Tree-Structured Indexes

(From Chapter 9)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Introduction

= As for any index, 3 alternatives for data entries k*:

= Tree-structured indexing techniques support both
range searches and equality searches.
= ISAM:
= B+ tree:

Database Systems, R. is| and Johannes Gehrke

Range Searches

= “Find all students with gpa > 3.0”

= If data entries are sorted, do binary search
to find first such student, then scan to find
others.

= Problem?

“ Page 1 H Page 2 H Page 3 ‘ PageN ‘ Data (Entries) File

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Range Searches

= Simple idea: Create an “index’ file

= What is search cost if each index page has
F entries?

“ Page 1 H Page 2 H Page 3 ‘ Page N ‘ Data File

b4 Can do binary search on (smaller) index file!

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

indexentr¥
L Ll il
! ! !]
= Index file may still be quite large. But we
can apply the idea repeatedly!

o

ISAM

Non-leaf
Pages

et :(j: 4 :r--'-\:> A s Bl s O
] Overflow ------- > \\‘\ //'i’,—"""
page Primary pages
P4 Leaf pages contain data entries.

Database Systems, R. is| and Johannes Gehrke

Example ISAM Tree

= Each node can hold 2 entries

= What is search cost if each leaf node can hold L
entries and each index node can hold F entries?

Root —~=a
el]
RIS [=][=1
§ V \

‘IO"15" ‘20' 27" ‘33"37" ‘40"46" ‘51"55" ‘63“97"

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

After Inserting 23, 48, 41*, 42*

Root —a
Index
Pages
20|33 51|63
I
I
Primary / \ / \Jg \
Leaf ‘ 10* | 15* 1 20* | 27* ‘ 33" | 37 \‘40" 46" ‘ 51* | 55* ‘ 63 | 97"
Pages
\ \
Pages
Database Management Systems, R. Ramakrishnan and Johannes Gehrke
... Then Deleting 42*
Root —a
Index
Pages
20| (33 51|63
I
I
Primary / \ / \Jg \
Leaf ‘ 107 | 15° [zo' 27 ‘ 33 | 37 {40' 46" ‘ 51 | 55 ‘63‘ o7 ‘
Pages \
T
Pages
Database Systems, R. is| and Johannes Gehrke
... Then Deleting 51*
Root —a
Index
Pages
20|33 51|63
1 I
I
Primary / \ P/ ‘% \\
Leaf ‘ 10* | 15* 1 20" | 27* ‘ 33+ | 37 \‘40" 46" ‘ 51* | 55* ‘ 63 | 97"
Pages
\ \
Pages

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

After Deleting 41* and 51*

Root —a

=[]
I
Pages

20|33 51| |63
I
20*

Primary /

Leaf

‘IO"IS' ‘ 1 27" ‘ ‘37' ‘ \‘40 ‘45 ‘ 55° ‘ ‘53“97 ‘
Pages \ \
Pages

>4 Note 51 appears in Index Page but not in Leaf pages!

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

B+ Tree: The Most Widely Used Index

= Insert/delete at log ¢ N cost

= Minimum 50% occupancy (except for root).

= Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")

Database Systems, R. is| and Johannes Gehrke

Example B+ Tree

= Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

= Search for 5%, 15*, all data entries >= 24* ...

iy o — —
‘2"3"5“7-‘ ‘14"|s" ‘ HIS"ZO' 22‘ “24"27"29" Haa"ar‘w‘as"

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

B+-tree Search Performance

= Assume leaf pages can hold L data entries
= Assume B+-tree has order d
= Assume the tree has to index N data entries

= What is the best-case search performance
(measured in number of 1/0s)?

= What is the worst-case search performance?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

B+ Trees in Practice

= Typical order: 100. Typical fill-factor: 67%.
= average fanout = 133
= Typical capacities:
= Height 4: 1334 = 312,900,700 records
= Height 3: 1333 = 2,352,637 records
= Can often hold top levels in buffer pool:
= Level1 = 1page = 8Kb
- Level2= 133 pages 1 MB
= Level 3 = 17,689 pages = 133 MB

Database Systems, R. is| and Johannes Gehrke

Inserting 23*

L oy Caa F
5 I O R K G I R S R M R S A

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Inserting 8™ ...

