

= Case 3:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Case 2: Example

SELECT *
FROM Sailor S
WHERE S.Age =25
AND S.Salary > 100000

Matching index?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Case 2: Cost Components

Component 1: Traversing index

Index Cost for B+-trees?
For hash indices?

File

Database Systems, R. is| and Johannes Gehrke

Case 2: Cost Components

Component 2: Traversing
sub-set of data entries in index
Index

File

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Case 2: Cost Components

Component 3: Fetching actual
data records (alternative 2 or 3)
Index

AL

File ‘ ‘

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Cost of Component 1

= D is cost of reading/writing one page to
disk (using random disk I/O)

= Hash index
=Cost=__
= B+-tree
= Cost =

Database Systems, R. is| and Johannes Gehrke

Cost of Component 2

= N data entries (= # data tuples if alternative 2)
= Hash index

= Linear hashing

= B hash buckets

= Average cost =

= B+ tree index
= L = average number of entries per leaf page
= S = Selectivity (fraction of tuples satisfying selection)
= Average cost =

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Cost of Component 3

= S*N data entries satisfy selection condition
= Sis selectivity, N is total number of data entries
= T is number of data tuples per page
= Hash index
= Worst-case cost =

= B+ tree index
= Worst-case cost =

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Putting it all together

= Total cost of select operations using
unclustered B+ tree index

= Should we always use index in this case?

*Depends on selectivity of selection condition!

< What about a clustered index?

Database Systems, R. is| and Johannes Gehrke

Component 3: Optimization

Alternative 2 or 3, unclustered index
* Find qualifying data entries from index

= Sort the rids of the data entries to be
retrieved

= Fetch rids in order

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Select Operator

Three cases:

= Case 1:
= Case 2:

= Case 3:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Case 3: Example

SELECT *
FROM Sailor S
WHERE S.Age =25
AND S.Salary > 100000

Database Systems, R. is| and Johannes Gehrke

Evaluation Alternatives

= Option 1
= Use available index (on Age) to get superset of
relevant data entries
= Retrieve the tuples corresponding to the set of data
entries

= Apply remaining predicates on retrieved tuples

= Return those tuples that satisfy all predicates
= Option 2

= Sequential scan! (always available)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Case 3: Example

SELECT *
FROM Sailor S
WHERE S.Age =25
AND S.Salary > 100000

= Have Hash index on Age
= Have B+ tree index on Salary

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Evaluation Alternatives

= Option 1
= Choose most selective access path (index)

= Could be index on Age or Salary, depending on
selectivity of the corresponding predicates

= Use this index to get superset of relevant data
entries

= Retrieve the tuples corresponding to the set of
data entries

= Apply remaining predicates on retrieved tuples
= Return those tuples that satisfy all predicates

Database Systems, R. is| and Johannes Gehrke

Evaluation Alternatives

= Option 2
= Get rids of data records using each index
= Use index on Age and index on Salary
= Intersect the rids
= We'll discuss intersection soon
= Retrieve the tuples corresponding to the
rids
= Apply remaining predicates on retrieved
tuples
= Return those tuples that satisfy all
predicates

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Evaluation Alternatives

= Option 3
= Sequential scan!

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

ICE: Choose the best for each query!

R(a,b,c,d,e):
5,000,000 records, 10 records/page
stored as sorted file by R.a (candidate key in [0,4999999])
What is best?
a) access sorted file for R directly
b) use clustered B+tree index on R.a
c) use linear hashing index on R.a
d) use clustered B+tree index on (R.a, R.b)
e) use linear hashing inex on (R.a, R.b)
f) use unclustered B+tree index on R.b
Queries: SELECT * FROM R WHERE ...
a < 50,000 AND b < 50,000
a=50,000 AND b < 50,000
a> 50,000 AND b = 50,000
a=50,000
a <>50,000 AND b = 50,000
a < 50,000 OR b = 50,000

