
Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Transaction Management

From Chapters 16, 17

-Concurrency Control –

Part 1

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Motivation

� Concurrent execution

� Why is this desirable?

� Crash recovery

� Crashes not desirable but unavoidable!

� Transactions

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Transactions: The ACID properties

�� AA tomicity:

�� CC onsistency:

�� II solation:

�� D D urability:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Transactions API

Database SystemClient Application

ODBC/JDBC

Connection

Begin transaction
SQL Query 1
if (...) then SQL Update 2
else SQL Update 3

…
End transaction

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Outline – Concurrency Control

� Examples

� Formal definition of serializability

� Possible solutions to concurrent execution
anomalies

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Goal of Concurrency Control

� Transactions should be executed so that it
is as though they executed in some serial
order

� Weaker variants also possible

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example
User 1: Buy 10 Snicker bars

User 2: Buy 2 Gatorade bottles

Possible order of processing at DB server:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Anomalies (Lost Update)
User 1: Buy 10 Snicker bars

User 2: Buy 2 Snicker bars

Order of processing at DB server:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

DBMS’s View

U1: Read nb Snickers

U2: Read nb Snickers

U1: Reduce count Snickers by 10

U1: Write new nb Snickers back

U2: Reduce count Snickers by 2

U2: Write new nb Snickers back

T1: R(Snickers)

T2: R(Snickers)

T1: W(Snickers)

T1: COMMIT

T2: W(Snickers)

T2: COMMIT

T1: R(S) W(S) Commit

T2: R(S) W(S) Commit

time

time

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Inconsistent-Read Anomalies

� Dirty reads – read uncommitted data

� T1: R(A), W(A), R(B), W(B), Abort

� T2: R(A), W(A), Commit

� Unrepeatable reads

� T1: R(A), R(A), W(A), Commit

� T2: R(A), W(A), Commit

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Class Exercise

� Transaction Steps

� Possible Schedule

� Possible Problems

� T1: Transfer money from savings to

checking

� T2: Add interest for savings account

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Outline

� Examples

� Formal definition of serializability

� Possible solutions to concurrent execution
anomalies

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Scheduling Transactions

� Serial schedule:

� Equivalent schedules:

� Serializable schedule:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Conflict Serializable Schedules

� Two schedules are conflict equivalent if:

� Schedule S is conflict serializable if S is
conflict equivalent to some serial schedule

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example

� A schedule that is not conflict serializable:

� The cycle in the graph reveals the problem. The
output of T1 depends on T2, and vice-versa.

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B

Dependency graph

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Dependency Graph

� Dependency graph: One node per Xact;
edge from Ti to Tj if Ti precedes and
conflicts with Tj

� 2 actions conflict if at least one is a write

� Theorem: Schedule is conflict serializable
________ its dependency graph is acyclic

� Certain serializable executions are not
conflict serializable!

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Outline

� Examples

� Formal definition of serializability

� Possible solutions to concurrent execution
anomalies

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Resource Locking

� Locking: prevents multiple applications from

obtaining copies of the same resource when the

resource is about to be changed

� Lock granularity - size of a locked resource

� Types of lock

� Exclusive lock (X)

� Shared lock (S)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Explicit Locks

User 1:

Lock Snickers

Read nb Snickers (ns=500)

Reduce count Snickers by 10 (ns=490)

Write new nb Snickers back (ns=490)

User 2:

Lock Snickers

Read nb Snickers (ns2=500)

Reduce count Snickers by 2 (ns2=498)

Write new nb Snickers back (ns2=498)

User 1: Buy 10 Snicker bars

User 2: Buy 2 Snicker bars

Order of processing at DB server:

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Class Exercise – Place Locks

� T1: R(Sa), W(Sa), R(Ch), W(Ch), Abort

� T2: R(Sa), W(Sa), C

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Strict Two-Phase Locking

� Strict two-phase locking

� Locks are obtained throughout the transaction

� All locks are released at the end of

transaction (COMMIT or ROLLBACK)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Strict 2PL Example

� Not 2PL

� X(A)

� R(A)

� W(A)

� Rel(A)

� X(B)

� R(B)

� W(B)

� Rel(B)

� Strict 2PL

� X(A)

� R(A)

� W(A)

� X(B)

� R(B)

� W(B)

� Rel(B,A)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Lock Management

� Lock and unlock requests are handled by the

lock manager

� Lock table entry:

� Number of transactions currently holding a lock

� Type of lock held (shared or exclusive)

� Pointer to queue of lock requests

� Locking and unlocking have to be atomic

operations

� Lock upgrade: transaction that holds a shared

lock can be upgraded to hold an exclusive lock

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Next Time

� Deadlock prevention and detection

� Advanced locking techniques

� Lower degrees of isolation

� Concurrency control for index structures

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Solution 1

1) Get exclusive lock on entire database

2) Execute transaction

3) Release exclusive lock

� Similar to “critical sections” in operating
systems

� Serializability guaranteed because
execution is serial!

� Problems?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Solution 2

1) Get exclusive locks on accessed data
items

2) Execute transaction

3) Release exclusive locks

� Greater concurrency

� Problems?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Solution 3

1) Get exclusive locks on data items that are
modified; get shared locks on data items
that are only read

2) Execute transaction

3) Release all locks

� Greater concurrency

� Conservative Strict Two Phase Locking
(2PL)

� Problems?

S

X

S X

Yes No

NoNo

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Solution 4

1) Get exclusive locks on data items that are

modified and get shared locks on data items that

are read

2) Execute transaction and release locks on objects

no longer needed during execution

� Greater concurrency

� Conservative Two Phase Locking (2PL)

� Problems?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Solution 5

1) Get exclusive locks on data items that are

modified and get shared locks on data items that

are read, but do this during execution of

transaction (as needed)

2) Release all locks

� Greater concurrency

� Strict Two Phase Locking (2PL)

� Problems?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Solution 6

1) Get exclusive locks on data items that are
modified and get shared locks on data items that
are read, but do this during execution of
transaction (as needed)

2) Release locks on objects no longer needed
during execution of transaction

3) Cannot acquire locks once any lock has been
released
� Hence two-phase (acquiring phase and releasing

phase)

� Greater concurrency

� Two Phase Locking (2PL)

� Problems?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Summary of Alternatives

� Conservative Strict 2PL
� No deadlocks, no cascading aborts

� But need to know objects a priori, when to release locks

� Conservative 2PL
� No deadlocks, more concurrency than Conservative Strict

2PL

� But need to know objects a priori, when to release locks,
cascading aborts

� Strict 2PL
� No cascading aborts, no need to know objects a priori or

when to release locks, more concurrency than
Conservative Strict 2PL

� But deadlocks

� 2PL

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Method of Choice

� Strict 2PL
� No cascading aborts, no need to know objects a priori or when to

release locks, more concurrency than Conservative Strict 2PL

� But deadlocks

� Reason for choice
� Cannot know objects a priori, so no Conservative options

� Thus only 2PL and Strict 2PL left

� 2PL needs to know when to release locks (main problem)

� Also has cascading aborts

� Hence Strict 2PL

� Implication

� Need to deal with deadlocks!