‘2' 3|5 |7+ ‘ ‘14"15'} ‘ H 19 20" 22] |24 27'}29" Haa"aﬂaa' 39"

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Inserting 8" ...Leaf Page Split

Database Systems, R. is| and Johannes Gehrke

Inserting 8* ...Root Split

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

After Inserting 8*

grew
Fa Fa Pty P Pty
N O O 3 e S KR S

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Inserting 8~ ...
Root \

13 17 24 30

‘2' ‘3' ‘ B ‘7' ‘ ‘14"|s'1 ‘ H |9" zo"zz" H 24"27'}29" Haa"sr[aa"w‘

= In this example, could have “redistributed” to
sibling instead of splitting
= Not usually done in practice (Why?)

Database Systems, R. is| and Johannes Gehrke

Deleting 19* ...

e e Y "t "t
O A O R S KR

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Deleting 20* ...

‘2' 3 ‘ ‘ ‘5' 7|8 ‘ ‘14' 16* ‘ H ‘zo' 22" Hzr 27| 20+ Haa' 34+| 38+ [30*
Database Management Systems, R. Ramakrishnan and Johannes Gehrke
Deleting 20* ...
‘z- 3 ‘ ‘ ‘5' 7 ‘ e ‘ ‘14- 16* ‘ H ‘ ‘zz' H24' 27+ 20 Haa' 3
Database Systems, R. ishnan and Johannes Gehrke
After Deleting 20*
‘2' 3 8 ‘ ‘14' 16* ‘ H 227 24 ‘ Hzr 20" ‘ Haa' 34+ [38° [30*

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Deleting 24* ...

‘2' 3 ‘ Hs 7|8 H14'16' ‘ H22'24' ‘ Hzr 29" ‘ Haa'u + 30

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Deleting 24~ ...

‘2' 3 ‘ ‘ ‘5' 7 ‘ 8 ‘ ‘14' 16° ‘ H 22°] ‘ ‘ Hzr 20" ‘ Haa' 34
Database Systems, R. ishnan and Johannes Gehrke
Deleting 24* ...
"
‘2' 3 8 ‘ ‘14' 16* ‘ ‘ ‘22' 27+ 29 Haa' 34+ [38° [30*

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Deleting 24* ...

o Can A L ¥ A £
Il TIETE bl T = =]

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Example of Non-leaf Re-distribution

= During deletion of 24*

= In contrast to previous example, can re-
distribute entry from left child of root to right

child. -

— f\' e S | ey ¥ w T a T _
O T O e e O 53

Database Systems, R. is| and Johannes Gehrke

After Re-distribution

= Entries are re-distributed by “pushing through’ the
splitting entry in the parent node.

= Suffices to re-distribute index entry with key 20;
we've re-distributed 17 as well for illustration.

Root

P P P (" P LA
H 14"16" ‘ ‘ ‘ 17* Iﬁ" ‘ HZD" 21" ‘ ‘ ‘22" 27* 29" ‘ ‘33" 34“33"39'

[2]=] [[[=]r]e

Database Management Systems, R. Ramakrishnan and Johannes Gehrk

Composite Search Keys

\\

@3 edr @] |

@io2] | oo

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Composite Search Keys

= B+-tree index on (Age, Salary)

= Which can you answer efficiently using a B+-
tree?
= Age=20
= Age > 20
Age = 20, Salary = 100000
Age > 20, Salary = 100000
Age = 20, Salary > 100000
Age > 20, Salary > 100000
= Assume B+-tree index on (Age, Salary, Bonus);
which can you answer efficiently?
= Age = 20, Salary = 100000, Bonus > 5000
= Age = 20, Salary > 100000, Bonus > 5000

Database Systems, R. is| and Johannes Gehrke

Prefix Key Compression

= Important to increase fan-out (Why?)
= Key values in index entries only “direct traffic’;
can often compress them

= E.g., adjacent index entries with search key values
Dannon Yogurt, David Smith and Devarakonda
Murthy

= We can abbreviate David Smithto Dav. (The other
keys can be compressed too ...)

= |s this correct?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

A Note on "Order’

= Order (d) concept replaced by physical space
criterion in practice (" at least half-full’). Why?

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Bulk Loading of a B+ Tree

= [nitialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

Roh

Sorted pages of data entries; not yet in B+ tree

\ [eT7e] o] o] Eﬁl

Database Systems, R. is| and Johannes Gehrke

Bulk Loading (Contd.)

= Index entries for leaf pages always entered into right-
most index page just above leaf level. When this fills up,
it splits. (Split may go up right-most path to the root.)

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

Summary of Bulk Loading

= Option 1: multiple inserts.

= Option 2: Bulk Loading

Database Management Systems, R. Ramakrishnan and Johannes Gehrke