OO0 H 0N

Database Systems, R. is| and Johannes Gehrke

Relational Operators

= Select

= Project

= Join

= Set operations (union, intersect, except)
= Aggregation

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example

SELECT DISTINCT S.Name, S. Age
FROM Sailor S

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Evaluation Alternatives

= Option 1
= Option 2

= Option 3

Database Systems, R. is| and Johannes Gehrke

Example

SELECT DISTINCT S.Name, S. Age
FROM Sailor S

= Have B+ tree index on (Name, Age)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Evaluation Using “Covering” Index

= Simply scan leaf levels of index structure
= No need to retrieve actual data records

= Works so long as the index search key includes
all the projection attributes
= Extra attributes in searchkeyare __
= Best if projection attributes are search key
= Can eliminate duplicates in single pass of index-only scan

= Other examples

= Hash index on (SSN, Name, Age)

= B+ tree index on (Age, # Dependents, Name)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example

SELECT DISTINCT S.Name, S. Age
FROM Sailor S

= Have Hash index on Name
= Have B+ tree index on Age
= Sailor relation has 100 other attributes!

Database Systems, R. is| and Johannes Gehrke

Evaluation Using RID Joins

Retrieve (SearchKey1, RID) pairs from first
index

Retrieve (SearchKey2, RID) pairs from
second index

Join these based on RID to get (SearchKey1,
SearchKey2, RID) triples

Project out the third column to get the desired
result

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Evaluation Alternatives

= Option 1

= Using Indices
= Option 2

= Based on sorting
= Option 3

= Based on hashing

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example

SELECT DISTINCT S.Name, S. Age
FROM Sailor S

= No indices

Database Systems, R. is| and Johannes Gehrke

General External Merge Sort

= Phase 2: Make multiple passes to merge runs
= Pass 1: Produce runs of length B(B-1) pages
= Pass 2: Produce runs of length B(B-1)2pages

= Pass P: Produce runs of length B(B-1)P pages
<

Disk

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

General External Merge Sort:
Phase 2
= # buffer pages B = 4

@@] Input file

Phase 1
% E 4-page runs
[23] [34]
1] —>[23
Phase 2
& Pass 1

Main Memory

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Modifications to External Sorting

= Phase 1
= Project out unwanted columns

= Phase 2
= Eliminate duplicates during merge

Database Systems, R.

and Johannes Gehrke

Evaluation Alternatives

= Option 1

= Using Indices
= Option 2

= Based on sorting
= Option 3

= Based on hashing

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Projection Based on Hashing

= Assume relation does not fit in memory
= Phase 1
= Divide relation into partitions

Original
Relation OouTPUT Partitions
S—
O |1
INPUT
e mm |2
H— unction
h s
B-1
Disk B main memory buffers Disk

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Phase 1: Analysis

= Number of data pages = N
= Assume all attributes are projected out
= Cost of reading/writing disk page = D

= Number of Partitions =
= Length of each partition =

= Cost of Phase 1 =

Database Systems, R. is| and Johannes Gehrke

Two Cases for Each Partition

= Case 1
= Partitions fits in memory
= Case 2
= Partition does not fit in memory

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Case 1: Partition Fits in Memory

= Use h2 <> h1!
Partitions
of R

Dupli Free Partition

Hash table for partition
Ri

00 - O BS

h2 oo
{ [] mput buffer \D O
for i

B main memory buffers Disk

< Ris number of pages in result
+ After eliminating duplicates

+ Cost=D* (N +R)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Case 2: Partition Doesn't fit in
Memory

= Recursively apply Phase 1 algorithm on the
partition!
= Use hash function h2 <> h1!

= Analysis
= Size of each partition after P partitioning phases =

= Stop partitioning when :
= # Partitioning phases =
= Total cost of Phase 1 =

Database Systems, R. 3 and Johannes Gehrke

Comments on Projection

= Sort-based approach vs. hash-based
approach
= Which one would you choose?
= Why?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

