
Socket Programming Assignment 1: Web Server

In this lab, you will learn the basics of socket programming for TCP connections in Python: how to create
a socket, bind it to a specific address and port, as well as send and receive a HTTP packet. You will also
learn some basics of HTTP header format.

You will develop a web server that handles one HTTP request at a time. Your web server should accept
and parse the HTTP request, get the requested file from the server’s file system, create an HTTP
response message consisting of the requested file preceded by header lines, and then send the response
directly to the client. If the requested file is not present in the server, the server should send an HTTP
“404 Not Found” message back to the client.

Code

Below you will find the skeleton code for the Web server. You are to complete the skeleton code. The
places where you need to fill in code are marked with #Fill in start and #Fill in end. Each place may
require one or more lines of code.

Running the Server

Put an HTML file (e.g., HelloWorld.html) in the same directory that the server is in. Run the server
program. Determine the IP address of the host that is running the server (e.g., 128.238.251.26). From
another host, open a browser and provide the corresponding URL. For example:

http://128.238.251.26:6789/HelloWorld.html

‘HelloWorld.html’ is the name of the file you placed in the server directory. Note also the use of the port
number after the colon. You need to replace this port number with whatever port you have used in the
server code. In the above example, we have used the port number 6789. The browser should then
display the contents of HelloWorld.html. If you omit ":6789", the browser will assume port 80 and you
will get the web page from the server only if your server is listening at port 80.

Then try to get a file that is not present at the server. You should get a “404 Not Found” message.

What to Hand in

You will hand in the complete server code (server python file and test html file) along with the screen
shots of your client browser, verifying that you actually received the contents of the HTML file from the
server.

Skeleton Python Code for the Web Server

#import socket module

from socket import *

serverSocket = socket(AF_INET, SOCK_STREAM)

#Prepare a server socket

##Fill in start

##Fill in end

#Send properly encoded message through socket

def sendThroughSocket(message):

 connectionSocket.send(message.encode('utf8'))

#Receive properly decoded message through socket

def receiveThroughSocket():

 return connectionSocket.recv(2048).decode('utf8')

while True:

 #Establish the connection

 print ('Ready to serve...')

 connectionSocket, addr = ##Fill in start ##Fill in end

 try:

 message = ##Fill in start ##Fill in end

 #Retrieve html file contents

 filename = message.split()[1]

 f = open(filename[1:])

 outputdata = f.read()

 #Send one HTTP header line into socket

 ##Fill in start

 ##Fill in end

 #Send the content of the requested file to the client

 connectionSocket.send(outputdata.encode('utf8'))

 #Close client socket

 ##Fill in start

 ##Fill in end

 except IOError:

 #Send response message for file not found

 ##Fill in start

 ##Fill in end

 except Exception as e:

 print(e)

 connectionSocket.close()

#Close server socket

##Fill in start

##Fill in end

Optional Exercises

1. Currently, the web server handles only one HTTP request at a time. Implement a multithreaded
server that is capable of serving multiple requests simultaneously. Using threading, first create a main
thread in which your modified server listens for clients at a fixed port. When it receives a TCP

connection request from a client, it will set up the TCP connection through another port and services the
client request in a separate thread. There will be a separate TCP connection in a separate thread for
each request/response pair.

2. Instead of using a browser, write your own HTTP client to test your server. Your client will connect to
the server using a TCP connection, send an HTTP request to the server, and display the server response
as an output. You can assume that the HTTP request sent is a GET method. The client should take
command line arguments specifying the server IP address or host name, the port at which the server is
listening, and the path at which the requested object is stored at the server. The following is an input
command format to run the client.

client.py server_host server_port filename

3. Modify your server so that if the client asks for a directory rather than a file name, the server returns
a formatted directory listing with the names of files and subdirectories. The user should then be able to
click on a file or directory name in the browser to open it. Use this page as an example:

http://www.usna.edu/Users/cs/stahl/SI460/S_AY10/projects/03/assigned/src/

http://www.usna.edu/Users/cs/stahl/SI460/S_AY10/projects/03/assigned/src/

