
Program correctness

“Computer Science is no more about computers than astronomy is about tele-
scopes.” - E. W. Dijkstra

Now that we can prove things, wouldn’t it be nice if we could prove things about our
programs? Things like, do they work? Are they right? Trivial things like that.

1. A program is correct iff it produces the correct output for every possible input.

2. Therefore, one possible technique is to try out every possible input to see if each gives
the right answer.

3. Unfortunatly, that can take a long time. Imagine a program that, given a valid position
in a game of chess, generates a list of legal moves. Its a straightforward problem, and
easy to verify, but it has a large number of different inputs. There are, roughly, 1040

different legal positions in chess. If it takes, say, one hundreth of a second to generate
output from input, it would still take 1038 seconds to test all of the inputs. This is
roughly 1030 years. I don’t know about you, but that is longer than I’m willing to wait.

4. Instead, we’ll have to use some other technique to try to prove program correctness.

5. We break our proof into 2 parts:

(a) The answer is correct, if the program terminates. If a program meets this condi-
tion, it is called “partially correct.”

(b) The program always terminates.

6. We will introduce a new notation to indicate partial correctness: p{S}q says that a
piece of program S (called the segment) is partially correct with respect to the initial
assertion p and the final assertions q.

(a) p is the set of properties that the program segment needs to be true. If S is an
entire program, p is the input. If S is a program piece, p is the set of things true
when the program gets to segment S.

(b) q is the set of properties that must be true after S runs, given p.

1

7. So far this is pretty simple. Show that the following is partially correct:

p : x = 1

S : y ⇐ 2;

z ⇐ x + y;

q : z = 3

Well, if x starts out as 1, and y is assigned 2, then z is assigned 1+2, or 3, therefore z
is 3, and p{S}q is true.

8. So here’s the basic plan: we’ll start by trying to prove that some property q is true at
the end of the program, if some other property p is true at the start. We’ll develop
ways to to break the program into smaller chunks: if property r is true and the end
of chunk one and property s is true at the end of chunk two, then we’ll know that
property q is true at the end of the program. We just keep doing that until the chunks
are so small they are trivially true. Let’s see.

9. In order to prove things with this system, we need some rules of inference:

(a) Composition:
p{S1}q ∧ q{S2}r → p{S1; S2}r

If we start with p being true, and at the end of S1 q is true, and if q is true, then
at the end of S2 r is true, then we can conclude that if we start with p and run
S1 followed by S2, then at the end r will be true.

We use this when we want to prove that some p{S1; S2}r is true. All we do is
break the code into the two parts S1 and S2, and prove that both p{S1}q and
q{S2}r are true.

This enables us to split programs in to pieces, prove that the pieces are correct,
and glue them back together.

For example, lets prove the previous code example. Let S1 be y ⇐ 2; and S2 be
z ⇐ x+y;. To prove that p{S}q is true, we can apply composition: prove p{S1}r
and r{S2}q are true, where r is y = 2∧ x = 1. p{S1}r is true by the definition of
y ⇐ 2; and since x was not changed. r{S2}q is true, by the definition of +, and
the fact that y = 2 ∧ x = 1. There, we’re done.

(b) Conditional. If we have a bit of code that says, if condition then S, we use the
conditional rule:

[(p ∧ condition){S1}q] ∧ [(p ∧ ¬condition) → q] → p{S}q,

where, S = if condition then S1

This says that if we’re trying to prove a bit of code containing an if statement
is correct, then we need to prove the body is correct, with the addition of the if-
condition to the initial assertions, and that when the negation of the if-condition

2

is added to the initial assertions, this implies that the final assertions would still
be true. That is, we check to see if it works either way. For example:

p : T

S

{
if x > y then

S1 : y ⇐ x

q : y ≥ x

Prove:

T ∧ (x > y){y ⇐ x}(y ≥ x)� definition of assignment

T ∧ ¬(x > y) → (y ≥ x)

(x ≤ y) → (y ≥ x)�

Since p is True, there are no other initial assertions to worry about, and both x
and y can be anything. If x > y, then we execute S, and y is assigned x. Thus,
y = x, and y ≥ x. If ¬(x > y), then x ≤ y, therefore y ≥ x.

(c) Conditional with else. if condition then S1 else S2:

(p ∧ condition){S1}q ∧ (p ∧ ¬condition){S2}q → p{S}q.

where, S = if condition then S1else S2

This says that to prove partially correct two segments in an if-else statement, we
can add the condition to the initial assertions and prove for the first segment, and
separeately add the negation of the condition to the initial assertions and prove
the second segment:

p : T

S


if x < 0 then

S1 : abs ⇐ −x;

else

S2 : abs ⇐ x;

q : abs = |x|

So we need to break this into 2 parts: T ∧ x < 0{abs = −x}abs = |x| and
T ∧ (x ≥ 0){abs = x}abs = |x|. The first is true, since if a number is < 0, then
its opposite is its absolute value. The second case is also true by the definition of
absolute value.

Prove:

T ∧ x < 0{abs = −x}abs = |x|� definition of absolute value

T ∧ (x ≥ 0){abs = x}abs = |x|�

3

(d) Loop invariants. In order to prove things about loops, we have to limit ourselves
to certain kinds of loops. Fortunately, almost all of the loops we write of of this
kind, or can easily be made into a loop of this kind. The property we need is the
presence of a loop invariant. A loop invariant is something that is true before the
loop starts, true when it ends, and is what we want to be true at the end of the
loop (i.e. it performs the function of q from the earlier rules of inference). The
basic rule is:

(p ∧ condition){S}p → p{while conditionS}(¬condition ∧ p)

What his says, if we have an invariant that is true both before and after any one
pass through the loop, then it will be true after all of the passes.

i = 1;

factorial = 1;

p :(factorial = i!) ∧ (i ≤ n)

while (i < n)

S : i + +;

factorial = factorial ∗ i;

First we must show that p is indeed a loop invariant. We do this with an in-
ductive proof. In the base case, the first time time through the loop, i = 1, and
factorial = 1, thus factorial = i!. For the inductive step: If, before any pass
through the loop, factorial = i! and (i ≤ n), then after the pass through the
loop, inew = i + 1, and factorialnew = factorial · (i + 1) = (i + 1)! since i < n
because of the loop condition, inew ≤ n. Therefore p is a valid invariant.

The next step is to ensure that the loops terminates (remember that?). Since i
starts out < n, and i is increased each pass through the loop, eventually, i ≥ n.
Finally note, when i = n then (factorial = i!) → factorial = n!.

10. Final example. This following program takes 2 numbers n and m and calculates the

4

product nm by repeated addition. Prove it.

S1 =


if n < 0 then

a = −n;

else

a = n;

S2 =

{
k = 0;

x = 0;

S3 =


while k < a

x = x + m;

k + +;

S4 =


if n < 0 then

product = −x;

else

product = x;

p :integer(m) ∧ integer(n)

q :p ∧ (a = |n|)
p{S1}q is true by the definition of absolute value

r :q ∧ (k = 0) ∧ (x = 0)

q{S2}r is trivially true

s :x = mk ∧ (k ≤ a) ∧ q

s in an invariant because A) 0 = m0 and B) if x = mk, then knew = k + 1, and
xnew = x + m = m(k + 1). Since at the end of the loop, k = a, the loop terminates
with x = ma, and r{S3}s is true.

t :product = mn

s{S4}t is true, because x = ma and a = |n|, by the definition of absulute value.

5

